File: t_bench_mux4k.v

package info (click to toggle)
verilator 5.038-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 162,552 kB
  • sloc: cpp: 139,204; python: 20,931; ansic: 10,222; yacc: 6,000; lex: 1,925; makefile: 1,260; sh: 494; perl: 282; fortran: 22
file content (180 lines) | stat: -rw-r--r-- 4,803 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Lane Brooks.
// SPDX-License-Identifier: CC0-1.0
//
// This implements a 4096:1 mux via two stages of 64:1 muxing.

// change these two parameters to see the speed differences
//`define DATA_WIDTH 12
//`define MUX2_SIZE 32
`define DATA_WIDTH 2
`define MUX2_SIZE 8

// if you change these, then the testbench will break
`define ADDR_WIDTH 12
`define MUX1_SIZE 64

// Total of DATA_WIDTH*MUX2_SIZE*(MUX1_SIZE+1) instantiations of mux64

module t (/*AUTOARG*/
   // Inputs
   clk
   );
   input clk;

   /*AUTOWIRE*/
   // Beginning of automatic wires (for undeclared instantiated-module outputs)
   wire [`DATA_WIDTH-1:0] datao;                // From mux4096 of mux4096.v
   // End of automatics

   reg [`DATA_WIDTH*`MUX1_SIZE*`MUX2_SIZE-1:0] datai;
   reg [`ADDR_WIDTH-1:0]                       addr;

   // Mux: takes in addr and datai and outputs datao
   mux4096 mux4096 (/*AUTOINST*/
                    // Outputs
                    .datao              (datao[`DATA_WIDTH-1:0]),
                    // Inputs
                    .datai              (datai[`DATA_WIDTH*`MUX1_SIZE*`MUX2_SIZE-1:0]),
                    .addr               (addr[`ADDR_WIDTH-1:0]));


   // calculate what the answer should be from datai.  This is bit
   // tricky given the way datai gets sliced.  datai is in bit
   // planes where all the LSBs are contiguous and then the next bit.
   reg [`DATA_WIDTH-1:0] datao_check;
   integer j;
   always @(datai or addr) begin
      for(j=0;j<`DATA_WIDTH;j=j+1) begin
         /* verilator lint_off WIDTH */
         datao_check[j] = datai >> ((`MUX1_SIZE*`MUX2_SIZE*j)+addr);
         /* verilator lint_on WIDTH */
      end
   end

   // Run the test loop.  This just increments the address
   integer i, result;
   always @ (posedge clk) begin
      // initial the input data with random values
      if (addr == 0) begin
         result = 1;
         datai = 0;
         for(i=0; i<`MUX1_SIZE*`MUX2_SIZE; i=i+1) begin
            /* verilator lint_off WIDTH */
            datai = (datai << `DATA_WIDTH) | ($random & {`DATA_WIDTH{1'b1}});
            /* verilator lint_on WIDTH */
         end
      end

      addr <= addr + 1;
      if (datao_check != datao) begin
         result = 0;
         $stop;
      end

`ifdef TEST_VERBOSE
      $write("Addr=%d datao_check=%d datao=%d\n", addr, datao_check, datao);
`endif
      // only run the first 10 addresses for now
      if (addr > 10) begin
         $write("*-* All Finished *-*\n");
         $finish;
      end
   end

endmodule

module mux4096
  (input [`DATA_WIDTH*`MUX1_SIZE*`MUX2_SIZE-1:0] datai,
   input [`ADDR_WIDTH-1:0] addr,
   output [`DATA_WIDTH-1:0] datao
   );

   // DATA_WIDTH instantiations of mux4096_1bit
   mux4096_1bit mux4096_1bit[`DATA_WIDTH-1:0]
     (.addr(addr),
      .datai(datai),
      .datao(datao)
      );
endmodule

module mux4096_1bit
  (input [`MUX1_SIZE*`MUX2_SIZE-1:0] datai,
   input [`ADDR_WIDTH-1:0] addr,
   output datao
   );

   // address decoding
   wire [3:0]  A = (4'b1) << addr[1:0];
   wire [3:0]  B = (4'b1) << addr[3:2];
   wire [3:0]  C = (4'b1) << addr[5:4];
   wire [3:0]  D = (4'b1) << addr[7:6];
   wire [3:0]  E = (4'b1) << addr[9:8];
   wire [3:0]  F = (4'b1) << addr[11:10];

   wire [`MUX2_SIZE-1:0] data0;

   // DATA_WIDTH*(MUX2_SIZE)*MUX1_SIZE instantiations of mux64
   // first stage of 64:1 muxing
   mux64 #(.MUX_SIZE(`MUX1_SIZE)) mux1[`MUX2_SIZE-1:0]
     (.A(A),
      .B(B),
      .C(C),
      .datai(datai),
      .datao(data0));

   // DATA_WIDTH*MUX2_SIZE instantiations of mux64
   // second stage of 64:1 muxing
   mux64 #(.MUX_SIZE(`MUX2_SIZE)) mux2
     (.A(D),
      .B(E),
      .C(F),
      .datai(data0),
      .datao(datao));

endmodule

module mux64
  #(parameter MUX_SIZE=64)
  (input [3:0] A,
   input [3:0] B,
   input [3:0] C,
   input [MUX_SIZE-1:0] datai,
   output datao
   );

   wire [63:0] colSelA = { 16{ A[3:0] }};
   wire [63:0] colSelB = {  4{ {4{B[3]}}, {4{B[2]}}, {4{B[1]}}, {4{B[0]}}}};
   wire [63:0] colSelC = { {16{C[3]}}, {16{C[2]}}, {16{C[1]}}, {16{C[0]}}};

   wire [MUX_SIZE-1:0] data_bus;

   // Note each of these becomes a separate wire.
   //.colSelA(colSelA[MUX_SIZE-1:0]),
   //.colSelB(colSelB[MUX_SIZE-1:0]),
   //.colSelC(colSelC[MUX_SIZE-1:0]),

   drv drv[MUX_SIZE-1:0]
     (.colSelA(colSelA[MUX_SIZE-1:0]),
      .colSelB(colSelB[MUX_SIZE-1:0]),
      .colSelC(colSelC[MUX_SIZE-1:0]),
      .datai(datai),
      .datao(data_bus)
      );

   assign datao = |data_bus;

endmodule

module drv
  (input colSelA,
   input colSelB,
   input colSelC,
   input datai,
   output datao
   );
   assign datao = colSelC & colSelB & colSelA & datai;

endmodule