1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed into the Public Domain, for any use,
// without warranty, 2008 by Lane Brooks.
// SPDX-License-Identifier: CC0-1.0
//
// This implements a 4096:1 mux via two stages of 64:1 muxing.
// change these two parameters to see the speed differences
//`define DATA_WIDTH 12
//`define MUX2_SIZE 32
`define DATA_WIDTH 2
`define MUX2_SIZE 8
// if you change these, then the testbench will break
`define ADDR_WIDTH 12
`define MUX1_SIZE 64
// Total of DATA_WIDTH*MUX2_SIZE*(MUX1_SIZE+1) instantiations of mux64
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [`DATA_WIDTH-1:0] datao; // From mux4096 of mux4096.v
// End of automatics
reg [`DATA_WIDTH*`MUX1_SIZE*`MUX2_SIZE-1:0] datai;
reg [`ADDR_WIDTH-1:0] addr;
// Mux: takes in addr and datai and outputs datao
mux4096 mux4096 (/*AUTOINST*/
// Outputs
.datao (datao[`DATA_WIDTH-1:0]),
// Inputs
.datai (datai[`DATA_WIDTH*`MUX1_SIZE*`MUX2_SIZE-1:0]),
.addr (addr[`ADDR_WIDTH-1:0]));
// calculate what the answer should be from datai. This is bit
// tricky given the way datai gets sliced. datai is in bit
// planes where all the LSBs are contiguous and then the next bit.
reg [`DATA_WIDTH-1:0] datao_check;
integer j;
always @(datai or addr) begin
for(j=0;j<`DATA_WIDTH;j=j+1) begin
/* verilator lint_off WIDTH */
datao_check[j] = datai >> ((`MUX1_SIZE*`MUX2_SIZE*j)+addr);
/* verilator lint_on WIDTH */
end
end
// Run the test loop. This just increments the address
integer i, result;
always @ (posedge clk) begin
// initial the input data with random values
if (addr == 0) begin
result = 1;
datai = 0;
for(i=0; i<`MUX1_SIZE*`MUX2_SIZE; i=i+1) begin
/* verilator lint_off WIDTH */
datai = (datai << `DATA_WIDTH) | ($random & {`DATA_WIDTH{1'b1}});
/* verilator lint_on WIDTH */
end
end
addr <= addr + 1;
if (datao_check != datao) begin
result = 0;
$stop;
end
`ifdef TEST_VERBOSE
$write("Addr=%d datao_check=%d datao=%d\n", addr, datao_check, datao);
`endif
// only run the first 10 addresses for now
if (addr > 10) begin
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module mux4096
(input [`DATA_WIDTH*`MUX1_SIZE*`MUX2_SIZE-1:0] datai,
input [`ADDR_WIDTH-1:0] addr,
output [`DATA_WIDTH-1:0] datao
);
// DATA_WIDTH instantiations of mux4096_1bit
mux4096_1bit mux4096_1bit[`DATA_WIDTH-1:0]
(.addr(addr),
.datai(datai),
.datao(datao)
);
endmodule
module mux4096_1bit
(input [`MUX1_SIZE*`MUX2_SIZE-1:0] datai,
input [`ADDR_WIDTH-1:0] addr,
output datao
);
// address decoding
wire [3:0] A = (4'b1) << addr[1:0];
wire [3:0] B = (4'b1) << addr[3:2];
wire [3:0] C = (4'b1) << addr[5:4];
wire [3:0] D = (4'b1) << addr[7:6];
wire [3:0] E = (4'b1) << addr[9:8];
wire [3:0] F = (4'b1) << addr[11:10];
wire [`MUX2_SIZE-1:0] data0;
// DATA_WIDTH*(MUX2_SIZE)*MUX1_SIZE instantiations of mux64
// first stage of 64:1 muxing
mux64 #(.MUX_SIZE(`MUX1_SIZE)) mux1[`MUX2_SIZE-1:0]
(.A(A),
.B(B),
.C(C),
.datai(datai),
.datao(data0));
// DATA_WIDTH*MUX2_SIZE instantiations of mux64
// second stage of 64:1 muxing
mux64 #(.MUX_SIZE(`MUX2_SIZE)) mux2
(.A(D),
.B(E),
.C(F),
.datai(data0),
.datao(datao));
endmodule
module mux64
#(parameter MUX_SIZE=64)
(input [3:0] A,
input [3:0] B,
input [3:0] C,
input [MUX_SIZE-1:0] datai,
output datao
);
wire [63:0] colSelA = { 16{ A[3:0] }};
wire [63:0] colSelB = { 4{ {4{B[3]}}, {4{B[2]}}, {4{B[1]}}, {4{B[0]}}}};
wire [63:0] colSelC = { {16{C[3]}}, {16{C[2]}}, {16{C[1]}}, {16{C[0]}}};
wire [MUX_SIZE-1:0] data_bus;
// Note each of these becomes a separate wire.
//.colSelA(colSelA[MUX_SIZE-1:0]),
//.colSelB(colSelB[MUX_SIZE-1:0]),
//.colSelC(colSelC[MUX_SIZE-1:0]),
drv drv[MUX_SIZE-1:0]
(.colSelA(colSelA[MUX_SIZE-1:0]),
.colSelB(colSelB[MUX_SIZE-1:0]),
.colSelC(colSelC[MUX_SIZE-1:0]),
.datai(datai),
.datao(data_bus)
);
assign datao = |data_bus;
endmodule
module drv
(input colSelA,
input colSelB,
input colSelC,
input datai,
output datao
);
assign datao = colSelC & colSelB & colSelA & datai;
endmodule
|