1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed under the Creative Commons Public Domain, for
// any use, without warranty, 2008 by Wilson Snyder.
// SPDX-License-Identifier: CC0-1.0
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc = 0;
reg [63:0] crc;
reg [63:0] sum;
reg reset;
reg enable;
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [31:0] out; // From test of Test.v
// End of automatics
// Take CRC data and apply to testblock inputs
wire [31:0] in = crc[31:0];
Test test (/*AUTOINST*/
// Outputs
.out (out[31:0]),
// Inputs
.clk (clk),
.reset (reset),
.enable (enable),
.in (in[31:0]));
wire [63:0] result = {32'h0, out};
// Test loop
always @ (posedge clk) begin
`ifdef TEST_VERBOSE
$write("[%0t] cyc==%0d crc=%x result=%x\n", $time, cyc, crc, result);
`endif
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63] ^ crc[2] ^ crc[0]};
sum <= result ^ {sum[62:0], sum[63] ^ sum[2] ^ sum[0]};
reset <= (cyc < 5);
enable <= cyc[4] || (cyc < 2);
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("[%0t] cyc==%0d crc=%x sum=%x\n", $time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
`define EXPECTED_SUM 64'h01e1553da1dcf3af
if (sum !== `EXPECTED_SUM) $stop;
$write("*-* All Finished *-*\n");
$finish;
end
end
endmodule
module Test (/*AUTOARG*/
// Outputs
out,
// Inputs
clk, reset, enable, in
);
input clk;
input reset;
input enable;
input [31:0] in;
output [31:0] out;
// No gating
reg [31:0] d10;
always @(posedge clk) begin
d10 <= in;
end
reg displayit;
`ifdef VERILATOR // Harder test
initial displayit = $c1("0"); // Something that won't optimize away
`else
initial displayit = '0;
`endif
// Obvious gating + PLI
reg [31:0] d20;
always @(posedge clk) begin
if (enable) begin
d20 <= d10; // Obvious gating
if (displayit) begin
$display("hello!"); // Must glob with other PLI statements
end
end
end
// Reset means second-level gating
reg [31:0] d30, d31a, d31b, d32;
always @(posedge clk) begin
d32 <= d31b;
if (reset) begin
d30 <= 32'h0;
d31a <= 32'h0;
d31b <= 32'h0;
d32 <= 32'h0; // Overlaps above, just to make things interesting
end
else begin
// Mix two outputs
d30 <= d20;
if (enable) begin
d31a <= d30;
d31b <= d31a;
end
end
end
// Multiple ORs for gater
reg [31:0] d40a,d40b;
always @(posedge clk) begin
if (reset) begin
d40a <= 32'h0;
d40b <= 32'h0;
end
if (enable) begin
d40a <= d32;
d40b <= d40a;
end
end
// Non-optimizable
reg [31:0] d91, d92;
reg [31:0] inverted;
always @(posedge clk) begin
inverted = ~d40b;
if (reset) begin
d91 <= 32'h0;
end
else begin
if (enable) begin
d91 <= inverted;
end
else begin
d92 <= inverted ^ 32'h12341234; // Inverted gating condition
end
end
end
wire [31:0] out = d91 ^ d92;
endmodule
|