1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed under the Creative Commons Public Domain, for
// any use, without warranty, 2005 by Wilson Snyder.
// SPDX-License-Identifier: CC0-1.0
module t (/*AUTOARG*/
// Inputs
clk
);
input clk;
integer cyc; initial cyc = 0;
reg [63:0] crc;
reg [63:0] sum;
wire r1_en /*verilator public*/ = crc[12];
wire [1:0] r1_ad /*verilator public*/ = crc[9:8];
wire r2_en /*verilator public*/ = 1'b1;
wire [1:0] r2_ad /*verilator public*/ = crc[11:10];
wire w1_en /*verilator public*/ = crc[5];
wire [1:0] w1_a /*verilator public*/ = crc[1:0];
wire [63:0] w1_d /*verilator public*/ = {2{crc[63:32]}};
wire w2_en /*verilator public*/ = crc[4];
wire [1:0] w2_a /*verilator public*/ = crc[3:2];
wire [63:0] w2_d /*verilator public*/ = {2{~crc[63:32]}};
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [63:0] r1_d_d2r; // From file of file.v
wire [63:0] r2_d_d2r; // From file of file.v
// End of automatics
file file (/*AUTOINST*/
// Outputs
.r1_d_d2r (r1_d_d2r[63:0]),
.r2_d_d2r (r2_d_d2r[63:0]),
// Inputs
.clk (clk),
.r1_en (r1_en),
.r1_ad (r1_ad[1:0]),
.r2_en (r2_en),
.r2_ad (r2_ad[1:0]),
.w1_en (w1_en),
.w1_a (w1_a[1:0]),
.w1_d (w1_d[63:0]),
.w2_en (w2_en),
.w2_a (w2_a[1:0]),
.w2_d (w2_d[63:0]));
always @ (posedge clk) begin
//$write("[%0t] cyc==%0d EN=%b%b%b%b R0=%x R1=%x\n", $time, cyc, r1_en,r2_en,w1_en,w2_en, r1_d_d2r, r2_d_d2r);
cyc <= cyc + 1;
crc <= {crc[62:0], crc[63] ^ crc[2] ^ crc[0]};
sum <= {r1_d_d2r ^ r2_d_d2r} ^ {sum[62:0], sum[63] ^ sum[2] ^ sum[0]};
if (cyc==0) begin
// Setup
crc <= 64'h5aef0c8d_d70a4497;
end
else if (cyc<10) begin
// We've manually verified all X's are out of the design by this point
sum <= 64'h0;
end
else if (cyc<90) begin
end
else if (cyc==99) begin
$write("*-* All Finished *-*\n");
$write("[%0t] cyc==%0d crc=%x %x\n", $time, cyc, crc, sum);
if (crc !== 64'hc77bb9b3784ea091) $stop;
if (sum !== 64'h5e9ea8c33a97f81e) $stop;
$finish;
end
end
endmodule
module file (/*AUTOARG*/
// Outputs
r1_d_d2r, r2_d_d2r,
// Inputs
clk, r1_en, r1_ad, r2_en, r2_ad, w1_en, w1_a, w1_d, w2_en, w2_a, w2_d
);
input clk;
input r1_en;
input [1:0] r1_ad;
output [63:0] r1_d_d2r;
input r2_en;
input [1:0] r2_ad;
output [63:0] r2_d_d2r;
input w1_en;
input [1:0] w1_a;
input [63:0] w1_d;
input w2_en;
input [1:0] w2_a;
input [63:0] w2_d;
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
// End of automatics
/*AUTOREG*/
// Beginning of automatic regs (for this module's undeclared outputs)
reg [63:0] r1_d_d2r;
reg [63:0] r2_d_d2r;
// End of automatics
// Writes
wire [3:0] m_w1_onehotwe = ({4{w1_en}} & (4'b1 << w1_a));
wire [3:0] m_w2_onehotwe = ({4{w2_en}} & (4'b1 << w2_a));
wire [63:0] rg0_wrdat = m_w1_onehotwe[0] ? w1_d : w2_d;
wire [63:0] rg1_wrdat = m_w1_onehotwe[1] ? w1_d : w2_d;
wire [63:0] rg2_wrdat = m_w1_onehotwe[2] ? w1_d : w2_d;
wire [63:0] rg3_wrdat = m_w1_onehotwe[3] ? w1_d : w2_d;
wire [3:0] m_w_onehotwe = m_w1_onehotwe | m_w2_onehotwe;
// Storage
reg [63:0] m_rg0_r;
reg [63:0] m_rg1_r;
reg [63:0] m_rg2_r;
reg [63:0] m_rg3_r;
always @ (posedge clk) begin
if (m_w_onehotwe[0]) m_rg0_r <= rg0_wrdat;
if (m_w_onehotwe[1]) m_rg1_r <= rg1_wrdat;
if (m_w_onehotwe[2]) m_rg2_r <= rg2_wrdat;
if (m_w_onehotwe[3]) m_rg3_r <= rg3_wrdat;
end
// Reads
reg [1:0] m_r1_ad_d1r;
reg [1:0] m_r2_ad_d1r;
reg [1:0] m_ren_d1r;
always @ (posedge clk) begin
if (r1_en) m_r1_ad_d1r <= r1_ad;
if (r2_en) m_r2_ad_d1r <= r2_ad;
m_ren_d1r <= {r2_en, r1_en};
end
// Scheme1: shift...
wire [3:0] m_r1_onehot_d1 = (4'b1 << m_r1_ad_d1r);
// Scheme2: bit mask
reg [3:0] m_r2_onehot_d1;
always @* begin
m_r2_onehot_d1 = 4'd0;
m_r2_onehot_d1[m_r2_ad_d1r] = 1'b1;
end
wire [63:0] m_r1_d_d1 = (({64{m_r1_onehot_d1[0]}} & m_rg0_r) |
({64{m_r1_onehot_d1[1]}} & m_rg1_r) |
({64{m_r1_onehot_d1[2]}} & m_rg2_r) |
({64{m_r1_onehot_d1[3]}} & m_rg3_r));
wire [63:0] m_r2_d_d1 = (({64{m_r2_onehot_d1[0]}} & m_rg0_r) |
({64{m_r2_onehot_d1[1]}} & m_rg1_r) |
({64{m_r2_onehot_d1[2]}} & m_rg2_r) |
({64{m_r2_onehot_d1[3]}} & m_rg3_r));
always @ (posedge clk) begin
if (m_ren_d1r[0]) r1_d_d2r <= m_r1_d_d1;
if (m_ren_d1r[1]) r2_d_d2r <= m_r2_d_d1;
end
endmodule
|