1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
// DESCRIPTION: Verilator: Verilog Test module, C driver code
//
// This file ONLY is placed under the Creative Commons Public Domain, for
// any use, without warranty, 2024 by Paul Wright.
// SPDX-License-Identifier: CC0-1.0
#include "verilated.h"
#include "TestCheck.h"
#include VM_PREFIX_INCLUDE
#include <ctime>
int main(int argc, char** argv, char**) {
int errors;
// Setup context, defaults, and parse command line
Verilated::debug(0);
const std::unique_ptr<VerilatedContext> contextp{new VerilatedContext};
contextp->commandArgs(argc, argv);
// Construct the Verilated model, from Vtop.h generated from Verilating
const std::unique_ptr<VM_PREFIX> topp{new VM_PREFIX{contextp.get()}};
// Initial input
topp->drv_en = 0;
topp->single_bit_io = rand() & 1;
topp->bidir_single_bit_io = rand() & 1;
topp->bus_64_io = 0;
topp->bidir_bus_64_io = rand() & 0xffffffffffffffff;
topp->bus_128_io[0] = 0;
topp->bus_128_io[1] = 0;
topp->bus_128_io[2] = 0;
topp->bus_128_io[3] = 0;
topp->bidir_bus_128_io[0] = rand() & 0xffffffff;
topp->bidir_bus_128_io[1] = rand() & 0xffffffff;
topp->bidir_bus_128_io[2] = rand() & 0xffffffff;
topp->bidir_bus_128_io[3] = rand() & 0xffffffff;
topp->sub_io = rand() & 1;
topp->test_en = 1;
errors = 0;
// Simulate until $finish
while (!contextp->gotFinish()) {
// Evaluate model
topp->eval();
// Advance time (to scheduled events)
if (!topp->eventsPending()) break;
contextp->time(topp->nextTimeSlot());
// We want to check that the __en and __out signals can be accessed
printf("Info:(cpp): drv_en = %x\n", topp->drv_en);
printf("Info:(cpp): bidir_single_bit_io__en = %x\n", topp->bidir_single_bit_io__en);
printf("Info:(cpp): bidir_bus_64_io__en = %x\n", (unsigned int)topp->bidir_bus_64_io__en);
printf("Info:(cpp): bidir_bus_128_io__en = %x,%x,%x,%x\n", topp->bidir_bus_128_io__en[3],
topp->bidir_bus_128_io__en[2], topp->bidir_bus_128_io__en[1],
topp->bidir_bus_128_io__en[0]);
printf("Info:(cpp): sub_io__en = %x\n", topp->sub_io__en);
printf("Info:(cpp): bidir_single_bit_io = %x\n", topp->bidir_single_bit_io__out);
printf("Info:(cpp): bidir_bus_64_io = %x\n", (unsigned int)topp->bidir_bus_64_io__out);
printf("Info:(cpp): bidir_bus_128_io = %x,%x,%x,%x\n", topp->bidir_bus_128_io__out[3],
topp->bidir_bus_128_io__out[2], topp->bidir_bus_128_io__out[1],
topp->bidir_bus_128_io__out[0]);
printf("Info:(cpp): sub_io = %x\n", topp->sub_io__out);
// Loop back if verilog is driving
// Verilator will not do this for itself
// We must implement the top-level resolution
if (topp->sub_io__en) topp->sub_io = topp->sub_io__out;
if (topp->bidir_single_bit_io__en) {
topp->bidir_single_bit_io = topp->bidir_single_bit_io__out;
}
// For bus signals, overwrite the bits which are driven by verilog, preserve the others
if (topp->bidir_bus_64_io__en) {
topp->bidir_bus_64_io = ((~topp->bidir_bus_64_io__en) & topp->bidir_bus_64_io)
| (topp->bidir_bus_64_io__en & topp->bidir_bus_64_io__out);
}
for (int i = 0; i < 4; i++) {
if (topp->bidir_bus_128_io__en[i]) {
topp->bidir_bus_128_io[i]
= ((~topp->bidir_bus_128_io__en[i]) & topp->bidir_bus_128_io[i])
| (topp->bidir_bus_128_io__en[i] & topp->bidir_bus_128_io__out[i]);
}
}
// Has the verilog code finished a test loop?
if (topp->loop_done == 1) {
// Check the expected __en output
if (topp->drv_en & 0x1) {
TEST_CHECK_EQ(uint64_t(topp->sub_io__en), 1);
TEST_CHECK_EQ(uint64_t(topp->bidir_single_bit_io__en), 1);
} else {
TEST_CHECK_EQ(uint64_t(topp->sub_io__en), 0);
TEST_CHECK_EQ(uint64_t(topp->bidir_single_bit_io__en), 0);
}
for (int i = 0; i < 4; i++) {
// __en enabled?
if ((topp->drv_en & (1 << i)) != 0) {
TEST_CHECK_EQ(uint64_t(topp->bidir_bus_64_io__en >> (i * 16) & 0xffff),
0xffff);
TEST_CHECK_EQ(uint64_t(topp->bidir_bus_128_io__en[i]), 0xffffffff);
}
// __en not enabled
else {
TEST_CHECK_EQ(uint64_t(topp->bidir_bus_64_io__en >> (i * 16) & 0xffff),
0x0000);
TEST_CHECK_EQ(uint64_t(topp->bidir_bus_128_io__en[i]), 0x00000000);
}
} // for
if (topp->drv_en == 15) {
topp->test_en = 0;
} else {
topp->drv_en++;
// Drive the bits verilog shouldn't be driving
if (topp->drv_en & 1) {
topp->single_bit_io = rand() & 1;
topp->bidir_single_bit_io = rand() & 1;
topp->sub_io = rand() & 1;
topp->bidir_bus_64_io
= ((rand() & 0xffff) << 0) | (topp->bidir_bus_64_io & 0xffffffffffff0000);
topp->bidir_bus_128_io[0] = rand() & 0xffffffff;
} else {
topp->single_bit_io = 0;
topp->bidir_single_bit_io = 0;
topp->sub_io = 0;
topp->bidir_bus_64_io = (topp->bidir_bus_64_io & 0xffffffffffff0000);
topp->bidir_bus_128_io[0] = 0;
}
if (topp->drv_en & 2) {
topp->bidir_bus_64_io
= ((rand() & 0xffff) << 16) | (topp->bidir_bus_64_io & 0xffffffff0000ffff);
topp->bidir_bus_128_io[1] = rand() & 0xffffffff;
} else {
topp->bidir_bus_64_io = (topp->bidir_bus_64_io & 0xffffffff0000ffff);
topp->bidir_bus_128_io[1] = 0;
}
if (topp->drv_en & 4) {
topp->bidir_bus_64_io = (((uint64_t)(rand() & 0xffff)) << 32)
| (topp->bidir_bus_64_io & 0xffff0000ffffffff);
topp->bidir_bus_128_io[2] = rand() & 0xffffffff;
} else {
topp->bidir_bus_64_io = (topp->bidir_bus_64_io & 0xffff0000ffffffff);
topp->bidir_bus_128_io[2] = 0;
}
if (topp->drv_en & 8) {
topp->bidir_bus_64_io = (((uint64_t)(rand() & 0xffff)) << 48)
| (topp->bidir_bus_64_io & 0x0000ffffffffffff);
topp->bidir_bus_128_io[3] = rand() & 0xffffffff;
} else {
topp->bidir_bus_64_io = (topp->bidir_bus_64_io & 0x0000ffffffffffff);
topp->bidir_bus_128_io[3] = 0;
}
}
// Invert the input side
topp->bidir_single_bit_io = (~topp->bidir_single_bit_io) & 0x1;
topp->bidir_bus_64_io = ~topp->bidir_bus_64_io;
for (int i = 0; i < 4; i++) topp->bidir_bus_128_io[i] = ~topp->bidir_bus_128_io[i];
} // if (loop_done)
if (errors != 0) break;
}
// Final model cleanup
topp->final();
return 0;
}
|