File: t_dfg_synthesis.v

package info (click to toggle)
verilator 5.040-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 164,628 kB
  • sloc: cpp: 145,372; python: 21,412; ansic: 10,559; yacc: 6,085; lex: 1,931; makefile: 1,264; sh: 494; perl: 282; fortran: 22
file content (505 lines) | stat: -rw-r--r-- 12,477 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
// DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed under the Creative Commons Public Domain, for
// any use, without warranty, 2025 by Geza Lore.
// SPDX-License-Identifier: CC0-1.0

`define signal(name, expr) wire [$bits(expr)-1:0] ``name = expr

module t (
`include "portlist.vh" // Boilerplate generated by t_dfg_break_cycles.py
  rand_a, rand_b, srand_a, srand_b
);

`include "portdecl.vh" // Boilerplate generated by t_dfg_break_cycles.py

  input rand_a;
  input rand_b;
  input srand_a;
  input srand_b;
  wire logic        [63:0] rand_a;
  wire logic        [63:0] rand_b;
  wire logic signed [63:0] srand_a;
  wire logic signed [63:0] srand_b;

  //////////////////////////////////////////////////////////////////////////

  logic [2:0] simple;
  always_comb begin
    simple[0] = rand_a[0];
    simple[1] = rand_a[1];
    simple[2] = rand_a[2];
  end
  `signal(SIMPLE, simple);

  logic [1:0] reassign;
  always_comb begin
    reassign[0] =  rand_a[0];
    reassign[0] = ~rand_a[0];
    reassign[1] =  rand_a[1];
    reassign[1] = ~rand_a[1];
  end
  `signal(REASSIGN, reassign);

  logic [1:0] use_intermediate_a;
  logic [1:0] use_intermediate_b;
  always_comb begin
    use_intermediate_a[0] =  rand_a[0];
    use_intermediate_b[0] = ~use_intermediate_a[0];
    use_intermediate_a[1] =  rand_a[1];
    use_intermediate_a[0] = ~rand_a[0];
    use_intermediate_b[1] = ~use_intermediate_a[1];
    use_intermediate_a[1] = ~rand_a[1];
  end
  `signal(USE_INTERMEDIATE, {use_intermediate_a, use_intermediate_b});

  logic [2:0] self_circular;
  always_comb begin
    self_circular[0] = rand_a[0];
    self_circular[1] = ~self_circular[0];
    self_circular[2] = ~self_circular[1];
  end
  `signal(SELF_CIRCULAR, self_circular);

  logic [2:0] part_circular;
  always_comb begin
    part_circular[0] = rand_a[0];
    part_circular[1] = ~part_circular[0];
  end
  // part_circular[2] deliberately undriven!
  `signal(PART_CIRCULAR, part_circular);

  logic [3:0] split_circular;
  always_comb begin
    split_circular[0] = rand_a[0];
    split_circular[2] = rand_a[1];
  end
  always_comb begin
    split_circular[1] = ~split_circular[0];
    split_circular[3] = ~split_circular[2];
  end
  `signal(SPLIT_CIRCULAR, split_circular);

  logic [3:0] conditional_a;
  always_comb begin
    conditional_a = 4'd0;
    if (rand_a[0]) begin
      conditional_a = rand_b[3:0];
    end else begin
      conditional_a = ~rand_b[3:0];
    end
  end
  `signal(CONDITONAL_A, conditional_a);

  logic [3:0] conditional_b;
  always_comb begin
    conditional_b = 4'd0;
    if (rand_a[0]) begin
      conditional_b = rand_b[3:0];
    end
  end
  `signal(CONDITONAL_B, conditional_b);

  // verilator lint_off LATCH
  logic [3:0] conditional_c;
  always_comb begin // nosynth
    if (rand_a[0]) begin
      conditional_c = rand_b[3:0];
    end
    if (~rand_a[0]) begin
      conditional_c = ~rand_b[3:0];
    end
  end
  `signal(CONDITONAL_C, conditional_c);
  // verilator lint_on LATCH

  logic [3:0] conditional_d;
  always_comb begin
    if (rand_a[0]) begin
      conditional_d = rand_b[3:0];
    end else if (rand_a[1]) begin
      conditional_d = ~rand_b[3:0];
    end else begin
      conditional_d = rand_b[7:4];
    end
  end
  `signal(CONDITONAL_D, conditional_d);

  logic [3:0] conditional_e;
  always_comb begin
    conditional_e = 4'd0;
    if (rand_a[0]) begin
      conditional_e = rand_b[3:0];
    end else begin
      if (rand_a[1]) begin
        conditional_e = rand_b[3:0];
      end else begin
        conditional_e = rand_b[7:4];
      end
      conditional_e = ~conditional_e;
    end
  end
  `signal(CONDITONAL_E, conditional_e);

  logic condigional_f;
  always_comb begin
    if (rand_b[0]) begin
      condigional_f = 1'h1;
      if (rand_b[1]) begin
        condigional_f = rand_a[0];
      end
    end else begin
      condigional_f = 1'b0;
    end
  end
  `signal(CONDITONAL_F, condigional_f);

  logic [2:0] conditional_g;
  always_comb begin
    if (rand_a[0]) begin
      if (rand_a[1]) begin
        if (rand_a[2]) begin
          conditional_g = 3'b111;
        end else begin
          conditional_g = 3'b011;
        end
      end else begin
        if (rand_a[2]) begin
          conditional_g = 3'b101;
        end else begin
          conditional_g = 3'b001;
        end
      end
    end else begin
      if (rand_a[1]) begin
        if (rand_a[2]) begin
          conditional_g = 3'b110;
        end else begin
          conditional_g = 3'b010;
        end
      end else begin
        if (rand_a[2]) begin
          conditional_g = 3'b100;
        end else begin
          conditional_g = 3'b000;
        end
      end
    end
  end
  `signal(CONDITONAL_G, conditional_g);

  logic [2:0] conditional_h;
  always_comb begin
    if (rand_a[0]) begin
      if (rand_a[1]) begin
        conditional_h = 3'b011;
        if (rand_a[2]) begin
          conditional_h = 3'b111;
        end
      end else begin
        conditional_h = 3'b001;
        if (rand_a[2]) begin
          conditional_h = 3'b101;
        end
      end
    end else begin
      if (rand_a[1]) begin
        conditional_h = 3'b010;
        if (rand_a[2]) begin
          conditional_h = 3'b110;
        end
      end else begin
        conditional_h = 3'b000;
        if (rand_a[2]) begin
          conditional_h = 3'b100;
        end
      end
    end
  end
  `signal(CONDITONAL_H, conditional_h);

  logic [2:0] conditional_i;
  always_comb begin // Dumbass trailing zeroes count
    do begin
      conditional_i = 3'd0;
      if (rand_a[0]) break;
      conditional_i = 3'd1;
      if (rand_a[1]) break;
      conditional_i = 3'd2;
      if (rand_a[2]) break;
      conditional_i = 3'd3;
      if (rand_a[3]) break;
      conditional_i = 3'd4;
    end while (0);
  end
  `signal(CONDITONAL_I, conditional_i);

  logic [2:0] conditional_j;
  always_comb begin // Even more dumbass trailing ones count
    do begin
      conditional_j = 3'd0;
      if (rand_a[0]) begin
        conditional_j = 3'd1;
      end else begin
        break;
      end
      if (rand_a[1]) begin
        conditional_j = 3'd2;
      end else begin
        break;
      end
      if (rand_a[2]) begin
        conditional_j = 3'd3;
      end else begin
        break;
      end
      if (rand_a[3]) begin
        conditional_j = 3'd4;
      end
    end while (0);
  end
  `signal(CONDITONAL_J, conditional_j);

  logic [2:0] conditional_k;
  always_comb begin
    if (rand_b[0]) begin
      do begin
        conditional_k = 3'd0;
        if (rand_a[0]) break;
        conditional_k = 3'd1;
        if (rand_a[1]) break;
        conditional_k = 3'd2;
        if (rand_a[2]) break;
        conditional_k = 3'd3;
        if (rand_a[3]) break;
        conditional_k = 3'd4;
      end while (0);
    end else begin
      do begin
        conditional_k = 3'd0;
        if (rand_a[0]) begin
          conditional_k = 3'd1;
        end else begin
          break;
        end
        if (rand_a[1]) begin
          conditional_k = 3'd2;
        end else begin
          break;
        end
        if (rand_a[2]) begin
          conditional_k = 3'd3;
        end else begin
          break;
        end
        if (rand_a[3]) begin
          conditional_k = 3'd4;
        end
      end while (0);
    end
  end
  `signal(CONDITONAL_K, conditional_k);

  logic [1:0] conditional_l_a;
  logic [1:0] conditional_l_b;
  always_comb begin
    do begin
      conditional_l_a = 2'd0;
      if (rand_a[1:0] == 2'd0) break;
      conditional_l_a = 2'd1;
      if (rand_a[1:0] == 2'd1) break;
      conditional_l_a = 2'd2;
      if (rand_a[1:0] == 2'd2) break;
      conditional_l_a = 2'd3;
    end while (0);
    do begin
      conditional_l_b = 2'd0;
      if (rand_b[1:0] == 2'd0) break;
      conditional_l_b = 2'd1;
      if (rand_b[1:0] == 2'd1) break;
      conditional_l_b = 2'd2;
      if (rand_b[1:0] == 2'd2) break;
      conditional_l_b = 2'd3;
    end while (0);
  end
  `signal(CONDITONAL_L, {conditional_l_b, conditional_l_a});

  logic [7:0] partial_conditional_a;
  always_comb begin
    partial_conditional_a[1:0] = 2'd0;
    if (rand_a[0]) begin
      partial_conditional_a[0] = rand_b[0];
    end else begin
      partial_conditional_a[1] = rand_b[1];
    end
    partial_conditional_a[4:3] = rand_b[4:3];
  end
  `signal(PARTIAL_CONDITONAL_A, partial_conditional_a);

  logic [3:0] partial_conditional_b;
  always_comb begin
    partial_conditional_b[1:0] = 2'd0;
    if (rand_a[0]) begin
      partial_conditional_b[0] = rand_b[0];
    end
    if (rand_a[1]) begin
      partial_conditional_b[1] = rand_b[1];
    end
  end
  `signal(PARTIAL_CONDITONAL_B, partial_conditional_b);

  logic [3:0] becomes_full;
  always_comb begin
    becomes_full[2:0] = rand_a[2:0];
    becomes_full[3] = ~rand_a[3];
    if (rand_b[0]) begin
      becomes_full = ~becomes_full;
    end
  end
  `signal(BECOMES_FULL, becomes_full);

  // verilator lint_off LATCH
  logic [3:0] latch_a;
  logic [3:0] latch_b;
  always_comb begin // nosynth
    if (rand_b[0]) begin
      latch_a[3:1] = ~rand_a[3:1];
    end
    latch_b = latch_a;
  end
  assign latch_a[0] = rand_a[0];
  `signal(LATCH, latch_b);
  // verilator lint_on LATCH

  // verilator lint_off MULTIDRIVEN
  logic static_temporary_a;
  logic static_temporary_b;
  logic static_temporary_tmp;
  always_comb begin // revert
    static_temporary_tmp = rand_a[0];
    static_temporary_a = ~static_temporary_tmp;
  end
  always_comb begin // revert
    static_temporary_tmp = static_temporary_a;
    static_temporary_b = ~static_temporary_tmp;
  end
  // verilator lint_on MULTIDRIVEN
  `signal(STATIC_TEMPORARY, {static_temporary_tmp, static_temporary_b, static_temporary_a, rand_a[0]});

  logic [2:0] partial_temporary_a;
  logic [2:0] partial_temporary_tmp;
  always_comb begin
    partial_temporary_tmp[2] = rand_a[3];
    partial_temporary_tmp[1] = rand_a[2];
    partial_temporary_tmp[0] = rand_a[1];
    partial_temporary_a = partial_temporary_tmp;
  end
  `signal(PARTIAL_TEMPORARY, partial_temporary_a);

  logic circular_0_x;
  logic circular_0_y;
  logic circular_0_z;
  always_comb begin
    circular_0_x = 1'b0;
    circular_0_y = 1'd0;
    if (rand_b[0]) begin
      circular_0_x = 1'b1;
      if (circular_0_z) begin
        circular_0_y = 1'd1;
      end
    end
  end
  assign circular_0_z = circular_0_x & rand_a[0];
  `signal(CIRCULAR_0, {circular_0_x, circular_0_y, circular_0_z});

  logic [2:0] nsp_a; // Non series-parallel CFG
  always_comb begin
    do begin
      nsp_a = 3'd0; // BB 0 -> BB 1 / BB 2
      if (rand_a[1:0] == 2'd0) begin
        nsp_a = 3'd1; // BB 1 -> BB 4
      end else begin
        nsp_a = 3'd2; // BB 2 -> BB 3 / BB 4
        if (rand_a[1:0] == 2'd1) begin
          nsp_a = 3'd3; // BB3 -> BB 5
          break;
        end
      end
      nsp_a = 3'd4; // BB 4 -> BB 5
    end while (0);
    //nsp_a = 3'd5; // BB 5
  end
  `signal(NSP_A, nsp_a);

  logic [2:0] nsp_b; // Non series-parallel CFG
  always_comb begin
    do begin
      nsp_b = 3'd0;
      if (rand_a[1:0] == 2'd0) begin
        nsp_b = 3'd1;
      end else begin
        nsp_b = 3'd2;
        if (rand_a[1:0] == 2'd1) begin
          nsp_b = 3'd3;
          break;
        end else begin
          nsp_b = 3'd4;
          if (rand_a[1:0] == 2'd2) begin
            nsp_b = 3'd5;
          end else begin
            nsp_b = 3'd6;
            break;
          end
        end
      end
      nsp_b = 3'd7;
    end while (0);
  end
  `signal(NSP_B, nsp_b);

  logic [2:0] part_sp_a; // Contains series-parallel sub-graph CFG
  always_comb begin
    do begin
      part_sp_a = 3'd0;
      if (rand_a[0]) begin
        part_sp_a = 3'd1;
        if (rand_a[1]) begin
          part_sp_a = 3'd2;
        end
      end else begin
        part_sp_a = 3'd3;
        if (rand_a[2]) begin
          part_sp_a = 3'd4;
          if (rand_a[3]) begin
            part_sp_a = 3'd5;
          end
          break;
        end
      end
      part_sp_a = 3'd6;
      if (rand_a[4]) begin
        part_sp_a = 3'd7;
      end
    end while (0);
  end
  `signal(PART_SP_A, part_sp_a);

  logic [1:0] both_break;
  always_comb begin
    do begin
      if (rand_a[0]) begin
        both_break = 2'd0;
        break;
      end else begin
        both_break = 2'd1;
        break;
      end
      // Unreachable
      if (rand_a[1]) begin
        both_break = 2'd2;
      end
    end while(0);
  end
  `signal(BOTH_BREAK, both_break);

endmodule