1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
  
     | 
    
      // DESCRIPTION: Verilator: Verilog Test module
//
// This file ONLY is placed under the Creative Commons Public Domain, for
// any use, without warranty, 2025 by Geza Lore.
// SPDX-License-Identifier: CC0-1.0
`define signal(name, expr) wire [$bits(expr)-1:0] ``name = expr
module t (
`include "portlist.vh" // Boilerplate generated by t_dfg_break_cycles.py
  rand_a, rand_b, srand_a, srand_b
);
`include "portdecl.vh" // Boilerplate generated by t_dfg_break_cycles.py
  input rand_a;
  input rand_b;
  input srand_a;
  input srand_b;
  wire logic        [63:0] rand_a;
  wire logic        [63:0] rand_b;
  wire logic signed [63:0] srand_a;
  wire logic signed [63:0] srand_b;
  //////////////////////////////////////////////////////////////////////////
  logic [2:0] simple;
  always_comb begin
    simple[0] = rand_a[0];
    simple[1] = rand_a[1];
    simple[2] = rand_a[2];
  end
  `signal(SIMPLE, simple);
  logic [1:0] reassign;
  always_comb begin
    reassign[0] =  rand_a[0];
    reassign[0] = ~rand_a[0];
    reassign[1] =  rand_a[1];
    reassign[1] = ~rand_a[1];
  end
  `signal(REASSIGN, reassign);
  logic [1:0] use_intermediate_a;
  logic [1:0] use_intermediate_b;
  always_comb begin
    use_intermediate_a[0] =  rand_a[0];
    use_intermediate_b[0] = ~use_intermediate_a[0];
    use_intermediate_a[1] =  rand_a[1];
    use_intermediate_a[0] = ~rand_a[0];
    use_intermediate_b[1] = ~use_intermediate_a[1];
    use_intermediate_a[1] = ~rand_a[1];
  end
  `signal(USE_INTERMEDIATE, {use_intermediate_a, use_intermediate_b});
  logic [2:0] self_circular;
  always_comb begin
    self_circular[0] = rand_a[0];
    self_circular[1] = ~self_circular[0];
    self_circular[2] = ~self_circular[1];
  end
  `signal(SELF_CIRCULAR, self_circular);
  logic [2:0] part_circular;
  always_comb begin
    part_circular[0] = rand_a[0];
    part_circular[1] = ~part_circular[0];
  end
  // part_circular[2] deliberately undriven!
  `signal(PART_CIRCULAR, part_circular);
  logic [3:0] split_circular;
  always_comb begin
    split_circular[0] = rand_a[0];
    split_circular[2] = rand_a[1];
  end
  always_comb begin
    split_circular[1] = ~split_circular[0];
    split_circular[3] = ~split_circular[2];
  end
  `signal(SPLIT_CIRCULAR, split_circular);
  logic [3:0] conditional_a;
  always_comb begin
    conditional_a = 4'd0;
    if (rand_a[0]) begin
      conditional_a = rand_b[3:0];
    end else begin
      conditional_a = ~rand_b[3:0];
    end
  end
  `signal(CONDITONAL_A, conditional_a);
  logic [3:0] conditional_b;
  always_comb begin
    conditional_b = 4'd0;
    if (rand_a[0]) begin
      conditional_b = rand_b[3:0];
    end
  end
  `signal(CONDITONAL_B, conditional_b);
  // verilator lint_off LATCH
  logic [3:0] conditional_c;
  always_comb begin // nosynth
    if (rand_a[0]) begin
      conditional_c = rand_b[3:0];
    end
    if (~rand_a[0]) begin
      conditional_c = ~rand_b[3:0];
    end
  end
  `signal(CONDITONAL_C, conditional_c);
  // verilator lint_on LATCH
  logic [3:0] conditional_d;
  always_comb begin
    if (rand_a[0]) begin
      conditional_d = rand_b[3:0];
    end else if (rand_a[1]) begin
      conditional_d = ~rand_b[3:0];
    end else begin
      conditional_d = rand_b[7:4];
    end
  end
  `signal(CONDITONAL_D, conditional_d);
  logic [3:0] conditional_e;
  always_comb begin
    conditional_e = 4'd0;
    if (rand_a[0]) begin
      conditional_e = rand_b[3:0];
    end else begin
      if (rand_a[1]) begin
        conditional_e = rand_b[3:0];
      end else begin
        conditional_e = rand_b[7:4];
      end
      conditional_e = ~conditional_e;
    end
  end
  `signal(CONDITONAL_E, conditional_e);
  logic condigional_f;
  always_comb begin
    if (rand_b[0]) begin
      condigional_f = 1'h1;
      if (rand_b[1]) begin
        condigional_f = rand_a[0];
      end
    end else begin
      condigional_f = 1'b0;
    end
  end
  `signal(CONDITONAL_F, condigional_f);
  logic [2:0] conditional_g;
  always_comb begin
    if (rand_a[0]) begin
      if (rand_a[1]) begin
        if (rand_a[2]) begin
          conditional_g = 3'b111;
        end else begin
          conditional_g = 3'b011;
        end
      end else begin
        if (rand_a[2]) begin
          conditional_g = 3'b101;
        end else begin
          conditional_g = 3'b001;
        end
      end
    end else begin
      if (rand_a[1]) begin
        if (rand_a[2]) begin
          conditional_g = 3'b110;
        end else begin
          conditional_g = 3'b010;
        end
      end else begin
        if (rand_a[2]) begin
          conditional_g = 3'b100;
        end else begin
          conditional_g = 3'b000;
        end
      end
    end
  end
  `signal(CONDITONAL_G, conditional_g);
  logic [2:0] conditional_h;
  always_comb begin
    if (rand_a[0]) begin
      if (rand_a[1]) begin
        conditional_h = 3'b011;
        if (rand_a[2]) begin
          conditional_h = 3'b111;
        end
      end else begin
        conditional_h = 3'b001;
        if (rand_a[2]) begin
          conditional_h = 3'b101;
        end
      end
    end else begin
      if (rand_a[1]) begin
        conditional_h = 3'b010;
        if (rand_a[2]) begin
          conditional_h = 3'b110;
        end
      end else begin
        conditional_h = 3'b000;
        if (rand_a[2]) begin
          conditional_h = 3'b100;
        end
      end
    end
  end
  `signal(CONDITONAL_H, conditional_h);
  logic [2:0] conditional_i;
  always_comb begin // Dumbass trailing zeroes count
    do begin
      conditional_i = 3'd0;
      if (rand_a[0]) break;
      conditional_i = 3'd1;
      if (rand_a[1]) break;
      conditional_i = 3'd2;
      if (rand_a[2]) break;
      conditional_i = 3'd3;
      if (rand_a[3]) break;
      conditional_i = 3'd4;
    end while (0);
  end
  `signal(CONDITONAL_I, conditional_i);
  logic [2:0] conditional_j;
  always_comb begin // Even more dumbass trailing ones count
    do begin
      conditional_j = 3'd0;
      if (rand_a[0]) begin
        conditional_j = 3'd1;
      end else begin
        break;
      end
      if (rand_a[1]) begin
        conditional_j = 3'd2;
      end else begin
        break;
      end
      if (rand_a[2]) begin
        conditional_j = 3'd3;
      end else begin
        break;
      end
      if (rand_a[3]) begin
        conditional_j = 3'd4;
      end
    end while (0);
  end
  `signal(CONDITONAL_J, conditional_j);
  logic [2:0] conditional_k;
  always_comb begin
    if (rand_b[0]) begin
      do begin
        conditional_k = 3'd0;
        if (rand_a[0]) break;
        conditional_k = 3'd1;
        if (rand_a[1]) break;
        conditional_k = 3'd2;
        if (rand_a[2]) break;
        conditional_k = 3'd3;
        if (rand_a[3]) break;
        conditional_k = 3'd4;
      end while (0);
    end else begin
      do begin
        conditional_k = 3'd0;
        if (rand_a[0]) begin
          conditional_k = 3'd1;
        end else begin
          break;
        end
        if (rand_a[1]) begin
          conditional_k = 3'd2;
        end else begin
          break;
        end
        if (rand_a[2]) begin
          conditional_k = 3'd3;
        end else begin
          break;
        end
        if (rand_a[3]) begin
          conditional_k = 3'd4;
        end
      end while (0);
    end
  end
  `signal(CONDITONAL_K, conditional_k);
  logic [1:0] conditional_l_a;
  logic [1:0] conditional_l_b;
  always_comb begin
    do begin
      conditional_l_a = 2'd0;
      if (rand_a[1:0] == 2'd0) break;
      conditional_l_a = 2'd1;
      if (rand_a[1:0] == 2'd1) break;
      conditional_l_a = 2'd2;
      if (rand_a[1:0] == 2'd2) break;
      conditional_l_a = 2'd3;
    end while (0);
    do begin
      conditional_l_b = 2'd0;
      if (rand_b[1:0] == 2'd0) break;
      conditional_l_b = 2'd1;
      if (rand_b[1:0] == 2'd1) break;
      conditional_l_b = 2'd2;
      if (rand_b[1:0] == 2'd2) break;
      conditional_l_b = 2'd3;
    end while (0);
  end
  `signal(CONDITONAL_L, {conditional_l_b, conditional_l_a});
  logic [7:0] partial_conditional_a;
  always_comb begin
    partial_conditional_a[1:0] = 2'd0;
    if (rand_a[0]) begin
      partial_conditional_a[0] = rand_b[0];
    end else begin
      partial_conditional_a[1] = rand_b[1];
    end
    partial_conditional_a[4:3] = rand_b[4:3];
  end
  `signal(PARTIAL_CONDITONAL_A, partial_conditional_a);
  logic [3:0] partial_conditional_b;
  always_comb begin
    partial_conditional_b[1:0] = 2'd0;
    if (rand_a[0]) begin
      partial_conditional_b[0] = rand_b[0];
    end
    if (rand_a[1]) begin
      partial_conditional_b[1] = rand_b[1];
    end
  end
  `signal(PARTIAL_CONDITONAL_B, partial_conditional_b);
  logic [3:0] becomes_full;
  always_comb begin
    becomes_full[2:0] = rand_a[2:0];
    becomes_full[3] = ~rand_a[3];
    if (rand_b[0]) begin
      becomes_full = ~becomes_full;
    end
  end
  `signal(BECOMES_FULL, becomes_full);
  // verilator lint_off LATCH
  logic [3:0] latch_a;
  logic [3:0] latch_b;
  always_comb begin // nosynth
    if (rand_b[0]) begin
      latch_a[3:1] = ~rand_a[3:1];
    end
    latch_b = latch_a;
  end
  assign latch_a[0] = rand_a[0];
  `signal(LATCH, latch_b);
  // verilator lint_on LATCH
  // verilator lint_off MULTIDRIVEN
  logic static_temporary_a;
  logic static_temporary_b;
  logic static_temporary_tmp;
  always_comb begin // revert
    static_temporary_tmp = rand_a[0];
    static_temporary_a = ~static_temporary_tmp;
  end
  always_comb begin // revert
    static_temporary_tmp = static_temporary_a;
    static_temporary_b = ~static_temporary_tmp;
  end
  // verilator lint_on MULTIDRIVEN
  `signal(STATIC_TEMPORARY, {static_temporary_tmp, static_temporary_b, static_temporary_a, rand_a[0]});
  logic [2:0] partial_temporary_a;
  logic [2:0] partial_temporary_tmp;
  always_comb begin
    partial_temporary_tmp[2] = rand_a[3];
    partial_temporary_tmp[1] = rand_a[2];
    partial_temporary_tmp[0] = rand_a[1];
    partial_temporary_a = partial_temporary_tmp;
  end
  `signal(PARTIAL_TEMPORARY, partial_temporary_a);
  logic circular_0_x;
  logic circular_0_y;
  logic circular_0_z;
  always_comb begin
    circular_0_x = 1'b0;
    circular_0_y = 1'd0;
    if (rand_b[0]) begin
      circular_0_x = 1'b1;
      if (circular_0_z) begin
        circular_0_y = 1'd1;
      end
    end
  end
  assign circular_0_z = circular_0_x & rand_a[0];
  `signal(CIRCULAR_0, {circular_0_x, circular_0_y, circular_0_z});
  logic [2:0] nsp_a; // Non series-parallel CFG
  always_comb begin
    do begin
      nsp_a = 3'd0; // BB 0 -> BB 1 / BB 2
      if (rand_a[1:0] == 2'd0) begin
        nsp_a = 3'd1; // BB 1 -> BB 4
      end else begin
        nsp_a = 3'd2; // BB 2 -> BB 3 / BB 4
        if (rand_a[1:0] == 2'd1) begin
          nsp_a = 3'd3; // BB3 -> BB 5
          break;
        end
      end
      nsp_a = 3'd4; // BB 4 -> BB 5
    end while (0);
    //nsp_a = 3'd5; // BB 5
  end
  `signal(NSP_A, nsp_a);
  logic [2:0] nsp_b; // Non series-parallel CFG
  always_comb begin
    do begin
      nsp_b = 3'd0;
      if (rand_a[1:0] == 2'd0) begin
        nsp_b = 3'd1;
      end else begin
        nsp_b = 3'd2;
        if (rand_a[1:0] == 2'd1) begin
          nsp_b = 3'd3;
          break;
        end else begin
          nsp_b = 3'd4;
          if (rand_a[1:0] == 2'd2) begin
            nsp_b = 3'd5;
          end else begin
            nsp_b = 3'd6;
            break;
          end
        end
      end
      nsp_b = 3'd7;
    end while (0);
  end
  `signal(NSP_B, nsp_b);
  logic [2:0] part_sp_a; // Contains series-parallel sub-graph CFG
  always_comb begin
    do begin
      part_sp_a = 3'd0;
      if (rand_a[0]) begin
        part_sp_a = 3'd1;
        if (rand_a[1]) begin
          part_sp_a = 3'd2;
        end
      end else begin
        part_sp_a = 3'd3;
        if (rand_a[2]) begin
          part_sp_a = 3'd4;
          if (rand_a[3]) begin
            part_sp_a = 3'd5;
          end
          break;
        end
      end
      part_sp_a = 3'd6;
      if (rand_a[4]) begin
        part_sp_a = 3'd7;
      end
    end while (0);
  end
  `signal(PART_SP_A, part_sp_a);
  logic [1:0] both_break;
  always_comb begin
    do begin
      if (rand_a[0]) begin
        both_break = 2'd0;
        break;
      end else begin
        both_break = 2'd1;
        break;
      end
      // Unreachable
      if (rand_a[1]) begin
        both_break = 2'd2;
      end
    end while(0);
  end
  `signal(BOTH_BREAK, both_break);
endmodule
 
     |