1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
/*
VeroRoute - Qt based Veroboard/Perfboard/PCB layout & routing application.
Copyright (C) 2017 Alex Lawrow ( dralx@users.sourceforge.net )
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GuiControl.h"
#include "PolygonHelper.h"
#include "Component.h"
void GuiControl::CalcBlob(qreal W, const QPointF& pC, const QPointF& pCoffset,
int iPadWidthMIL, int iPerimeterCode, int iTagCode,
std::list<MyPolygonF>& out,
bool bHavePad, bool bHaveSoic, bool bIsGnd, bool bGap) const
{
// Given a grid point (pC) and its perimeter code, this method populates "out" with a
// description of the local track pattern at the grid point (or "blob").
// The scale parameter W represents the width of a 100 mil grid square.
out.clear();
const bool bMaxDiags = GetDiagsMode() == DIAGSMODE::MAX;
const qreal C = W * 0.5; // Half square width
const qreal padWidth = 0.01 * ( GetPAD_MIL() + 2 * ( bGap ? GetGAP_MIL() : 0 ) );
const qreal trkWidth = 0.01 * ( GetTRACK_MIL() + 2 * ( bGap ? GetGAP_MIL() : 0 ) );
const qreal tagWidth = 0.01 * ( GetTAG_MIL() + 2 * ( bGap ? GetGAP_MIL() : 0 ) );
const GPEN padPen = bGap ? GPEN::PAD_GAP : GPEN::PAD;
const GPEN trkPen = bGap ? GPEN::TRK_GAP : bIsGnd ? GPEN::TAG : GPEN::TRK;
const bool& bCurvedTracks = GetCurvedTracks();
const bool& bFatTracks = !bCurvedTracks && !bIsGnd && GetFatTracks();
const bool bLeg = ( iPerimeterCode > 0 ) && pCoffset != pC;
// Clockwise-ordered array of perimeter points around the square, starting at left...
const QPointF p[8] = { pC+QPointF(-C,0), pC+QPointF(-C,-C), pC+QPointF(0,-C), pC+QPointF( C,-C),
pC+QPointF( C,0), pC+QPointF( C, C), pC+QPointF(0, C), pC+QPointF(-C, C) };
// Clockwise-ordered array of perimeter point usage, starting at left...
bool bUsed[8];
for (int iNbr = 0; iNbr < 8; iNbr++) bUsed[iNbr] = ReadCodeBit(iNbr, iPerimeterCode);
if ( bMaxDiags ) // For "max diagonals mode", force relevant corner perimeter points to be used
{
if ( bUsed[NBR_L] && bUsed[NBR_T] ) bUsed[NBR_LT] = true;
if ( bUsed[NBR_R] && bUsed[NBR_T] ) bUsed[NBR_RT] = true;
if ( bUsed[NBR_L] && bUsed[NBR_B] ) bUsed[NBR_LB] = true;
if ( bUsed[NBR_R] && bUsed[NBR_B] ) bUsed[NBR_RB] = true;
}
// Construct a track polygon ("blob") based on used perimeter points
MyPolygonF polygon;
// Count used perimeter points and find the first
int iFirst(-1), N(0); // N ==> number of perimeter points
for (int i = 0; i < 8; i++) if ( bUsed[i] ) { N++; if ( iFirst == -1 ) iFirst = i; }
if ( N == 0 ) polygon << pC; // Done making polygon
else if ( N == 1 ) polygon << pC << p[iFirst]; // Done making polygon
else if ( N == 2 ) // Check if second point is consecutive to first point
{
if ( bUsed[( 1 + iFirst ) % 8] ) polygon << pC << p[iFirst] << p[( 1 + iFirst ) % 8]; // Done making polygon
else if ( bUsed[( 7 + iFirst ) % 8] ) polygon << pC << p[iFirst] << p[( 7 + iFirst ) % 8]; // Done making polygon
}
bool bClosed = ( polygon.size() == 3 ); // true ==> closed polygon
if ( !bClosed && N > 2 )
{
if ( !bHavePad && !bHaveSoic )
bClosed = true;
else
{
// If we have a pad, and no connections to consecutive perimeter points,
// then we have a polygon with zero area (e.g. L -> C -> T -> B -> C -> L).
// We must set bClosed to false in this case so we draw a "loop" (using a non-zero width pen)
for (int i = 0; i < 8 && !bClosed; i++)
bClosed = bUsed[i] && bUsed[(i+1)%8]; // Consecutive perimeter points used ==> closed
}
}
if ( N > 2 || ( N == 2 && !bClosed ) ) // If not done making polygon ...
{
int nCount(0); // Perimeter point counter
int iL, iR(iFirst); // Indexes of consecutive used perimeter points
for (int ii = 1; ii <= 8 && nCount < N; ii++) // A full clockwise loop around the perimeter back to the start
{
if ( !bClosed && ii == 8 ) break;
const int jj = ( ii + iFirst ) % 8;
if ( bUsed[jj] ) nCount++; else continue;
iL = iR; iR = jj; // Update iL and iR
const int iDiff = ( 8 + iR - iL ) % 8;
const bool bOrtho = ( iDiff == 2 || iDiff == 6 ); // Track section bends 90 degrees
const bool bObtuse = ( iDiff == 3 || iDiff == 5 ); // Track section bends < 90 degrees
if ( bOrtho || bObtuse ) // Bend <= 90 degrees
{
if ( bCurvedTracks && !bHavePad && !bHaveSoic )
{
// Make an N-point curve from L to R passing near central control point C
// Current interpolation is quadratic.
// Using higher order (e.g. 2.5) gives bends passing closer to C (hence sharper corners)
Q_DECL_CONSTEXPR static const int N = 10;
Q_DECL_CONSTEXPR static const double d = 1.0 / N;
const QPointF pLC(p[iL] - pC), pRC(p[iR] - pC);
for (int i = 0; i <= N; i++)
{
const double t(i * d), u(1 - t);
polygon << pC + pLC*(u*u) + pRC*(t*t); // Bezier curve (quadratic interpolation)
// polygon << pC + pLC*pow(u,2.5) + pRC*pow(t,2.5); // Sharper bends
}
}
else if ( bOrtho && !bHavePad && !bHaveSoic ) // Bend == 90 degrees (chosen to approximate the above curve)
{
static double r = 0.5; // i.e. 2*t^2 when t = 0.5
// static double r = 0.25*sqrt(2); // i.e. 2*t^2.5 when t = 0.5
static double s = 1 - r;
polygon << p[iL] << p[iL]*r + pC*s << p[iR]*r + pC*s << p[iR]; // Draw mitred corner instead of 90 degree bend for L-C-R
}
else
polygon << p[iL] << pC << p[iR]; // Draw a sharp bend for L-C-R instead of a smooth curve
}
else
{
if ( iL == iFirst ) polygon << p[iL]; // Add "L" to the polygon if it's the first point
if ( iR != iFirst ) polygon << p[iR]; // Add "R" to the polygon if it isn't the first point
}
}
}
const bool bGndPad = ( N == 0 && (bHavePad || bHaveSoic) && bIsGnd );
if ( !bGndPad ) // Don't draw the blob for an isolated pad in the ground-fill
{
// Set other polygon attributes, then copy the polygon to the output polygon list
const bool bVariTracks = N > 0 && !bClosed && bFatTracks && padWidth > trkWidth;
polygon.m_eTrkPen = trkPen;
polygon.m_ePadPen = bVariTracks ? padPen : GPEN::NONE;
polygon.m_radiusTrk = ( bIsGnd ? tagWidth : trkWidth ) * 0.5;
polygon.m_radiusPad = bVariTracks ? ( padWidth * 0.5 ) : 0;
polygon.m_bClosed = bClosed;
out.push_back(polygon);
}
if ( bLeg ) // Track leg from offset pad to its grid origin
{
polygon.m_eTrkPen = trkPen;
polygon.m_ePadPen = GPEN::NONE;
polygon.m_radiusTrk = ( bIsGnd ? tagWidth : trkWidth ) * 0.5;
polygon.m_radiusPad = 0;
polygon.m_bClosed = false;
polygon.clear();
polygon << pC << pCoffset;
out.push_back(polygon);
}
if ( bFatTracks && padWidth > trkWidth ) // Widen H and V tracks to pad width (closed loops not handled by "VariTracks" approach)
{
// Create additional polygons for any fat H/V tracks, and copy them to the output polygon list
polygon.m_eTrkPen = GPEN::NONE;
polygon.m_ePadPen = padPen;
polygon.m_radiusTrk = 0;
polygon.m_radiusPad = padWidth * 0.5;
polygon.m_bClosed = false;
for (int iNbr = 0; iNbr < 8; iNbr += 2) // Loop non-diagonal perimeter points
{
if ( !bUsed[iNbr] ) continue;
const int iNbrOpp = Opposite(iNbr);
if ( bUsed[iNbrOpp] ) // If can go straight across, do so
{
if ( iNbr <= 2 ) // No overlay
{
polygon.clear();
polygon << p[iNbr] << p[iNbrOpp];
out.push_back(polygon);
}
}
else
{
polygon.clear();
polygon << pC << p[iNbr];
out.push_back(polygon);
}
}
}
if ( iTagCode > 0 && ( !bLeg || GetXthermals() ) ) // Only draw extra thermal relief tags if we don't have an offset pad, or are forcing X-shaped tags
{
assert( bIsGnd );
polygon.m_eTrkPen = GPEN::NONE;
polygon.m_ePadPen = GPEN::NONE;
polygon.m_radiusTrk = 0;
polygon.m_radiusPad = 0;
polygon.m_bClosed = true;
const int i = ( ( iPadWidthMIL == 0 ) ? GetPAD_MIL() : iPadWidthMIL ) + ( GetGAP_MIL() << 1 );
const qreal X(W * 0.005 * (i + 1)); // Using (i+1) instead of (i) increases tag length by 0.5 mil. Avoids short tags from rounding errors.
const qreal T(W * 0.005 * GetTAG_MIL());
const qreal f(sqrt(0.5));
const qreal x(f * X), t(f * T); // Scale for diagonal directions
const qreal p(x + t), q(x - t); // Transform for diagonal connections
for (int iNbr = 0; iNbr < 8; iNbr++)
{
if ( !ReadCodeBit(iNbr, iTagCode) ) continue;
polygon.clear();
switch( iNbr)
{
case NBR_L: polygon << pCoffset + QPointF(-X, T) << pCoffset + QPointF(-X, -T) << pCoffset + QPointF( 0, -T) << pCoffset + QPointF( 0, T); break;
case NBR_LT: polygon << pCoffset + QPointF(-p, -q) << pCoffset + QPointF(-q, -p) << pCoffset + QPointF( t, -t) << pCoffset + QPointF(-t, t); break;
case NBR_T: polygon << pCoffset + QPointF(-T, 0) << pCoffset + QPointF(-T, -X) << pCoffset + QPointF( T, -X) << pCoffset + QPointF( T, 0); break;
case NBR_RT: polygon << pCoffset + QPointF( q, -p) << pCoffset + QPointF( p, -q) << pCoffset + QPointF( t, t) << pCoffset + QPointF(-t, -t); break;
case NBR_R: polygon << pCoffset + QPointF( X, -T) << pCoffset + QPointF( X, T) << pCoffset + QPointF( 0, T) << pCoffset + QPointF( 0, -T); break;
case NBR_RB: polygon << pCoffset + QPointF( p, q) << pCoffset + QPointF( q, p) << pCoffset + QPointF(-t, t) << pCoffset + QPointF( t, -t); break;
case NBR_B: polygon << pCoffset + QPointF( T, 0) << pCoffset + QPointF( T, X) << pCoffset + QPointF(-T, X) << pCoffset + QPointF(-T, 0); break;
case NBR_LB: polygon << pCoffset + QPointF(-q, p) << pCoffset + QPointF(-p, q) << pCoffset + QPointF(-t, -t) << pCoffset + QPointF( t, t); break;
}
if ( !polygon.empty() )
out.push_back(polygon);
}
}
}
void Bezier(MyPolygonF& polygon, const QPointF& pL, const QPointF& pC, const QPointF& pR)
{
// Make an N-point curve from L to R passing near central control point C
// Current interpolation is quadratic.
// Using higher order (e.g. 2.5) gives bends passing closer to C (hence sharper corners)
Q_DECL_CONSTEXPR static const int N = 10;
Q_DECL_CONSTEXPR static const double d = 1.0 / N;
const QPointF pLC(pL - pC), pRC(pR - pC);
for (int i = 0; i <= N; i++)
{
const double t(i * d), u(1 - t);
polygon << pC + pLC*(u*u) + pRC*(t*t); // Bezier curve (quadratic interpolation)
// polygon << pC + pLC*pow(u,2.5) + pRC*pow(t,2.5); // Sharper bends
}
}
void GuiControl::CalcSOIC(qreal W, const QPointF& pC, size_t pinIndex, const Component* pComp, std::list<MyPolygonF>& out, bool bSolderMask, bool bIsGnd, bool bGap) const
{
assert(pComp);
const size_t numPins = pComp->GetNumPins();
const char direction = pComp->GetDirection();
const COMP eType = pComp->GetType();
const bool bNarrow = eType == COMP::SOIC8 || eType == COMP::SOIC14 || eType == COMP::SOIC16;
assert( !bGap || !bSolderMask );
assert(numPins == 8 || numPins == 14 || numPins == 16 || numPins == 20 || numPins == 24 || numPins == 28);
out.clear();
// Given a grid point (pC) this method populates "out" with a description of an SOIC track from a "SOIC pin".
// The scale parameter W represents the width of a 100 mil grid square.
const qreal T = W * 0.025; // (1/40 square width) i.e. T = 2.5 mil
const qreal padWidth = W * 0.01 * GetPAD_IC_MIL();
const qreal padHeight = W * 0.01 * 90; // Pad length = 90 mil
const qreal maskDelta = W * 0.01 * GetMASK_MIL();
const bool bThinTrack = ( numPins == 16 ) && ( pinIndex == 1 || pinIndex == 6 || pinIndex == 9 || pinIndex == 14 );
const qreal trkWidth = 0.01 * ( ( bThinTrack ? GetMIN_IC_MIL() : GetTRACK_IC_MIL() )+ 2 * ( bGap ? GetGAP_MIL() : 0 ) );
MyPolygonF polygonA; // SOIC tracks
if ( bThinTrack )
polygonA.m_eTrkPen = bGap ? GPEN::MIN_IC_GAP : GPEN::MIN_IC;
else
polygonA.m_eTrkPen = bGap ? GPEN::TRK_IC_GAP : GPEN::TRK_IC;
polygonA.m_radiusTrk = trkWidth * 0.5;
polygonA.clear();
MyPolygonF polygonB; // SOIC pads are drawn as a filled closed rectangle using GPEN::NONE
polygonB.m_bClosed = true;
polygonB.clear();
const bool bNoTrackGap = bIsGnd && bGap; // For tracks in the ground fill, don't draw a gap around them
const bool bDoTrack = !bSolderMask && !bNoTrackGap;
const bool bDoPad = !bSolderMask && !bGap;
const bool bDoMask = bSolderMask && !bGap;
const QPointF padLength(0, padHeight);
const QPointF padLR(padWidth * 0.5, 0);
const QPointF padLeg(0,4*T);
const QPointF padGapLR(12*T,0), padGapT(0,5*T), padGapB(0,bNarrow ? 5*T : 12*T); // Gaps for the SOIC pads
const QPointF padMaskLR(padWidth * 0.5 + maskDelta, 0), padMaskTB(0, maskDelta);
QPointF padTop, padBot; // Limits of SOIC pads
// 28 pin =========================================================================
if ( numPins == 28 )
{
// 7 basic curves, referenced by pins 21-27
const int iRefPin = ( pinIndex < 7 ) ? 27 - pinIndex :
( pinIndex < 14 ) ? 14 + pinIndex :
( pinIndex < 21 ) ? 41 - pinIndex : pinIndex;
assert(iRefPin >= 21 && iRefPin <= 27);
switch(iRefPin)
{
case 27: padTop = pC+QPointF(50*T,-12*T); break;
case 26: padTop = pC+QPointF(70*T,28*T); break;
case 25: padTop = pC+QPointF(90*T,68*T); break;
case 24: padTop = pC+QPointF(70*T,68*T); break;
case 23: padTop = pC+QPointF(50*T,68*T); break;
case 22: padTop = pC+QPointF(30*T,68*T); break;
case 21: padTop = pC+QPointF(10*T,68*T); break;
}
padBot = padTop + padLength;
if ( bDoTrack )
{
switch(iRefPin)
{
case 27: polygonA << pC << pC+QPointF(50*T,0); break;
case 26: Bezier(polygonA, pC, pC+QPointF(60*T,3*T), padTop); break;
case 25: polygonA << pC << pC+QPointF(25*T,25*T);
Bezier(polygonA, pC+QPointF(25*T,25*T), pC+QPointF(81*T,38*T), padTop); break;
case 24: polygonA << pC << pC+QPointF(10*T,10*T);
Bezier(polygonA, pC+QPointF(10*T,10*T), pC+QPointF(70*T,45*T), padTop); break;
case 23: Bezier(polygonA, pC, pC+QPointF(50*T,35*T), padTop); break;
case 22: Bezier(polygonA, pC, pC+QPointF(30*T,25*T), padTop); break;
case 21: Bezier(polygonA, pC, pC+QPointF(10*T,20*T), padTop); break;
}
}
if ( bDoPad )
polygonB << padTop-padLR << padTop+padLR << padBot+padLR << padBot-padLR << padTop-padLR;
if ( bDoMask )
{
padTop -= padMaskTB; padBot += padMaskTB;
polygonB << padTop-padMaskLR << padTop+padMaskLR << padBot+padMaskLR << padBot-padMaskLR << padTop-padMaskLR;
}
if ( bGap )
{
padTop -= padGapT; padBot += padGapB;
polygonB << padTop-padGapLR << padTop+padGapLR << padBot+padGapLR << padBot-padGapLR << padTop-padGapLR;
}
// Reflect the polygon based on the reference pin as necessary
if ( pinIndex < 14 ) { polygonA.flipV(pC); polygonB.flipV(pC); }
if ( pinIndex >= 7 && pinIndex < 21 ) { polygonA.flipH(pC); polygonB.flipH(pC); }
}
// 28 pin =========================================================================
// 24 pin =========================================================================
if ( numPins == 24 )
{
// 6 basic curves, referenced by pins 18-23
const int iRefPin = ( pinIndex < 6 ) ? 23 - pinIndex :
( pinIndex < 12 ) ? 12 + pinIndex :
( pinIndex < 18 ) ? 35 - pinIndex : pinIndex;
assert(iRefPin >= 18 && iRefPin <= 23);
switch(iRefPin)
{
case 23: padTop = pC+QPointF(30*T,-12*T); break;
case 22: padTop = pC+QPointF(50*T,28*T); break;
case 21: padTop = pC+QPointF(70*T,68*T); break;
case 20: padTop = pC+QPointF(50*T,68*T); break;
case 19: padTop = pC+QPointF(30*T,68*T); break;
case 18: padTop = pC+QPointF(10*T,68*T); break;
}
padBot = padTop + padLength;
if ( bDoTrack )
{
switch(iRefPin)
{
case 23: polygonA << pC << pC+QPointF(30*T,0); break;
case 22: Bezier(polygonA, pC, pC+QPointF(40*T, 5*T), padTop); break;
case 21: polygonA << pC << pC+QPointF(25*T,25*T);
Bezier(polygonA, pC+QPointF(25*T,25*T), pC+QPointF(70*T,45*T), padTop); break;
case 20: Bezier(polygonA, pC, pC+QPointF(50*T,35*T), padTop); break;
case 19: Bezier(polygonA, pC, pC+QPointF(30*T,25*T), padTop); break;
case 18: Bezier(polygonA, pC, pC+QPointF(10*T,20*T), padTop); break;
}
}
if ( bDoPad )
polygonB << padTop-padLR << padTop+padLR << padBot+padLR << padBot-padLR << padTop-padLR;
if ( bDoMask )
{
padTop -= padMaskTB; padBot += padMaskTB;
polygonB << padTop-padMaskLR << padTop+padMaskLR << padBot+padMaskLR << padBot-padMaskLR << padTop-padMaskLR;
}
if ( bGap )
{
padTop -= padGapT; padBot += padGapB;
polygonB << padTop-padGapLR << padTop+padGapLR << padBot+padGapLR << padBot-padGapLR << padTop-padGapLR;
}
// Reflect the polygon based on the reference pin as necessary
if ( pinIndex < 12 ) { polygonA.flipV(pC); polygonB.flipV(pC); }
if ( pinIndex >= 6 && pinIndex < 18 ) { polygonA.flipH(pC); polygonB.flipH(pC); }
}
// 24 pin =========================================================================
// 20 pin =========================================================================
if ( numPins == 20 )
{
// 5 basic curves, referenced by pins 15-19
const int iRefPin = ( pinIndex < 5 ) ? 19 - pinIndex :
( pinIndex < 10 ) ? 10 + pinIndex :
( pinIndex < 15 ) ? 29 - pinIndex : pinIndex;
assert(iRefPin >= 15 && iRefPin <= 19);
switch(iRefPin)
{
case 19: padTop = pC+QPointF(50*T,28*T); break;
case 18: padTop = pC+QPointF(70*T,68*T); break;
case 17: padTop = pC+QPointF(50*T,68*T); break;
case 16: padTop = pC+QPointF(30*T,68*T); break;
case 15: padTop = pC+QPointF(10*T,68*T); break;
}
padBot = padTop + padLength;
if ( bDoTrack )
{
switch(iRefPin)
{
case 19: Bezier(polygonA, pC, pC+QPointF(40*T, 5*T), padTop); break;
case 18: Bezier(polygonA, pC, pC+QPointF(70*T,45*T), padTop); break;
case 17: Bezier(polygonA, pC, pC+QPointF(50*T,35*T), padTop); break;
case 16: Bezier(polygonA, pC, pC+QPointF(30*T,25*T), padTop); break;
case 15: Bezier(polygonA, pC, pC+QPointF(10*T,20*T), padTop); break;
}
}
if ( bDoPad )
polygonB << padTop-padLR << padTop+padLR << padBot+padLR << padBot-padLR << padTop-padLR;
if ( bDoMask )
{
padTop -= padMaskTB; padBot += padMaskTB;
polygonB << padTop-padMaskLR << padTop+padMaskLR << padBot+padMaskLR << padBot-padMaskLR << padTop-padMaskLR;
}
if ( bGap )
{
padTop -= padGapT; padBot += padGapB;
polygonB << padTop-padGapLR << padTop+padGapLR << padBot+padGapLR << padBot-padGapLR << padTop-padGapLR;
}
// Reflect the polygon based on the reference pin as necessary
if ( pinIndex < 10 ) { polygonA.flipV(pC); polygonB.flipV(pC); }
if ( pinIndex >= 5 && pinIndex < 15 ) { polygonA.flipH(pC); polygonB.flipH(pC); }
}
// 20 pin =========================================================================
// 16 pin =========================================================================
if ( numPins == 16 )
{
// 4 basic curves, referenced by pins 12-15
const int iRefPin = ( pinIndex < 4 ) ? 15 - pinIndex :
( pinIndex < 8 ) ? 8 + pinIndex :
( pinIndex < 12 ) ? 23 - pinIndex : pinIndex;
assert(iRefPin >= 12 && iRefPin <= 15);
switch(iRefPin)
{
case 15: padTop = pC+QPointF(30*T,bNarrow ? 2*T : (-12*T)); break;
case 14: padTop = pC+QPointF(50*T,bNarrow ? 42*T : 28*T); break;
case 13: padTop = pC+QPointF(30*T,bNarrow ? 42*T : 28*T); break;
case 12: padTop = pC+QPointF(10*T,bNarrow ? 42*T : 28*T); break;
}
padBot = padTop + padLength;
if ( bDoTrack )
{
switch(iRefPin)
{
case 15: if ( bNarrow ) polygonA << pC << padTop; else polygonA << pC << pC+QPointF(30*T,0); break;
case 14: Bezier(polygonA, pC, pC+QPointF(0,11*T), padTop-padLeg); polygonA << padTop; break;
case 13: polygonA << pC << padTop-padLeg << padTop; break;
case 12: polygonA << pC << padTop-padLeg << padTop; break;
}
}
if ( bDoPad )
polygonB << padTop-padLR << padTop+padLR << padBot+padLR << padBot-padLR << padTop-padLR;
if ( bDoMask )
{
padTop -= padMaskTB; padBot += padMaskTB;
polygonB << padTop-padMaskLR << padTop+padMaskLR << padBot+padMaskLR << padBot-padMaskLR << padTop-padMaskLR;
}
if ( bGap )
{
padTop -= padGapT; padBot += padGapB;
polygonB << padTop-padGapLR << padTop+padGapLR << padBot+padGapLR << padBot-padGapLR << padTop-padGapLR;
}
// Reflect the polygon based on the reference pin as necessary
if ( pinIndex < 8 ) { polygonA.flipV(pC); polygonB.flipV(pC); }
if ( pinIndex >= 4 && pinIndex < 12 ) { polygonA.flipH(pC); polygonB.flipH(pC); }
}
// 16 pin =========================================================================
// 14 pin =========================================================================
if ( numPins == 14 )
{
// 4 basic curves, referenced by pins 10-13
const int iRefPin = ( pinIndex < 4 ) ? 13 - pinIndex :
( pinIndex < 7 ) ? 7 + pinIndex :
( pinIndex < 10 ) ? 20 - pinIndex : pinIndex;
assert(iRefPin >= 10 && iRefPin <= 13);
switch(iRefPin)
{
case 13: padTop = pC+QPointF(20*T, bNarrow ? 2*T : (-12*T)); break;
case 12: padTop = pC+QPointF(40*T, bNarrow ? 42*T : 28*T); break;
case 11: padTop = pC+QPointF(20*T, bNarrow ? 42*T : 28*T); break;
case 10: padTop = pC+QPointF( 0, bNarrow ? 42*T : 28*T); break;
}
padBot = padTop + padLength;
if ( bDoTrack )
{
switch(iRefPin)
{
case 13: if ( bNarrow ) polygonA << pC << padTop; else polygonA << pC << pC+QPointF(20*T,0); break;
case 12: Bezier(polygonA, pC, pC+QPointF(0,7*T), padTop-padLeg); polygonA << padTop; break;
case 11: polygonA << pC << padTop-padLeg << padTop; break;
case 10: polygonA << pC << padTop; break;
}
}
if ( bDoPad )
polygonB << padTop-padLR << padTop+padLR << padBot+padLR << padBot-padLR << padTop-padLR;
if ( bDoMask )
{
padTop -= padMaskTB; padBot += padMaskTB;
polygonB << padTop-padMaskLR << padTop+padMaskLR << padBot+padMaskLR << padBot-padMaskLR << padTop-padMaskLR;
}
if ( bGap )
{
padTop -= padGapT; padBot += padGapB;
polygonB << padTop-padGapLR << padTop+padGapLR << padBot+padGapLR << padBot-padGapLR << padTop-padGapLR;
}
// Reflect the polygon based on the reference pin as necessary
if ( pinIndex < 7 ) { polygonA.flipV(pC); polygonB.flipV(pC); }
if ( pinIndex >= 4 && pinIndex < 10 ) { polygonA.flipH(pC); polygonB.flipH(pC); }
}
// 14 pin =========================================================================
// 8 pin ==========================================================================
if ( numPins == 8 )
{
// 2 basic curves, referenced by pins 6-7
const int iRefPin = ( pinIndex < 2 ) ? 7 - pinIndex :
( pinIndex < 4 ) ? 4 + pinIndex :
( pinIndex < 6 ) ? 11 - pinIndex : pinIndex;
assert(iRefPin >= 6 && iRefPin <= 7);
switch(iRefPin)
{
case 7: padTop = pC+QPointF(30*T,42*T); break;
case 6: padTop = pC+QPointF(10*T,42*T); break;
}
padBot = padTop + padLength;
if ( bDoTrack )
polygonA << pC << padTop-padLeg << padTop;
if ( bDoPad )
polygonB << padTop-padLR << padTop+padLR << padBot+padLR << padBot-padLR << padTop-padLR;
if ( bDoMask )
{
padTop -= padMaskTB; padBot += padMaskTB;
polygonB << padTop-padMaskLR << padTop+padMaskLR << padBot+padMaskLR << padBot-padMaskLR << padTop-padMaskLR;
}
if ( bGap )
{
padTop -= padGapT; padBot += padGapB;
polygonB << padTop-padGapLR << padTop+padGapLR << padBot+padGapLR << padBot-padGapLR << padTop-padGapLR;
}
// Reflect the polygon based on the reference pin as necessary
if ( pinIndex < 4 ) { polygonA.flipV(pC); polygonB.flipV(pC); }
if ( pinIndex >= 2 && pinIndex < 6 ) { polygonA.flipH(pC); polygonB.flipH(pC); }
}
// 8 pin ==========================================================================
// Handle component rotation
int numRotations(0);
switch( direction )
{
case 'N': numRotations = 1; break;
case 'E': numRotations = 2; break;
case 'S': numRotations = 3; break;
}
while (numRotations) { polygonA.rotateCW(pC); polygonB.rotateCW(pC); numRotations--; }
out.push_back(polygonA);
out.push_back(polygonB);
}
|