File: c4.c

package info (click to toggle)
vgagamespack 1.3-7
  • links: PTS
  • area: main
  • in suites: hamm, slink
  • size: 292 kB
  • ctags: 418
  • sloc: ansic: 3,755; makefile: 79
file content (813 lines) | stat: -rw-r--r-- 32,747 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
/****************************************************************************/
/****************************************************************************/
/**                                                                        **/
/**                          Connect-4 Algorithm                           **/
/**                                                                        **/
/**                            By Keith Pomakis                            **/
/**                     (kppomaki@jeeves.uwaterloo.ca)                     **/
/**                                                                        **/
/**                               Fall, 1993                               **/
/**                                                                        **/
/****************************************************************************/
/**                                                                        **/
/**  This file provides the functions necessary to implement a front-end-  **/
/**  independent, device-independent Connect-4 game.  Multiple board sizes **/
/**  are supported.  It is also possible to specify the number of pieces   **/
/**  necessary to connect in a row in order to win.  Therefore one can     **/
/**  play Connect-3, Connect-5, etc.  An efficient tree-searching          **/
/**  algorithm (making use of alpha-beta cutoff decisions) has been        **/
/**  implemented to insure that the computer plays as quickly as possible. **/
/**                                                                        **/
/**  The declaration of the public functions necessary to use this file    **/
/**  are contained in "c4.h".                                              **/
/**                                                                        **/
/**  In all of the public functions, the value of player can be any        **/
/**  integer, where an even integer refers to player 0 and an odd integer  **/
/**  refers to player 1.                                                   **/
/**                                                                        **/
/****************************************************************************/
/****************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "c4.h"

/* The static global variables required. */

#define NUM_OF_TEMP_STATES      42
static long size_x, size_y, num_to_connect;
static long win_places;
static Boolean ***map;
static Game_state real_state;
static Boolean game_in_progress = FALSE, seed_chosen = FALSE;
static void (*poll_function)(void) = NULL;
static long poll_level;
static Game_state temp_states[NUM_OF_TEMP_STATES];
static Boolean temp_array[NUM_OF_TEMP_STATES];
static long temp_states_allocated = 0;

/* Some macros for convenience. */

#define other(x) (((x)==1)? 0 : 1)
#define real_player(x) (x & 1)

/* A declaration of the local functions. */

static void insure_game(void);
static long num_of_win_places(long x, long y, long n);
static void update_score(Game_state *state, long player, long x, long y);
static Boolean drop_piece(Game_state *state, long player, long column);
static long player_score(Game_state *state, long player);
static Boolean winner(Game_state *state, long player);
static Boolean tie(Game_state *state);
static long goodness_of(Game_state *state, long player);
static Game_state *copy_state(Game_state *state);
static void destroy_state(Game_state *state);
static long worst_goodness(Game_state *state, long player, long level,
                                                    long depth, long so_far);
static void *emalloc(unsigned int n);


/****************************************************************************/
/**                                                                        **/
/**  This function specifies that the computer should call the specified   **/
/**  function from time to time, in essence polling it to see if the       **/
/**  front-end interface requires any attention.  The specified function   **/
/**  should accept void and return void.  level is the level of lookahead  **/
/**  at which the function should be called.  This level is measured from  **/
/**  the bottom.  Eg. If the lookahead level is set to 6 and level is set  **/
/**  to 4, with a 7x6 board, this function will be called a maximum of     **/
/**  7^2 = 49 times (once for each (6-4)th = 2nd level node visited.       **/
/**                                                                        **/
/**  Note that if a node is not visited due to apha-beta cutoff, this      **/
/**  function will not be called at that node.  Therefore only a maximum   **/
/**  number of calls can be predicted (with a minimum of 1).               **/
/**                                                                        **/
/**  If no polling is required, the polling function can be specified as   **/
/**  NULL.  This is the default.  This function can be called an arbitrary **/
/**  number of times throughout any game.                                  **/
/**                                                                        **/
/****************************************************************************/

void
poll(void (*poll_func)(void), long level)
{
    poll_function = poll_func;
    poll_level = level;
}


/****************************************************************************/
/**                                                                        **/
/**  This function sets up a new game.  This must be called exactly once   **/
/**  before each game is started.  Before it can be called a second time,  **/
/**  end_game() must be called to destroy the previous game.               **/
/**                                                                        **/
/**  width and height are the desired dimensions of the game board, while  **/
/**  num is the number of pieces required to connect in a row in order to  **/
/**  win the game.                                                         **/
/**                                                                        **/
/****************************************************************************/

void
new_game(long width, long height, long num)
{
    long i, j, k, count;

    if (game_in_progress) {
        fprintf(stderr, "new_game: game already in progress\n");
        exit(1);
    }

    if (width < 1 || height < 1 || num < 1) {
        fprintf(stderr, "new_game: invalid parameters\n");
        exit(1);
    }

    size_x = width;
    size_y = height;
    num_to_connect = num;
    win_places = num_of_win_places(size_x, size_y, num_to_connect);

    /* Set up a random seed for making random decisions when there is */
    /* equal goodness between two moves.                              */
    if (!seed_chosen) {
        srand(time((time_t *)0));
        seed_chosen = TRUE;
    }

    /* Set up the board */

    real_state.board = (char **) emalloc(size_x * sizeof(char *));
    for (i=0; i<size_x; i++) {
        real_state.board[i] = (char *) emalloc(size_y * sizeof(char));
        for (j=0; j<size_y; j++)
            real_state.board[i][j] = EMPTY;
    }

    /* Set up the score array */

    real_state.score_array[0] = (long *) emalloc(win_places * sizeof(long));
    real_state.score_array[1] = (long *) emalloc(win_places * sizeof(long));
    for (i=0; i<win_places; i++) {
        real_state.score_array[0][i] = 1;
        real_state.score_array[1][i] = 1;
    }

    /* Set up the map */

    map = (Boolean ***) emalloc(size_x * sizeof(Boolean **));
    for (i=0; i<size_x; i++) {
        map[i] = (Boolean **) emalloc(size_y * sizeof(Boolean *));
        for (j=0; j<size_y; j++) {
            map[i][j] = (Boolean *) emalloc(win_places * sizeof(Boolean));
            for (k=0; k<win_places; k++)
                map[i][j][k] = FALSE;
        }
    }

    count = 0;

    /* Fill in the horizontal win positions */
    for (i=0; i<size_y; i++)
        for (j=0; j<size_x-num_to_connect+1; j++) {
            for (k=0; k<num_to_connect; k++)
                map[j+k][i][count] = TRUE;
            count++;
        }

    /* Fill in the vertical win positions */
    for (i=0; i<size_x; i++)
        for (j=0; j<size_y-num_to_connect+1; j++) {
            for (k=0; k<num_to_connect; k++)
                map[i][j+k][count] = TRUE;
            count++;
        }

    /* Fill in the forward diagonal win positions */
    for (i=0; i<size_y-num_to_connect+1; i++)
        for (j=0; j<size_x-num_to_connect+1; j++) {
            for (k=0; k<num_to_connect; k++)
                map[j+k][i+k][count] = TRUE;
            count++;
        }

    /* Fill in the backward diagonal win positions */
    for (i=0; i<size_y-num_to_connect+1; i++)
        for (j=size_x-1; j>=num_to_connect-1; j--) {
        /*
        for (j=size_x-1; j>=size_x-num_to_connect; j--) {
        */
            for (k=0; k<num_to_connect; k++)
                map[j-k][i+k][count] = TRUE;
            count++;
        }

    real_state.num_of_pieces = 0;

    for (i=0; i<NUM_OF_TEMP_STATES; i++)
        temp_array[i] = FALSE;

    game_in_progress = TRUE;
}


/****************************************************************************/
/**                                                                        **/
/**  This function drops a piece of the specified player into the          **/
/**  specified column.  Note that column numbering starts at 0.  A value   **/
/**  of TRUE is returned if the drop was successful, or FALSE otherwise.   **/
/**  A drop is unsuccessful if the specified column number is invalid or   **/
/**  full.                                                                 **/
/**                                                                        **/
/****************************************************************************/

Boolean
make_move(long player, long column)
{
    insure_game();
    if (column >= size_x || column < 0) return FALSE;
    return drop_piece(&real_state, real_player(player), column);
}


/****************************************************************************/
/**                                                                        **/
/**  This function instructs the computer to make a move for the specified **/
/**  player.  level specifies the number of levels deep the computer       **/
/**  should search the game tree in order to make its decision.  This      **/
/**  corresponds to the number of "moves" in the game, where each player's **/
/**  turn is considered a move.  The column number of the column in which  **/
/**  the piece was dropped is returned.  Note that column numbering starts **/
/**  at 0.  If no move is possible (i.e. the game board is full), -1 is    **/
/**  returned.  Note that for a standard 7x6 game of Connect-4, the        **/
/**  computer is brain-dead at levels of three or less, while at levels of **/
/**  4 or more the computer provides a challenge.                          **/
/**                                                                        **/
/****************************************************************************/

long
automatic_move(long player, long level)
{
    long i, best_column, goodness, best_worst;
    Game_state *temp_state;
    long num_of_equal, real;

    insure_game();
    real = real_player(player);

    if (level < 1) {
        fprintf(stderr, "automatic_move: invalid level\n");
        exit(1);
    }

    best_worst = -2000000;
    best_column = -1;

    /* Simulate a drop in each of the columns and see what the results are. */

    for (i=0; i<size_x; i++) {
        temp_state = copy_state(&real_state);

        /* If this column is full, ignore it as a possibility. */
        if (!drop_piece(temp_state, real, i)) {
            destroy_state(temp_state);
            continue;
        }

        /* If this drop wins the game, it is a really good move! */
        if (winner(temp_state, real)) {
            best_worst = 1000000;
            best_column = i;
        }

        /* Otherwise, look ahead to see how good this move may turn out */
        /* to be (assuming the opponent makes the best moves possible). */
        else
            goodness = worst_goodness(temp_state, real, level, 1, best_worst);

        /* If this move looks better than the ones previously considered, */
        /* remember it.                                                   */
        if (goodness > best_worst) {
            best_worst = goodness;
            best_column = i;
            num_of_equal = 1;
        }

        /* If two moves are equally as good, make a random decision. */
        if (goodness == best_worst) {
            num_of_equal++;
            if (rand()%100000 < ((float)1/(float)num_of_equal) * 100000)
                best_column = i;
        }

        destroy_state(temp_state);
    }

    /* Drop the piece in the column decided upon. */

    if (best_column >= 0)
        drop_piece(&real_state, real, best_column);

    return best_column;
}


/****************************************************************************/
/**                                                                        **/
/**  This function returns the state of the current game.  The Game_state  **/
/**  structure returned is defined in "c4.h".                              **/
/**                                                                        **/
/****************************************************************************/

Game_state
get_game_state(void)
{
    insure_game();
    return real_state;
}


/****************************************************************************/
/**                                                                        **/
/**  This function returns the "score" of the specified player.  This      **/
/**  score is a function of how many winning positions are still available **/
/**  to the player and how close he/she is to achieving each of these      **/
/**  positions.  The scores of both players can be compared to observe how **/
/**  well they are doing relative to each other.                           **/
/**                                                                        **/
/****************************************************************************/

long
score_of_player(long player)
{
    insure_game();
    return player_score(&real_state, real_player(player));
}


/****************************************************************************/
/**                                                                        **/
/**  This function returns TRUE if the specified player has won the game,  **/
/**  and FALSE otherwise.                                                  **/
/**                                                                        **/
/****************************************************************************/

Boolean
is_winner(long player)
{
    insure_game();
    return winner(&real_state, player);
}


/****************************************************************************/
/**                                                                        **/
/**  This function returns TRUE if the board is completely full, FALSE     **/
/**  otherwise.                                                            **/
/**                                                                        **/
/****************************************************************************/

Boolean
is_tie()
{
    insure_game();
    return tie(&real_state);
}


/****************************************************************************/
/**                                                                        **/
/**  This function returns the coordinates of the winning connections of   **/
/**  the specified player.  It is assumed that the specified player has    **/
/**  indeed won the game.  The coordinates are returned in x1, y1, x2, y2, **/
/**  where (x1, y1) specifies the lower-left piece of the winning          **/
/**  connection, and (x2, y2) specifies the upper-right piece of the       **/
/**  winning connection.  If more than one winning connection exists, only **/
/**  one will be returned.                                                 **/
/**                                                                        **/
/****************************************************************************/

void
win_coords(long player, long *x1, long *y1, long *x2, long *y2)
{
    long i, j, win_pos = -1, look_for = 1 << num_to_connect;
    long realplayer;
    Boolean found;

    insure_game();
    realplayer = real_player(player);
    for (i=0; i<win_places; i++)
        if (real_state.score_array[realplayer][i] == look_for)
            win_pos = i;

    if (win_pos == -1) {
        fprintf(stderr, "win_coords: no winner\n");
        exit(1);
    }

    /* Find the lower-left piece of the winning connection. */

    found = FALSE;
    for (j=0; j<size_y; j++)
        for (i=0; i<size_x; i++)
            if (map[i][j][win_pos] && !found) {
                *x1 = i;
                *y1 = j;
                found = TRUE;
            }

    /* Find the upper-right piece of the winning connection. */

    found = FALSE;
    for (j=size_y-1; j>=0; j--)
        for (i=size_x-1; i>=0; i--)
            if (map[i][j][win_pos] && !found) {
                *x2 = i;
                *y2 = j;
                found = TRUE;
            }
}


/****************************************************************************/
/**                                                                        **/
/**  This function ends the current game.  It is assumed that a game is    **/
/**  indeed in progress.  It is illegal to call any other game function    **/
/**  immediately after this one except for new_game() and poll().          **/
/**                                                                        **/
/****************************************************************************/

void
end_game(void)
{
    long i, j;

    insure_game();

    /* Free up the memory used by the game state. */

    for (i=0; i<size_x; i++) free(real_state.board[i]);
    free(real_state.board);
    free(real_state.score_array[0]);
    free(real_state.score_array[1]);

    /* Free up the memory used by the map. */

    for (i=0; i<size_x; i++) {
        for (j=0; j<size_y; j++)
            free(map[i][j]);
        free(map[i]);
    }
    free(map);

    /* Free up the memory of all the temporary states used. */

    for (i=0; i<temp_states_allocated; i++) {
        temp_array[i] = FALSE;
        for (j=0; j<size_x; j++) free(temp_states[i].board[j]);
        free(temp_states[i].board);
        free(temp_states[i].score_array[0]);
        free(temp_states[i].score_array[1]);
    }
    temp_states_allocated = 0;

    game_in_progress = FALSE;
}


/****************************************************************************/
/****************************************************************************/
/**                                                                        **/
/**  The following functions are local to this file and should not be      **/
/**  called externally.                                                    **/
/**                                                                        **/
/****************************************************************************/
/****************************************************************************/


/****************************************************************************/
/**                                                                        **/
/**  This function insures that a game is in progress, and exits with an   **/
/**  error if one is not.                                                  **/
/**                                                                        **/
/****************************************************************************/

static void
insure_game(void)
{
    if (!game_in_progress) {
        fprintf(stderr, "error: no game in progress\n");
        exit(1);
    }
}


/****************************************************************************/
/**                                                                        **/
/**  This function returns the number of possible win positions on a board **/
/**  of dimensions x by y with n being the number of pieces required in a  **/
/**  row in order to win.                                                  **/
/**                                                                        **/
/****************************************************************************/

static long
num_of_win_places(long x, long y, long n)
{
    return 4*x*y - 3*x*n - 3*y*n + 3*x + 3*y - 4*n + 2*n*n + 2;
}


/****************************************************************************/
/**                                                                        **/
/**  This function updates the score of the specified player given that    **/
/**  the player has just placed a game piece in column x, row y.           **/
/**                                                                        **/
/**  The specified game state is used, which may be a temporary state.     **/
/**                                                                        **/
/****************************************************************************/

static void
update_score(Game_state *state, long player, long x, long y)
{
    long i;

    for (i=0; i<win_places; i++)
        if (map[x][y][i]) {
            state->score_array[player][i] <<= 1;
            state->score_array[other(player)][i] = 0;
        }
}


/****************************************************************************/
/**                                                                        **/
/**  This function drops a piece of the specified player into the          **/
/**  specified column.  A value of TRUE is returned if the drop was        **/
/**  successful, and FALSE if it was not (i.e. the specified column is     **/
/**  full).                                                                **/
/**                                                                        **/
/**  The specified game state is used, which may be a temporary state.     **/
/**                                                                        **/
/****************************************************************************/

static Boolean
drop_piece(Game_state *state, long player, long column)
{
    long y = 0;

    while (state->board[column][y] != EMPTY && ++y < size_y)
        ;

    if (y == size_y) return FALSE;

    state->board[column][y] = player;
    state->num_of_pieces++;
    update_score(state, player, column, y);

    return TRUE;
}


/****************************************************************************/
/**                                                                        **/
/**  This function returns the "score" of the specified player.  This      **/
/**  score is a function of how many winning positions are still available **/
/**  to the player and how close he/she is to achieving each of these      **/
/**  positions.  The scores of both players can be compared to observe how **/
/**  well they are doing relative to each other.                           **/
/**                                                                        **/
/**  The specified game state is used, which may be a temporary state.     **/
/**                                                                        **/
/****************************************************************************/

static long
player_score(Game_state *state, long player)
{
    long i, score = 0;

    for (i=0; i<win_places; i++)
        score += state->score_array[player][i];

    return score;
}


/****************************************************************************/
/**                                                                        **/
/**  This function returns TRUE if the specified player has won the game,  **/
/**  and FALSE otherwise.                                                  **/
/**                                                                        **/
/**  The specified game state is used, which may be a temporary state.     **/
/**                                                                        **/
/****************************************************************************/

static Boolean
winner(Game_state *state, long player)
{
    long i, look_for = 1 << num_to_connect;

    for (i=0; i<win_places; i++)
        if (state->score_array[player][i] == look_for)
            return TRUE;

    return FALSE;
}


/****************************************************************************/
/**                                                                        **/
/**  This function returns TRUE if the board is completely full, FALSE     **/
/**  otherwise.                                                            **/
/**                                                                        **/
/**  The specified game state is used, which may be a temporary state.     **/
/**                                                                        **/
/****************************************************************************/

static Boolean
tie(Game_state *state)
{
    return (state->num_of_pieces == size_x * size_y);
}


/****************************************************************************/
/**                                                                        **/
/**  This function returns a measure of the "goodness" of the specified    **/
/**  state for the specified player.  This goodness value is calculated by **/
/**  subtracting the score of the player's opponent from the player's own  **/
/**  score.  A positive value will result if the specified player is in a  **/
/**  better situation than his/her opponent.                               **/
/**                                                                        **/
/****************************************************************************/

static long
goodness_of(Game_state *state, long player)
{
    return player_score(state, player) - player_score(state, other(player));
}


/****************************************************************************/
/**                                                                        **/
/**  This function will return a copy of the specified state.  For         **/
/**  efficiency, an array of allocated temporary states is kept, so that   **/
/**  memory does not have to be allocated for a new state every time this  **/
/**  function is called.  When the copy is finished with, it must be       **/
/**  destroyed with destroy_state().                                       **/
/**                                                                        **/
/****************************************************************************/

static Game_state *
copy_state(Game_state *state)
{
    long i, j, k;

    for (i=0; i<temp_states_allocated; i++)
        if(!temp_array[i]) break;

    if (i==temp_states_allocated) {
        if (i==NUM_OF_TEMP_STATES) {
            fprintf(stderr, "copy_state: too many temp states\n");
            exit(1);
        }

        /* Allocate space for the board */

        temp_states[i].board = (char **) emalloc(size_x * sizeof(char *));
        for (j=0; j<size_x; j++)
            temp_states[i].board[j] = (char *) emalloc(size_y * sizeof(char));

        /* Allocate space for the score array */

        temp_states[i].score_array[0] =
                                (long *) emalloc(win_places * sizeof(long));
        temp_states[i].score_array[1] =
                                (long *) emalloc(win_places * sizeof(long));

        temp_states_allocated++;
    }

    temp_array[i] = TRUE;

    /* Copy the board */

    for (j=0; j<size_x; j++)
        for (k=0; k<size_y; k++)
            temp_states[i].board[j][k] = state->board[j][k];

    /* Copy the score array */

    for (j=0; j<win_places; j++) {
        temp_states[i].score_array[0][j] = state->score_array[0][j];
        temp_states[i].score_array[1][j] = state->score_array[1][j];
    }

    return &temp_states[i];
}


/****************************************************************************/
/**                                                                        **/
/**  This function destroys the specified game state (assumed to have been **/
/**  created by copy_state()).  For efficiency, the memory used by the     **/
/**  state is not deallocated, so that copy_state() may use this memory    **/
/**  again for a new state.                                                **/
/**                                                                        **/
/****************************************************************************/

static void
destroy_state(Game_state *state)
{
    long i, j;

    for (i=0; i<temp_states_allocated; i++)
        if(state == &temp_states[i]) break;

    if (i==temp_states_allocated) {
        fprintf(stderr, "destroy_state: state doesn't exist\n");
        exit(1);
    }

    temp_array[i] = FALSE;
}


/****************************************************************************/
/**                                                                        **/
/**  This function determines how good the specified state may turn out to **/
/**  be for the specified player.  It does this by looking ahead level     **/
/**  moves.  It is assumed that both the specified player and the opponent **/
/**  may make the best move possible.  Since this function is recursive,   **/
/**  depth keeps track of the current depth of recursion.  so_far keeps    **/
/**  track of the best worst goodness (if you dig my meaning) so far, so   **/
/**  that if a goodness worse than that crops up, the game tree can be     **/
/**  pruned to avoid searching unneccessary paths (this technique is       **/
/**  called alpha-beta cutoff).                                            **/
/**                                                                        **/
/**  The specified poll function (if any) is called at the appropriate     **/
/**  level.                                                                **/
/**                                                                        **/
/**  The worst goodness that the specified state can produce in the number **/
/**  of moves (levels) searched is returned.  This is the best the         **/
/**  specified player can hope to achieve with this state (since it is     **/
/**  assumed that the opponent will make the best moves possible).         **/
/**                                                                        **/
/****************************************************************************/

static long
worst_goodness(Game_state *state, long player, long level, long depth,
			   long so_far)
{
    long i, goodness, best;
    Game_state *temp_state;

    if (poll_function && level-depth==poll_level) (*poll_function)();
    if (level == depth)
        return goodness_of(state, player);
    else {
        /* Assume it is the other player's turn. */
        best = -2000000;
        for(i=0; i<size_x; i++) {
            temp_state = copy_state(state);
            if (!drop_piece(temp_state, other(player), i)) {
                destroy_state(temp_state);
                continue;
            }
            if (winner(temp_state, other(player)))
                goodness = 1000000 - depth;
            else
                goodness = worst_goodness(temp_state, other(player), level,
                                                depth+1, best);
            if (goodness > best)
                best = goodness;
            destroy_state(temp_state);
            if (-best < so_far) break;
        }

        /* What's good for the other player is bad for this one. */
        return -best;
    }
}


/****************************************************************************/
/**                                                                        **/
/**  A safer version of malloc().                                          **/
/**                                                                        **/
/****************************************************************************/

void *
emalloc(unsigned int n)
{
    void *ptr;

    ptr = (void *) malloc(n);
    if ( ptr == NULL ) {
        fprintf(stderr,"c4: emalloc() - Can't allocate %d bytes.\n", n);
        exit(1);
    }
    return ptr;
}