1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/*
* Copyright (c) 1994 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and the Network Research Group at
* Lawrence Berkeley Laboratory.
* 4. Neither the name of the University nor of the Laboratory may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* This code was originally derived from a cellb reference encoder from
* Sun Microsystems with the following copyright:
*
* Copyright (c) Sun Microsystems, Inc. 1992, 1993. All rights reserved.
*
* License is granted to copy, to use, and to make and to use derivative
* works for research and evaluation purposes, provided that Sun Microsystems is
* acknowledged in all documentation pertaining to any such copy or derivative
* work. Sun Microsystems grants no other licenses expressed or implied. The
* Sun Microsystems trade name should not be used in any advertising without
* its written permission.
*
* SUN MICROSYSTEMS MERCHANTABILITY OF THIS SOFTWARE OR THE SUITABILITY OF
* THIS SOFTWARE FOR ANY PARTICULAR PURPOSE. The software is provided "as is"
* without express or implied warranty of any kind.
*
* These notices must be retained in any copies of any part of this software.
*/
static const char rcsid[] =
"@(#) $Header: /cs/research/mice/starship/src/local/CVS_repository/vic/encoder-cellb.cc,v 1.1.1.1 1998/02/18 18:03:26 ucacsva Exp $ (LBL)";
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "inet.h"
#include "net.h"
#include "rtp.h"
#include "bsd-endian.h"
#include "crdef.h"
#include "transmitter.h"
#include "module.h"
#define MAXSKIP 32
extern "C" u_char cellb_yyremap[];
extern "C" u_char cellb_uvremap[];
#define HLEN (sizeof(rtphdr) + sizeof(cellbhdr))
class CellbEncoder : public TransmitterModule {
public:
CellbEncoder();
~CellbEncoder();
virtual int consume(const VideoFrame*);
private:
void size(int w, int h);
int diff(const u_char blk1[4], const u_char blk2[4]) const;
void send(Transmitter::pktbuf* pb, int sync, int x, int y, int cc);
u_int encode_cell(const u_char* lum, const u_char* chm, int stride);
int nw_;
int nh_;
/*
* Tables for CellB.
*/
u_char* divtable_[17];/*XXX*/
u_char dtbl_[34816];
};
static class CellbEncoderMatcher : public Matcher {
public:
CellbEncoderMatcher() : Matcher("module") {}
TclObject* match(const char* fmt) {
if (strcasecmp(fmt, "cellb") == 0)
return (new CellbEncoder);
return (0);
}
} encoder_matcher_cellb;
void CellbEncoder::send(Transmitter::pktbuf* pb, int sync,
int x, int y, int cc)
{
pb->iov[0].iov_len = HLEN;
pb->iov[1].iov_len = cc;
rtphdr* rh = (rtphdr*)pb->hdr;
if (sync)
rh->rh_flags |= htons(RTP_M);
cellbhdr* ch = (cellbhdr*)(rh + 1);
ch->width = nw_;
ch->height = nh_;
ch->x = htons(x);
ch->y = htons(y);
tx_->send(pb);
}
/*
* Returns 32-bit encoded cell in host order.
*/
u_int CellbEncoder::encode_cell(const u_char* lum,
const u_char* chm,
int stride)
{
u_int mask = 0xff00ff;
u_int q0 = *(u_int *)lum;
u_int q1 = *(u_int *)&lum[stride];
u_int q2 = *(u_int *)&lum[stride << 1];
u_int q3 = *(u_int *)&lum[(stride << 1) + stride];
/*
* Compute the mean of the luminance component.
* Do some of the adds in parallel.
*/
u_int ymean = q0 & mask;
ymean += (q0 >> 8) & mask;
ymean += q1 & mask;
ymean += (q1 >> 8) & mask;
ymean += q2 & mask;
ymean += (q2 >> 8) & mask;
ymean += q3 & mask;
ymean += (q3 >> 8) & mask;
ymean = (ymean & 0xffff) + (ymean >> 16);
u_int sum = ymean;
ymean >>= 4;
/*
.... next the bit mask for the tile is generated. for
the first fifteen bits this is done by comparing each
luminance value to the mean. if that value is greater
than the mean the correnponding bit in the mask is set,
otherwise the counter for the number of zeros in the mask,
tmp, is incremented. also, the values of those pixels less
than the mean are accumulted in ylo ....
*/
mask = 0;
int ylo = 0;
int nb = 0;
#define ACCUMULATE(pix, mean, n, slow, mask, pos) \
{ \
int t = (pix) & 0xff; \
t -= (mean); \
int neg = t >> 31; \
(slow) += neg & t; \
(slow) += neg & (mean); \
neg &= 1; \
(n) += neg; \
(mask) |= neg << (pos); \
}
#if BYTE_ORDER == LITTLE_ENDIAN
#define BYTE(b, n) ((b) >> (8 * (3 - (n))))
#else
#define BYTE(b, n) ((b) >> (8 * (n)))
#endif
ACCUMULATE(BYTE(q3, 0), ymean, nb, ylo, mask, 0);
ACCUMULATE(BYTE(q3, 1), ymean, nb, ylo, mask, 1);
ACCUMULATE(BYTE(q3, 2), ymean, nb, ylo, mask, 2);
ACCUMULATE(BYTE(q3, 3), ymean, nb, ylo, mask, 3);
ACCUMULATE(BYTE(q2, 0), ymean, nb, ylo, mask, 4);
ACCUMULATE(BYTE(q2, 1), ymean, nb, ylo, mask, 5);
ACCUMULATE(BYTE(q2, 2), ymean, nb, ylo, mask, 6);
ACCUMULATE(BYTE(q2, 3), ymean, nb, ylo, mask, 7);
ACCUMULATE(BYTE(q1, 0), ymean, nb, ylo, mask, 8);
ACCUMULATE(BYTE(q1, 1), ymean, nb, ylo, mask, 9);
ACCUMULATE(BYTE(q1, 2), ymean, nb, ylo, mask, 10);
ACCUMULATE(BYTE(q1, 3), ymean, nb, ylo, mask, 11);
ACCUMULATE(BYTE(q0, 0), ymean, nb, ylo, mask, 12);
ACCUMULATE(BYTE(q0, 1), ymean, nb, ylo, mask, 13);
ACCUMULATE(BYTE(q0, 2), ymean, nb, ylo, mask, 14);
ACCUMULATE(BYTE(q0, 3), ymean, nb, ylo, mask, 15);
#undef BYTE
#undef ACCUMULATE
int yhi = sum - ylo;
yhi = divtable_[16 - nb][yhi];
ylo = divtable_[nb][ylo];
/*
* Normalize bitmask. Note mask is
* computed in negative logic.
*/
if (mask & 0x8000) {
mask ^= 0xffff;
ylo <<= 8;
ylo |= yhi;
} else
ylo |= yhi << 8;
mask <<= 16;
/*
.... the high mean and low mean values are finally quantized
by the cellb_yyremap[] table, the Y/Y vector codeword byte, the
U/V codeword byte and the bitmask are then assembled into
a Normal Cell bytecode and returned form the routine ....
*/
mask |= cellb_yyremap[ylo];
/*
* Simply downsample the chroma components, then
* vector quantize according to the CellB spec.
* (The encoder in nv computes a mean of the 16
* chroma components. This is probably not a good
* idea first because it's computationally more
* expensive and second because it doesn't buy
* much. This is equivalent to placing a low-pass
* (rectangular) filter in front of the downsampling
* stage. But the chroma signal in most cases
* doesn't have much of a high frequency component.
* Try visually comparing this coder with nv's.
* You will probably see little difference.)
*/
int u = chm[0];
int v = chm[framesize_ >> 1];
mask |= cellb_uvremap[u >> 2 << 6 | v >> 2] << 8;
return (mask);
}
void CellbEncoder::size(int w, int h)
{
Module::size(w, h);
nw_ = htons(w);
nh_ = htons(h);
}
CellbEncoder::CellbEncoder() : TransmitterModule(FT_YUV_422)
{
/* .... initialize division table .... */
u_char* p = dtbl_;
divtable_[0] = p;
for (int i = 1; i <= 16; i++) {
divtable_[i] = p;
for (int j = 0; j < 256*i; j++)
*p++ = j / i;
}
width_ = 0;
height_ = 0;
nw_ = 0;
nh_ = 0;
}
CellbEncoder::~CellbEncoder()
{
}
/*
* Encode a cellb frame. this code can be improved by pruning
* skip-code runs off the front and back of the frame.
*/
int CellbEncoder::consume(const VideoFrame* vf)
{
if (!samesize(vf))
size(vf->width_, vf->height_);
YuvFrame* p = (YuvFrame*)vf;
tx_->flush();
Transmitter::pktbuf* pb = tx_->alloc(p->ts_, RTP_PT_CELLB);
u_char* op = (u_char*)pb->iov[1].iov_base;
u_char* ep = op + tx_->mtu() - HLEN;
int x0 = 0;
int y0 = 0;
int cc = 0;
int nb = 0;
int nskip = 0;
int stride = 3 * width_;
int blkbase = 0;
/*
* Compute width and height in cells.
*/
int w = width_ >> 2;
int h = height_ >> 2;
/*
* Loop over 4x4 cells, encoding those indicated by the 16x16
* CR vector. Because there are 4 cells per 16x16 replenishment
* block, the blocks are incremented only every other interation
* of each loop.
*/
const u_int8_t* lum = p->bp_;
const u_int8_t* chm = lum + framesize_;
const u_int8_t* crvec = p->crvec_;
for (int y = 0; y < h; ) {
int blkno = blkbase;
for (int x = 0; x < w; ) {
if (op + 2*5 >= ep) {
/*XXX sanity*/
if (cc != op - (u_char*)pb->iov[1].iov_base)
abort();
nb += cc + HLEN;
send(pb, 0, x0, y0, cc);
cc = 0;
pb = tx_->alloc(p->ts_, RTP_PT_CELLB);
op = (u_char*)pb->iov[1].iov_base;
ep = op + tx_->mtu() - HLEN;
x0 = x;
y0 = y;
}
if (crvec[blkno] & CR_SEND) {
/*
* cell has seen recent change. send it.
*/
if (nskip > 0) {
++cc;
*op++ = 0x80 | (nskip - 1);
nskip = 0;
}
int code = encode_cell(lum, chm, width_);
op[0] = code >> 24;
op[1] = code >> 16;
op[2] = code >> 8;
op[3] = code;
op += 4;
cc += 4;
} else {
if (++nskip >= MAXSKIP) {
++cc;
*op++ = 0x80 | (MAXSKIP - 1);
nskip = 0;
}
}
if ((++x & 3) == 0)
++blkno;
lum += 4;
chm += 2;
}
if ((++y & 3) == 0)
blkbase += w >> 2;
lum += stride;
chm += stride >> 1;
}
nb += cc;
send(pb, 1, x0, y0, cc);
return (nb);
}
|