1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.6"/>
<title>ViennaCL - The Vienna Computing Library: viennacl/linalg/cuda/amg_operations.hpp Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
$(window).load(resizeHeight);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">ViennaCL - The Vienna Computing Library
 <span id="projectnumber">1.7.1</span>
</div>
<div id="projectbrief">Free open-source GPU-accelerated linear algebra and solver library.</div>
</td>
<td> <div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.6 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
<div id="nav-tree">
<div id="nav-tree-contents">
<div id="nav-sync" class="sync"></div>
</div>
</div>
<div id="splitbar" style="-moz-user-select:none;"
class="ui-resizable-handle">
</div>
</div>
<script type="text/javascript">
$(document).ready(function(){initNavTree('cuda_2amg__operations_8hpp_source.html','');});
</script>
<div id="doc-content">
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark"> </span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark"> </span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark"> </span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark"> </span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark"> </span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark"> </span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark"> </span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark"> </span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark"> </span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(9)"><span class="SelectionMark"> </span>Friends</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(10)"><span class="SelectionMark"> </span>Macros</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(11)"><span class="SelectionMark"> </span>Pages</a></div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div class="header">
<div class="headertitle">
<div class="title">amg_operations.hpp</div> </div>
</div><!--header-->
<div class="contents">
<a href="cuda_2amg__operations_8hpp.html">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span> <span class="preprocessor">#ifndef VIENNACL_LINALG_CUDA_AMG_OPERATIONS_HPP</span></div>
<div class="line"><a name="l00002"></a><span class="lineno"> 2</span> <span class="preprocessor">#define VIENNACL_LINALG_CUDA_AMG_OPERATIONS_HPP</span></div>
<div class="line"><a name="l00003"></a><span class="lineno"> 3</span> </div>
<div class="line"><a name="l00004"></a><span class="lineno"> 4</span> <span class="comment">/* =========================================================================</span></div>
<div class="line"><a name="l00005"></a><span class="lineno"> 5</span> <span class="comment"> Copyright (c) 2010-2016, Institute for Microelectronics,</span></div>
<div class="line"><a name="l00006"></a><span class="lineno"> 6</span> <span class="comment"> Institute for Analysis and Scientific Computing,</span></div>
<div class="line"><a name="l00007"></a><span class="lineno"> 7</span> <span class="comment"> TU Wien.</span></div>
<div class="line"><a name="l00008"></a><span class="lineno"> 8</span> <span class="comment"> Portions of this software are copyright by UChicago Argonne, LLC.</span></div>
<div class="line"><a name="l00009"></a><span class="lineno"> 9</span> <span class="comment"></span></div>
<div class="line"><a name="l00010"></a><span class="lineno"> 10</span> <span class="comment"> -----------------</span></div>
<div class="line"><a name="l00011"></a><span class="lineno"> 11</span> <span class="comment"> ViennaCL - The Vienna Computing Library</span></div>
<div class="line"><a name="l00012"></a><span class="lineno"> 12</span> <span class="comment"> -----------------</span></div>
<div class="line"><a name="l00013"></a><span class="lineno"> 13</span> <span class="comment"></span></div>
<div class="line"><a name="l00014"></a><span class="lineno"> 14</span> <span class="comment"> Project Head: Karl Rupp rupp@iue.tuwien.ac.at</span></div>
<div class="line"><a name="l00015"></a><span class="lineno"> 15</span> <span class="comment"></span></div>
<div class="line"><a name="l00016"></a><span class="lineno"> 16</span> <span class="comment"> (A list of authors and contributors can be found in the PDF manual)</span></div>
<div class="line"><a name="l00017"></a><span class="lineno"> 17</span> <span class="comment"></span></div>
<div class="line"><a name="l00018"></a><span class="lineno"> 18</span> <span class="comment"> License: MIT (X11), see file LICENSE in the base directory</span></div>
<div class="line"><a name="l00019"></a><span class="lineno"> 19</span> <span class="comment">============================================================================= */</span></div>
<div class="line"><a name="l00020"></a><span class="lineno"> 20</span> </div>
<div class="line"><a name="l00025"></a><span class="lineno"> 25</span> <span class="preprocessor">#include <cstdlib></span></div>
<div class="line"><a name="l00026"></a><span class="lineno"> 26</span> <span class="preprocessor">#include <cmath></span></div>
<div class="line"><a name="l00027"></a><span class="lineno"> 27</span> <span class="preprocessor">#include "<a class="code" href="amg__base_8hpp.html">viennacl/linalg/detail/amg/amg_base.hpp</a>"</span></div>
<div class="line"><a name="l00028"></a><span class="lineno"> 28</span> </div>
<div class="line"><a name="l00029"></a><span class="lineno"> 29</span> <span class="preprocessor">#include <map></span></div>
<div class="line"><a name="l00030"></a><span class="lineno"> 30</span> <span class="preprocessor">#include <set></span></div>
<div class="line"><a name="l00031"></a><span class="lineno"> 31</span> </div>
<div class="line"><a name="l00032"></a><span class="lineno"> 32</span> <span class="keyword">namespace </span>viennacl</div>
<div class="line"><a name="l00033"></a><span class="lineno"> 33</span> {</div>
<div class="line"><a name="l00034"></a><span class="lineno"> 34</span> <span class="keyword">namespace </span>linalg</div>
<div class="line"><a name="l00035"></a><span class="lineno"> 35</span> {</div>
<div class="line"><a name="l00036"></a><span class="lineno"> 36</span> <span class="keyword">namespace </span>cuda</div>
<div class="line"><a name="l00037"></a><span class="lineno"> 37</span> {</div>
<div class="line"><a name="l00038"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html"> 38</a></span> <span class="keyword">namespace </span>amg</div>
<div class="line"><a name="l00039"></a><span class="lineno"> 39</span> {</div>
<div class="line"><a name="l00040"></a><span class="lineno"> 40</span> </div>
<div class="line"><a name="l00041"></a><span class="lineno"> 41</span> </div>
<div class="line"><a name="l00043"></a><span class="lineno"> 43</span> </div>
<div class="line"><a name="l00044"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a2d8aec3a05feaaff512af0bcf5e94ccd"> 44</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a2d8aec3a05feaaff512af0bcf5e94ccd">amg_influence_trivial_kernel</a>(</div>
<div class="line"><a name="l00045"></a><span class="lineno"> 45</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> * row_indices,</div>
<div class="line"><a name="l00046"></a><span class="lineno"> 46</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> * column_indices,</div>
<div class="line"><a name="l00047"></a><span class="lineno"> 47</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl_1_1traits.html#aa756f5d6820722094cae0d8b9bb6d5e2">size1</a>,</div>
<div class="line"><a name="l00048"></a><span class="lineno"> 48</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> nnz,</div>
<div class="line"><a name="l00049"></a><span class="lineno"> 49</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *influences_row,</div>
<div class="line"><a name="l00050"></a><span class="lineno"> 50</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *influences_id,</div>
<div class="line"><a name="l00051"></a><span class="lineno"> 51</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *influences_values</div>
<div class="line"><a name="l00052"></a><span class="lineno"> 52</span>  )</div>
<div class="line"><a name="l00053"></a><span class="lineno"> 53</span> {</div>
<div class="line"><a name="l00054"></a><span class="lineno"> 54</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_id = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00055"></a><span class="lineno"> 55</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_size = gridDim.x * blockDim.x;</div>
<div class="line"><a name="l00056"></a><span class="lineno"> 56</span> </div>
<div class="line"><a name="l00057"></a><span class="lineno"> 57</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = global_id; i < <a class="code" href="namespaceviennacl_1_1traits.html#aa756f5d6820722094cae0d8b9bb6d5e2">size1</a>; i += global_size)</div>
<div class="line"><a name="l00058"></a><span class="lineno"> 58</span>  {</div>
<div class="line"><a name="l00059"></a><span class="lineno"> 59</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> tmp = row_indices[i];</div>
<div class="line"><a name="l00060"></a><span class="lineno"> 60</span>  influences_row[i] = tmp;</div>
<div class="line"><a name="l00061"></a><span class="lineno"> 61</span>  influences_values[i] = row_indices[i+1] - tmp;</div>
<div class="line"><a name="l00062"></a><span class="lineno"> 62</span>  }</div>
<div class="line"><a name="l00063"></a><span class="lineno"> 63</span> </div>
<div class="line"><a name="l00064"></a><span class="lineno"> 64</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = global_id; i < nnz; i += global_size)</div>
<div class="line"><a name="l00065"></a><span class="lineno"> 65</span>  influences_id[i] = column_indices[i];</div>
<div class="line"><a name="l00066"></a><span class="lineno"> 66</span> </div>
<div class="line"><a name="l00067"></a><span class="lineno"> 67</span>  <span class="keywordflow">if</span> (global_id == 0)</div>
<div class="line"><a name="l00068"></a><span class="lineno"> 68</span>  influences_row[<a class="code" href="namespaceviennacl_1_1traits.html#aa756f5d6820722094cae0d8b9bb6d5e2">size1</a>] = row_indices[<a class="code" href="namespaceviennacl_1_1traits.html#aa756f5d6820722094cae0d8b9bb6d5e2">size1</a>];</div>
<div class="line"><a name="l00069"></a><span class="lineno"> 69</span> }</div>
<div class="line"><a name="l00070"></a><span class="lineno"> 70</span> </div>
<div class="line"><a name="l00071"></a><span class="lineno"> 71</span> </div>
<div class="line"><a name="l00073"></a><span class="lineno"> 73</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00074"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac1b1f9a0666d83c46ee9b4c5e25cd2c6"> 74</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac1b1f9a0666d83c46ee9b4c5e25cd2c6">amg_influence_trivial</a>(<a class="code" href="classviennacl_1_1compressed__matrix.html">compressed_matrix<NumericT></a> <span class="keyword">const</span> & A,</div>
<div class="line"><a name="l00075"></a><span class="lineno"> 75</span>  <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html">viennacl::linalg::detail::amg::amg_level_context</a> & amg_context,</div>
<div class="line"><a name="l00076"></a><span class="lineno"> 76</span>  <a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html">viennacl::linalg::amg_tag</a> & tag)</div>
<div class="line"><a name="l00077"></a><span class="lineno"> 77</span> {</div>
<div class="line"><a name="l00078"></a><span class="lineno"> 78</span>  (void)tag;</div>
<div class="line"><a name="l00079"></a><span class="lineno"> 79</span> </div>
<div class="line"><a name="l00080"></a><span class="lineno"> 80</span>  amg_influence_trivial_kernel<<<128, 128>>>(viennacl::cuda_arg<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#af71dec61a70e8df4f78a527aa989a106">handle1</a>().cuda_handle()),</div>
<div class="line"><a name="l00081"></a><span class="lineno"> 81</span>  viennacl::cuda_arg<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a91f5145351151a66f916bdc3901206f2">handle2</a>().cuda_handle()),</div>
<div class="line"><a name="l00082"></a><span class="lineno"> 82</span>  static_cast<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>()),</div>
<div class="line"><a name="l00083"></a><span class="lineno"> 83</span>  static_cast<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#ae69ca21ded644fdd0c7a5168011b13ed">nnz</a>()),</div>
<div class="line"><a name="l00084"></a><span class="lineno"> 84</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#ad537babcb184069cc920bfb2140860de">influence_jumper_</a>),</div>
<div class="line"><a name="l00085"></a><span class="lineno"> 85</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a262b6f406db2b16b53936b8759f83d05">influence_ids_</a>),</div>
<div class="line"><a name="l00086"></a><span class="lineno"> 86</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a757fe2a72ed0d9eb3649ecda1c83129e">influence_values_</a>)</div>
<div class="line"><a name="l00087"></a><span class="lineno"> 87</span>  );</div>
<div class="line"><a name="l00088"></a><span class="lineno"> 88</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"amg_influence_trivial_kernel"</span>);</div>
<div class="line"><a name="l00089"></a><span class="lineno"> 89</span> }</div>
<div class="line"><a name="l00090"></a><span class="lineno"> 90</span> </div>
<div class="line"><a name="l00091"></a><span class="lineno"> 91</span> </div>
<div class="line"><a name="l00093"></a><span class="lineno"> 93</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00094"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ad251eca20f99e452229d76237d791a0e"> 94</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ad251eca20f99e452229d76237d791a0e">amg_influence_advanced</a>(<a class="code" href="classviennacl_1_1compressed__matrix.html">compressed_matrix<NumericT></a> <span class="keyword">const</span> & A,</div>
<div class="line"><a name="l00095"></a><span class="lineno"> 95</span>  <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html">viennacl::linalg::detail::amg::amg_level_context</a> & amg_context,</div>
<div class="line"><a name="l00096"></a><span class="lineno"> 96</span>  <a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html">viennacl::linalg::amg_tag</a> & tag)</div>
<div class="line"><a name="l00097"></a><span class="lineno"> 97</span> {</div>
<div class="line"><a name="l00098"></a><span class="lineno"> 98</span>  <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">"not implemented yet"</span>);</div>
<div class="line"><a name="l00099"></a><span class="lineno"> 99</span> }</div>
<div class="line"><a name="l00100"></a><span class="lineno"> 100</span> </div>
<div class="line"><a name="l00102"></a><span class="lineno"> 102</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00103"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a28e3755d2f30432e39bb842732129098"> 103</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a28e3755d2f30432e39bb842732129098">amg_influence</a>(<a class="code" href="classviennacl_1_1compressed__matrix.html">compressed_matrix<NumericT></a> <span class="keyword">const</span> & A,</div>
<div class="line"><a name="l00104"></a><span class="lineno"> 104</span>  <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html">viennacl::linalg::detail::amg::amg_level_context</a> & amg_context,</div>
<div class="line"><a name="l00105"></a><span class="lineno"> 105</span>  <a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html">viennacl::linalg::amg_tag</a> & tag)</div>
<div class="line"><a name="l00106"></a><span class="lineno"> 106</span> {</div>
<div class="line"><a name="l00107"></a><span class="lineno"> 107</span>  <span class="comment">// TODO: dispatch based on influence tolerance provided</span></div>
<div class="line"><a name="l00108"></a><span class="lineno"> 108</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac1b1f9a0666d83c46ee9b4c5e25cd2c6">amg_influence_trivial</a>(A, amg_context, tag);</div>
<div class="line"><a name="l00109"></a><span class="lineno"> 109</span> }</div>
<div class="line"><a name="l00110"></a><span class="lineno"> 110</span> </div>
<div class="line"><a name="l00115"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a258c31de37f3c9831443b5f2ea5f4b19"> 115</a></span> <span class="keyword">inline</span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a258c31de37f3c9831443b5f2ea5f4b19">enumerate_coarse_points</a>(<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html">viennacl::linalg::detail::amg::amg_level_context</a> & amg_context)</div>
<div class="line"><a name="l00116"></a><span class="lineno"> 116</span> {</div>
<div class="line"><a name="l00117"></a><span class="lineno"> 117</span>  <a class="code" href="classviennacl_1_1backend_1_1typesafe__host__array.html">viennacl::backend::typesafe_host_array<unsigned int></a> point_types(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">point_types_</a>.<a class="code" href="classviennacl_1_1vector__base.html#a64e98aea5aa298ad63e3832a04c19648">handle</a>(), amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">point_types_</a>.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>());</div>
<div class="line"><a name="l00118"></a><span class="lineno"> 118</span>  <a class="code" href="classviennacl_1_1backend_1_1typesafe__host__array.html">viennacl::backend::typesafe_host_array<unsigned int></a> coarse_ids(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa647069a4102267171e395fcfd10e7ac">coarse_id_</a>.<a class="code" href="classviennacl_1_1vector__base.html#a64e98aea5aa298ad63e3832a04c19648">handle</a>(), amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa647069a4102267171e395fcfd10e7ac">coarse_id_</a>.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>());</div>
<div class="line"><a name="l00119"></a><span class="lineno"> 119</span>  <a class="code" href="namespaceviennacl_1_1backend.html#a62854cfd6f04404b274f8ede36f63e2d">viennacl::backend::memory_read</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">point_types_</a>.<a class="code" href="classviennacl_1_1vector__base.html#a64e98aea5aa298ad63e3832a04c19648">handle</a>(), 0, point_types.<a class="code" href="classviennacl_1_1backend_1_1mem__handle.html#ac8373f0d899b89c843e14de4cb7a1c4a">raw_size</a>(), point_types.get());</div>
<div class="line"><a name="l00120"></a><span class="lineno"> 120</span>  <a class="code" href="namespaceviennacl_1_1backend.html#a62854cfd6f04404b274f8ede36f63e2d">viennacl::backend::memory_read</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa647069a4102267171e395fcfd10e7ac">coarse_id_</a>.<a class="code" href="classviennacl_1_1vector__base.html#a64e98aea5aa298ad63e3832a04c19648">handle</a>(), 0, coarse_ids.<a class="code" href="classviennacl_1_1backend_1_1mem__handle.html#ac8373f0d899b89c843e14de4cb7a1c4a">raw_size</a>(), coarse_ids.get());</div>
<div class="line"><a name="l00121"></a><span class="lineno"> 121</span> </div>
<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> coarse_id = 0;</div>
<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>  <span class="keywordflow">for</span> (std::size_t i=0; i<amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">point_types_</a>.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>(); ++i)</div>
<div class="line"><a name="l00124"></a><span class="lineno"> 124</span>  {</div>
<div class="line"><a name="l00125"></a><span class="lineno"> 125</span>  coarse_ids.set(i, coarse_id);</div>
<div class="line"><a name="l00126"></a><span class="lineno"> 126</span>  <span class="keywordflow">if</span> (point_types[i] == <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637afbc2c39efc86491c26c2401d06f2cc8a">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_COARSE</a>)</div>
<div class="line"><a name="l00127"></a><span class="lineno"> 127</span>  ++coarse_id;</div>
<div class="line"><a name="l00128"></a><span class="lineno"> 128</span>  }</div>
<div class="line"><a name="l00129"></a><span class="lineno"> 129</span> </div>
<div class="line"><a name="l00130"></a><span class="lineno"> 130</span>  amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aac5a6ef480cf58fb8fa490760bb94e35">num_coarse_</a> = coarse_id;</div>
<div class="line"><a name="l00131"></a><span class="lineno"> 131</span> </div>
<div class="line"><a name="l00132"></a><span class="lineno"> 132</span>  <a class="code" href="namespaceviennacl_1_1backend.html#a06bdedb2bc72dc1922cada91e9bbbd61">viennacl::backend::memory_write</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa647069a4102267171e395fcfd10e7ac">coarse_id_</a>.<a class="code" href="classviennacl_1_1vector__base.html#a64e98aea5aa298ad63e3832a04c19648">handle</a>(), 0, coarse_ids.<a class="code" href="classviennacl_1_1backend_1_1mem__handle.html#ac8373f0d899b89c843e14de4cb7a1c4a">raw_size</a>(), coarse_ids.get());</div>
<div class="line"><a name="l00133"></a><span class="lineno"> 133</span> }</div>
<div class="line"><a name="l00134"></a><span class="lineno"> 134</span> </div>
<div class="line"><a name="l00136"></a><span class="lineno"> 136</span> </div>
<div class="line"><a name="l00138"></a><span class="lineno"> 138</span> <span class="keyword">template</span><<span class="keyword">typename</span> IndexT></div>
<div class="line"><a name="l00139"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ae34c65a23e53597faff3357364fc4c2d"> 139</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ae34c65a23e53597faff3357364fc4c2d">amg_pmis2_init_workdata</a>(IndexT *work_state,</div>
<div class="line"><a name="l00140"></a><span class="lineno"> 140</span>  IndexT *work_random,</div>
<div class="line"><a name="l00141"></a><span class="lineno"> 141</span>  IndexT *work_index,</div>
<div class="line"><a name="l00142"></a><span class="lineno"> 142</span>  IndexT <span class="keyword">const</span> *point_types,</div>
<div class="line"><a name="l00143"></a><span class="lineno"> 143</span>  IndexT <span class="keyword">const</span> *random_weights,</div>
<div class="line"><a name="l00144"></a><span class="lineno"> 144</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>)</div>
<div class="line"><a name="l00145"></a><span class="lineno"> 145</span> {</div>
<div class="line"><a name="l00146"></a><span class="lineno"> 146</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_id = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00147"></a><span class="lineno"> 147</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_size = gridDim.x * blockDim.x;</div>
<div class="line"><a name="l00148"></a><span class="lineno"> 148</span> </div>
<div class="line"><a name="l00149"></a><span class="lineno"> 149</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = global_id; i < <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>; i += global_size)</div>
<div class="line"><a name="l00150"></a><span class="lineno"> 150</span>  {</div>
<div class="line"><a name="l00151"></a><span class="lineno"> 151</span>  <span class="keywordflow">switch</span> (point_types[i])</div>
<div class="line"><a name="l00152"></a><span class="lineno"> 152</span>  {</div>
<div class="line"><a name="l00153"></a><span class="lineno"> 153</span>  <span class="keywordflow">case</span> <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637adf77f4d874aa905e58b1d01448d599b7">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_UNDECIDED</a>: work_state[i] = 1; <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00154"></a><span class="lineno"> 154</span>  <span class="keywordflow">case</span> <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637af803b8af4a6abdaf3d0fd08c18da6de6">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_FINE</a>: work_state[i] = 0; <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00155"></a><span class="lineno"> 155</span>  <span class="keywordflow">case</span> <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637afbc2c39efc86491c26c2401d06f2cc8a">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_COARSE</a>: work_state[i] = 2; <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00156"></a><span class="lineno"> 156</span>  <span class="keywordflow">default</span>:</div>
<div class="line"><a name="l00157"></a><span class="lineno"> 157</span>  <span class="keywordflow">break</span>; <span class="comment">// do nothing</span></div>
<div class="line"><a name="l00158"></a><span class="lineno"> 158</span>  }</div>
<div class="line"><a name="l00159"></a><span class="lineno"> 159</span> </div>
<div class="line"><a name="l00160"></a><span class="lineno"> 160</span>  work_random[i] = random_weights[i];</div>
<div class="line"><a name="l00161"></a><span class="lineno"> 161</span>  work_index[i] = i;</div>
<div class="line"><a name="l00162"></a><span class="lineno"> 162</span>  }</div>
<div class="line"><a name="l00163"></a><span class="lineno"> 163</span> }</div>
<div class="line"><a name="l00164"></a><span class="lineno"> 164</span> </div>
<div class="line"><a name="l00166"></a><span class="lineno"> 166</span> <span class="keyword">template</span><<span class="keyword">typename</span> IndexT></div>
<div class="line"><a name="l00167"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac6522518fb686a2fe0bd3db0d34a3fcd"> 167</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac6522518fb686a2fe0bd3db0d34a3fcd">amg_pmis2_max_neighborhood</a>(IndexT <span class="keyword">const</span> *work_state,</div>
<div class="line"><a name="l00168"></a><span class="lineno"> 168</span>  IndexT <span class="keyword">const</span> *work_random,</div>
<div class="line"><a name="l00169"></a><span class="lineno"> 169</span>  IndexT <span class="keyword">const</span> *work_index,</div>
<div class="line"><a name="l00170"></a><span class="lineno"> 170</span>  IndexT *work_state2,</div>
<div class="line"><a name="l00171"></a><span class="lineno"> 171</span>  IndexT *work_random2,</div>
<div class="line"><a name="l00172"></a><span class="lineno"> 172</span>  IndexT *work_index2,</div>
<div class="line"><a name="l00173"></a><span class="lineno"> 173</span>  IndexT <span class="keyword">const</span> *influences_row,</div>
<div class="line"><a name="l00174"></a><span class="lineno"> 174</span>  IndexT <span class="keyword">const</span> *influences_id,</div>
<div class="line"><a name="l00175"></a><span class="lineno"> 175</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>)</div>
<div class="line"><a name="l00176"></a><span class="lineno"> 176</span> {</div>
<div class="line"><a name="l00177"></a><span class="lineno"> 177</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_id = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00178"></a><span class="lineno"> 178</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_size = gridDim.x * blockDim.x;</div>
<div class="line"><a name="l00179"></a><span class="lineno"> 179</span> </div>
<div class="line"><a name="l00180"></a><span class="lineno"> 180</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = global_id; i < <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>; i += global_size)</div>
<div class="line"><a name="l00181"></a><span class="lineno"> 181</span>  {</div>
<div class="line"><a name="l00182"></a><span class="lineno"> 182</span>  <span class="comment">// load</span></div>
<div class="line"><a name="l00183"></a><span class="lineno"> 183</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> state = work_state[i];</div>
<div class="line"><a name="l00184"></a><span class="lineno"> 184</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> random = work_random[i];</div>
<div class="line"><a name="l00185"></a><span class="lineno"> 185</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> index = work_index[i];</div>
<div class="line"><a name="l00186"></a><span class="lineno"> 186</span> </div>
<div class="line"><a name="l00187"></a><span class="lineno"> 187</span>  <span class="comment">// max</span></div>
<div class="line"><a name="l00188"></a><span class="lineno"> 188</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> j_stop = influences_row[i + 1];</div>
<div class="line"><a name="l00189"></a><span class="lineno"> 189</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> j = influences_row[i]; j < j_stop; ++j)</div>
<div class="line"><a name="l00190"></a><span class="lineno"> 190</span>  {</div>
<div class="line"><a name="l00191"></a><span class="lineno"> 191</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> influenced_point_id = influences_id[j];</div>
<div class="line"><a name="l00192"></a><span class="lineno"> 192</span> </div>
<div class="line"><a name="l00193"></a><span class="lineno"> 193</span>  <span class="comment">// lexigraphical triple-max (not particularly pretty, but does the job):</span></div>
<div class="line"><a name="l00194"></a><span class="lineno"> 194</span>  <span class="keywordflow">if</span> (state < work_state[influenced_point_id])</div>
<div class="line"><a name="l00195"></a><span class="lineno"> 195</span>  {</div>
<div class="line"><a name="l00196"></a><span class="lineno"> 196</span>  state = work_state[influenced_point_id];</div>
<div class="line"><a name="l00197"></a><span class="lineno"> 197</span>  random = work_random[influenced_point_id];</div>
<div class="line"><a name="l00198"></a><span class="lineno"> 198</span>  index = work_index[influenced_point_id];</div>
<div class="line"><a name="l00199"></a><span class="lineno"> 199</span>  }</div>
<div class="line"><a name="l00200"></a><span class="lineno"> 200</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span> (state == work_state[influenced_point_id])</div>
<div class="line"><a name="l00201"></a><span class="lineno"> 201</span>  {</div>
<div class="line"><a name="l00202"></a><span class="lineno"> 202</span>  <span class="keywordflow">if</span> (random < work_random[influenced_point_id])</div>
<div class="line"><a name="l00203"></a><span class="lineno"> 203</span>  {</div>
<div class="line"><a name="l00204"></a><span class="lineno"> 204</span>  state = work_state[influenced_point_id];</div>
<div class="line"><a name="l00205"></a><span class="lineno"> 205</span>  random = work_random[influenced_point_id];</div>
<div class="line"><a name="l00206"></a><span class="lineno"> 206</span>  index = work_index[influenced_point_id];</div>
<div class="line"><a name="l00207"></a><span class="lineno"> 207</span>  }</div>
<div class="line"><a name="l00208"></a><span class="lineno"> 208</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span> (random == work_random[influenced_point_id])</div>
<div class="line"><a name="l00209"></a><span class="lineno"> 209</span>  {</div>
<div class="line"><a name="l00210"></a><span class="lineno"> 210</span>  <span class="keywordflow">if</span> (index < work_index[influenced_point_id])</div>
<div class="line"><a name="l00211"></a><span class="lineno"> 211</span>  {</div>
<div class="line"><a name="l00212"></a><span class="lineno"> 212</span>  state = work_state[influenced_point_id];</div>
<div class="line"><a name="l00213"></a><span class="lineno"> 213</span>  random = work_random[influenced_point_id];</div>
<div class="line"><a name="l00214"></a><span class="lineno"> 214</span>  index = work_index[influenced_point_id];</div>
<div class="line"><a name="l00215"></a><span class="lineno"> 215</span>  }</div>
<div class="line"><a name="l00216"></a><span class="lineno"> 216</span>  } <span class="comment">// max(random)</span></div>
<div class="line"><a name="l00217"></a><span class="lineno"> 217</span>  } <span class="comment">// max(state)</span></div>
<div class="line"><a name="l00218"></a><span class="lineno"> 218</span>  } <span class="comment">// for</span></div>
<div class="line"><a name="l00219"></a><span class="lineno"> 219</span> </div>
<div class="line"><a name="l00220"></a><span class="lineno"> 220</span>  <span class="comment">// store</span></div>
<div class="line"><a name="l00221"></a><span class="lineno"> 221</span>  work_state2[i] = state;</div>
<div class="line"><a name="l00222"></a><span class="lineno"> 222</span>  work_random2[i] = random;</div>
<div class="line"><a name="l00223"></a><span class="lineno"> 223</span>  work_index2[i] = index;</div>
<div class="line"><a name="l00224"></a><span class="lineno"> 224</span>  }</div>
<div class="line"><a name="l00225"></a><span class="lineno"> 225</span> }</div>
<div class="line"><a name="l00226"></a><span class="lineno"> 226</span> </div>
<div class="line"><a name="l00228"></a><span class="lineno"> 228</span> <span class="keyword">template</span><<span class="keyword">typename</span> IndexT></div>
<div class="line"><a name="l00229"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ad5ee409e7f7e64210c17025092da89cd"> 229</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ad5ee409e7f7e64210c17025092da89cd">amg_pmis2_mark_mis_nodes</a>(IndexT <span class="keyword">const</span> *work_state,</div>
<div class="line"><a name="l00230"></a><span class="lineno"> 230</span>  IndexT <span class="keyword">const</span> *work_index,</div>
<div class="line"><a name="l00231"></a><span class="lineno"> 231</span>  IndexT *point_types,</div>
<div class="line"><a name="l00232"></a><span class="lineno"> 232</span>  IndexT *undecided_buffer,</div>
<div class="line"><a name="l00233"></a><span class="lineno"> 233</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>)</div>
<div class="line"><a name="l00234"></a><span class="lineno"> 234</span> {</div>
<div class="line"><a name="l00235"></a><span class="lineno"> 235</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_id = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00236"></a><span class="lineno"> 236</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_size = gridDim.x * blockDim.x;</div>
<div class="line"><a name="l00237"></a><span class="lineno"> 237</span> </div>
<div class="line"><a name="l00238"></a><span class="lineno"> 238</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> num_undecided = 0;</div>
<div class="line"><a name="l00239"></a><span class="lineno"> 239</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = global_id; i < <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>; i += global_size)</div>
<div class="line"><a name="l00240"></a><span class="lineno"> 240</span>  {</div>
<div class="line"><a name="l00241"></a><span class="lineno"> 241</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> max_state = work_state[i];</div>
<div class="line"><a name="l00242"></a><span class="lineno"> 242</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> max_index = work_index[i];</div>
<div class="line"><a name="l00243"></a><span class="lineno"> 243</span> </div>
<div class="line"><a name="l00244"></a><span class="lineno"> 244</span>  <span class="keywordflow">if</span> (point_types[i] == <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637adf77f4d874aa905e58b1d01448d599b7">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_UNDECIDED</a>)</div>
<div class="line"><a name="l00245"></a><span class="lineno"> 245</span>  {</div>
<div class="line"><a name="l00246"></a><span class="lineno"> 246</span>  <span class="keywordflow">if</span> (i == max_index) <span class="comment">// make this a MIS node</span></div>
<div class="line"><a name="l00247"></a><span class="lineno"> 247</span>  point_types[i] = <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637afbc2c39efc86491c26c2401d06f2cc8a">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_COARSE</a>;</div>
<div class="line"><a name="l00248"></a><span class="lineno"> 248</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span> (max_state == 2) <span class="comment">// mind the mapping of viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_COARSE above!</span></div>
<div class="line"><a name="l00249"></a><span class="lineno"> 249</span>  point_types[i] = <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637af803b8af4a6abdaf3d0fd08c18da6de6">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_FINE</a>;</div>
<div class="line"><a name="l00250"></a><span class="lineno"> 250</span>  <span class="keywordflow">else</span></div>
<div class="line"><a name="l00251"></a><span class="lineno"> 251</span>  num_undecided += 1;</div>
<div class="line"><a name="l00252"></a><span class="lineno"> 252</span>  }</div>
<div class="line"><a name="l00253"></a><span class="lineno"> 253</span>  }</div>
<div class="line"><a name="l00254"></a><span class="lineno"> 254</span> </div>
<div class="line"><a name="l00255"></a><span class="lineno"> 255</span>  <span class="comment">// reduction of the number of undecided nodes:</span></div>
<div class="line"><a name="l00256"></a><span class="lineno"> 256</span>  __shared__ <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> shared_buffer[256];</div>
<div class="line"><a name="l00257"></a><span class="lineno"> 257</span>  shared_buffer[threadIdx.x] = num_undecided;</div>
<div class="line"><a name="l00258"></a><span class="lineno"> 258</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">stride</a> = blockDim.x/2; <a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">stride</a> > 0; <a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">stride</a> /= 2)</div>
<div class="line"><a name="l00259"></a><span class="lineno"> 259</span>  {</div>
<div class="line"><a name="l00260"></a><span class="lineno"> 260</span>  __syncthreads();</div>
<div class="line"><a name="l00261"></a><span class="lineno"> 261</span>  <span class="keywordflow">if</span> (threadIdx.x < <a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">stride</a>)</div>
<div class="line"><a name="l00262"></a><span class="lineno"> 262</span>  shared_buffer[threadIdx.x] += shared_buffer[threadIdx.x+<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">stride</a>];</div>
<div class="line"><a name="l00263"></a><span class="lineno"> 263</span>  }</div>
<div class="line"><a name="l00264"></a><span class="lineno"> 264</span> </div>
<div class="line"><a name="l00265"></a><span class="lineno"> 265</span>  <span class="keywordflow">if</span> (threadIdx.x == 0)</div>
<div class="line"><a name="l00266"></a><span class="lineno"> 266</span>  undecided_buffer[blockIdx.x] = shared_buffer[0];</div>
<div class="line"><a name="l00267"></a><span class="lineno"> 267</span> </div>
<div class="line"><a name="l00268"></a><span class="lineno"> 268</span> }</div>
<div class="line"><a name="l00269"></a><span class="lineno"> 269</span> </div>
<div class="line"><a name="l00271"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a1c10960302d546fd274e68564f1409de"> 271</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a1c10960302d546fd274e68564f1409de">amg_pmis2_reset_state</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *point_types, <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>)</div>
<div class="line"><a name="l00272"></a><span class="lineno"> 272</span> {</div>
<div class="line"><a name="l00273"></a><span class="lineno"> 273</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_id = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00274"></a><span class="lineno"> 274</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_size = gridDim.x * blockDim.x;</div>
<div class="line"><a name="l00275"></a><span class="lineno"> 275</span> </div>
<div class="line"><a name="l00276"></a><span class="lineno"> 276</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = global_id; i < <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>; i += global_size)</div>
<div class="line"><a name="l00277"></a><span class="lineno"> 277</span>  {</div>
<div class="line"><a name="l00278"></a><span class="lineno"> 278</span>  <span class="keywordflow">if</span> (point_types[i] != <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637afbc2c39efc86491c26c2401d06f2cc8a">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_COARSE</a>)</div>
<div class="line"><a name="l00279"></a><span class="lineno"> 279</span>  point_types[i] = <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637adf77f4d874aa905e58b1d01448d599b7">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_UNDECIDED</a>;</div>
<div class="line"><a name="l00280"></a><span class="lineno"> 280</span>  }</div>
<div class="line"><a name="l00281"></a><span class="lineno"> 281</span> }</div>
<div class="line"><a name="l00282"></a><span class="lineno"> 282</span> </div>
<div class="line"><a name="l00289"></a><span class="lineno"> 289</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00290"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a24916ce5eec2c7fa4b4542a4c082e75e"> 290</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a24916ce5eec2c7fa4b4542a4c082e75e">amg_coarse_ag_stage1_mis2</a>(<a class="code" href="classviennacl_1_1compressed__matrix.html">compressed_matrix<NumericT></a> <span class="keyword">const</span> & A,</div>
<div class="line"><a name="l00291"></a><span class="lineno"> 291</span>  <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html">viennacl::linalg::detail::amg::amg_level_context</a> & amg_context,</div>
<div class="line"><a name="l00292"></a><span class="lineno"> 292</span>  <a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html">viennacl::linalg::amg_tag</a> & tag)</div>
<div class="line"><a name="l00293"></a><span class="lineno"> 293</span> {</div>
<div class="line"><a name="l00294"></a><span class="lineno"> 294</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<unsigned int></a> random_weights(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::context</a>(<a class="code" href="namespaceviennacl.html#a00b40450b6b2fd87aad3527d9b2084b8a427356f0fb1b8d32b28f37e36b272df4">viennacl::MAIN_MEMORY</a>));</div>
<div class="line"><a name="l00295"></a><span class="lineno"> 295</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *random_weights_ptr = viennacl::linalg::host_based::detail::extract_raw_pointer<unsigned int>(random_weights.handle());</div>
<div class="line"><a name="l00296"></a><span class="lineno"> 296</span>  <span class="keywordflow">for</span> (std::size_t i=0; i<random_weights.size(); ++i)</div>
<div class="line"><a name="l00297"></a><span class="lineno"> 297</span>  random_weights_ptr[i] = static_cast<unsigned int>(rand()) % static_cast<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>());</div>
<div class="line"><a name="l00298"></a><span class="lineno"> 298</span>  random_weights.<a class="code" href="classviennacl_1_1vector.html#a59f2ec43f298cc04d2f2bbbeee239bfe">switch_memory_context</a>(<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(A));</div>
<div class="line"><a name="l00299"></a><span class="lineno"> 299</span> </div>
<div class="line"><a name="l00300"></a><span class="lineno"> 300</span>  <span class="comment">// work vectors:</span></div>
<div class="line"><a name="l00301"></a><span class="lineno"> 301</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<unsigned int></a> work_state(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(A));</div>
<div class="line"><a name="l00302"></a><span class="lineno"> 302</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<unsigned int></a> work_random(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(A));</div>
<div class="line"><a name="l00303"></a><span class="lineno"> 303</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<unsigned int></a> work_index(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(A));</div>
<div class="line"><a name="l00304"></a><span class="lineno"> 304</span> </div>
<div class="line"><a name="l00305"></a><span class="lineno"> 305</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<unsigned int></a> work_state2(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(A));</div>
<div class="line"><a name="l00306"></a><span class="lineno"> 306</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<unsigned int></a> work_random2(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(A));</div>
<div class="line"><a name="l00307"></a><span class="lineno"> 307</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<unsigned int></a> work_index2(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(A));</div>
<div class="line"><a name="l00308"></a><span class="lineno"> 308</span> </div>
<div class="line"><a name="l00309"></a><span class="lineno"> 309</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> num_undecided = <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span> <span class="keywordtype">int</span><span class="keyword">></span>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>());</div>
<div class="line"><a name="l00310"></a><span class="lineno"> 310</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<unsigned int></a> undecided_buffer(256, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(A));</div>
<div class="line"><a name="l00311"></a><span class="lineno"> 311</span>  <a class="code" href="classviennacl_1_1backend_1_1typesafe__host__array.html">viennacl::backend::typesafe_host_array<unsigned int></a> undecided_buffer_host(undecided_buffer.<a class="code" href="classviennacl_1_1vector__base.html#a64e98aea5aa298ad63e3832a04c19648">handle</a>(), undecided_buffer.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>());</div>
<div class="line"><a name="l00312"></a><span class="lineno"> 312</span> </div>
<div class="line"><a name="l00313"></a><span class="lineno"> 313</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> pmis_iters = 0;</div>
<div class="line"><a name="l00314"></a><span class="lineno"> 314</span>  <span class="keywordflow">while</span> (num_undecided > 0)</div>
<div class="line"><a name="l00315"></a><span class="lineno"> 315</span>  {</div>
<div class="line"><a name="l00316"></a><span class="lineno"> 316</span>  ++pmis_iters;</div>
<div class="line"><a name="l00317"></a><span class="lineno"> 317</span> </div>
<div class="line"><a name="l00318"></a><span class="lineno"> 318</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00319"></a><span class="lineno"> 319</span>  <span class="comment">// init temporary work data:</span></div>
<div class="line"><a name="l00320"></a><span class="lineno"> 320</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00321"></a><span class="lineno"> 321</span>  amg_pmis2_init_workdata<<<128, 128>>>(<a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(work_state),</div>
<div class="line"><a name="l00322"></a><span class="lineno"> 322</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(work_random),</div>
<div class="line"><a name="l00323"></a><span class="lineno"> 323</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(work_index),</div>
<div class="line"><a name="l00324"></a><span class="lineno"> 324</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">point_types_</a>),</div>
<div class="line"><a name="l00325"></a><span class="lineno"> 325</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(random_weights),</div>
<div class="line"><a name="l00326"></a><span class="lineno"> 326</span>  <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span> <span class="keywordtype">int</span><span class="keyword">></span>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>())</div>
<div class="line"><a name="l00327"></a><span class="lineno"> 327</span>  );</div>
<div class="line"><a name="l00328"></a><span class="lineno"> 328</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"amg_pmis2_reset_state"</span>);</div>
<div class="line"><a name="l00329"></a><span class="lineno"> 329</span> </div>
<div class="line"><a name="l00330"></a><span class="lineno"> 330</span> </div>
<div class="line"><a name="l00331"></a><span class="lineno"> 331</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00332"></a><span class="lineno"> 332</span>  <span class="comment">// Propagate maximum tuple twice</span></div>
<div class="line"><a name="l00333"></a><span class="lineno"> 333</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00334"></a><span class="lineno"> 334</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> r = 0; r < 2; ++r)</div>
<div class="line"><a name="l00335"></a><span class="lineno"> 335</span>  {</div>
<div class="line"><a name="l00336"></a><span class="lineno"> 336</span>  <span class="comment">// max operation over neighborhood</span></div>
<div class="line"><a name="l00337"></a><span class="lineno"> 337</span>  amg_pmis2_max_neighborhood<<<128, 128>>>(<a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(work_state),</div>
<div class="line"><a name="l00338"></a><span class="lineno"> 338</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(work_random),</div>
<div class="line"><a name="l00339"></a><span class="lineno"> 339</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(work_index),</div>
<div class="line"><a name="l00340"></a><span class="lineno"> 340</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(work_state2),</div>
<div class="line"><a name="l00341"></a><span class="lineno"> 341</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(work_random2),</div>
<div class="line"><a name="l00342"></a><span class="lineno"> 342</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(work_index2),</div>
<div class="line"><a name="l00343"></a><span class="lineno"> 343</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#ad537babcb184069cc920bfb2140860de">influence_jumper_</a>),</div>
<div class="line"><a name="l00344"></a><span class="lineno"> 344</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a262b6f406db2b16b53936b8759f83d05">influence_ids_</a>),</div>
<div class="line"><a name="l00345"></a><span class="lineno"> 345</span>  <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span> <span class="keywordtype">int</span><span class="keyword">></span>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>())</div>
<div class="line"><a name="l00346"></a><span class="lineno"> 346</span>  );</div>
<div class="line"><a name="l00347"></a><span class="lineno"> 347</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"amg_pmis2_max_neighborhood"</span>);</div>
<div class="line"><a name="l00348"></a><span class="lineno"> 348</span> </div>
<div class="line"><a name="l00349"></a><span class="lineno"> 349</span>  <span class="comment">// copy work array (can be fused into a single kernel if needed. Previous kernel is in most cases sufficiently heavy)</span></div>
<div class="line"><a name="l00350"></a><span class="lineno"> 350</span>  work_state = work_state2;</div>
<div class="line"><a name="l00351"></a><span class="lineno"> 351</span>  work_random = work_random2;</div>
<div class="line"><a name="l00352"></a><span class="lineno"> 352</span>  work_index = work_index2;</div>
<div class="line"><a name="l00353"></a><span class="lineno"> 353</span>  }</div>
<div class="line"><a name="l00354"></a><span class="lineno"> 354</span> </div>
<div class="line"><a name="l00355"></a><span class="lineno"> 355</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00356"></a><span class="lineno"> 356</span>  <span class="comment">// mark MIS and non-MIS nodes:</span></div>
<div class="line"><a name="l00357"></a><span class="lineno"> 357</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00358"></a><span class="lineno"> 358</span>  amg_pmis2_mark_mis_nodes<<<128, 128>>>(<a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(work_state),</div>
<div class="line"><a name="l00359"></a><span class="lineno"> 359</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(work_index),</div>
<div class="line"><a name="l00360"></a><span class="lineno"> 360</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">point_types_</a>),</div>
<div class="line"><a name="l00361"></a><span class="lineno"> 361</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(undecided_buffer),</div>
<div class="line"><a name="l00362"></a><span class="lineno"> 362</span>  <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span> <span class="keywordtype">int</span><span class="keyword">></span>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>())</div>
<div class="line"><a name="l00363"></a><span class="lineno"> 363</span>  );</div>
<div class="line"><a name="l00364"></a><span class="lineno"> 364</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"amg_pmis2_reset_state"</span>);</div>
<div class="line"><a name="l00365"></a><span class="lineno"> 365</span> </div>
<div class="line"><a name="l00366"></a><span class="lineno"> 366</span>  <span class="comment">// get number of undecided points on host:</span></div>
<div class="line"><a name="l00367"></a><span class="lineno"> 367</span>  <a class="code" href="namespaceviennacl_1_1backend.html#a62854cfd6f04404b274f8ede36f63e2d">viennacl::backend::memory_read</a>(undecided_buffer.<a class="code" href="classviennacl_1_1vector__base.html#a64e98aea5aa298ad63e3832a04c19648">handle</a>(), 0, undecided_buffer_host.<a class="code" href="classviennacl_1_1backend_1_1mem__handle.html#ac8373f0d899b89c843e14de4cb7a1c4a">raw_size</a>(), undecided_buffer_host.get());</div>
<div class="line"><a name="l00368"></a><span class="lineno"> 368</span>  num_undecided = 0;</div>
<div class="line"><a name="l00369"></a><span class="lineno"> 369</span>  <span class="keywordflow">for</span> (std::size_t i=0; i<undecided_buffer.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>(); ++i)</div>
<div class="line"><a name="l00370"></a><span class="lineno"> 370</span>  num_undecided += undecided_buffer_host[i];</div>
<div class="line"><a name="l00371"></a><span class="lineno"> 371</span> </div>
<div class="line"><a name="l00372"></a><span class="lineno"> 372</span>  } <span class="comment">//while</span></div>
<div class="line"><a name="l00373"></a><span class="lineno"> 373</span> </div>
<div class="line"><a name="l00374"></a><span class="lineno"> 374</span>  <span class="comment">// consistency with sequential MIS: reset state for non-coarse points, so that coarse indices are correctly picked up later</span></div>
<div class="line"><a name="l00375"></a><span class="lineno"> 375</span>  amg_pmis2_reset_state<<<128, 128>>>(<a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">point_types_</a>),</div>
<div class="line"><a name="l00376"></a><span class="lineno"> 376</span>  <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span> <span class="keywordtype">int</span><span class="keyword">></span>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">point_types_</a>.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>())</div>
<div class="line"><a name="l00377"></a><span class="lineno"> 377</span>  );</div>
<div class="line"><a name="l00378"></a><span class="lineno"> 378</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"amg_pmis2_reset_state"</span>);</div>
<div class="line"><a name="l00379"></a><span class="lineno"> 379</span> }</div>
<div class="line"><a name="l00380"></a><span class="lineno"> 380</span> </div>
<div class="line"><a name="l00381"></a><span class="lineno"> 381</span> </div>
<div class="line"><a name="l00382"></a><span class="lineno"> 382</span> </div>
<div class="line"><a name="l00383"></a><span class="lineno"> 383</span> </div>
<div class="line"><a name="l00384"></a><span class="lineno"> 384</span> </div>
<div class="line"><a name="l00385"></a><span class="lineno"> 385</span> <span class="keyword">template</span><<span class="keyword">typename</span> IndexT></div>
<div class="line"><a name="l00386"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a72f36c48c3a517297e28ec9b87aea14f"> 386</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a72f36c48c3a517297e28ec9b87aea14f">amg_agg_propagate_coarse_indices</a>(IndexT *point_types,</div>
<div class="line"><a name="l00387"></a><span class="lineno"> 387</span>  IndexT *coarse_ids,</div>
<div class="line"><a name="l00388"></a><span class="lineno"> 388</span>  IndexT <span class="keyword">const</span> *influences_row,</div>
<div class="line"><a name="l00389"></a><span class="lineno"> 389</span>  IndexT <span class="keyword">const</span> *influences_id,</div>
<div class="line"><a name="l00390"></a><span class="lineno"> 390</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>)</div>
<div class="line"><a name="l00391"></a><span class="lineno"> 391</span> {</div>
<div class="line"><a name="l00392"></a><span class="lineno"> 392</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_id = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00393"></a><span class="lineno"> 393</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_size = gridDim.x * blockDim.x;</div>
<div class="line"><a name="l00394"></a><span class="lineno"> 394</span> </div>
<div class="line"><a name="l00395"></a><span class="lineno"> 395</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = global_id; i < <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>; i += global_size)</div>
<div class="line"><a name="l00396"></a><span class="lineno"> 396</span>  {</div>
<div class="line"><a name="l00397"></a><span class="lineno"> 397</span>  <span class="keywordflow">if</span> (point_types[i] == <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637afbc2c39efc86491c26c2401d06f2cc8a">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_COARSE</a>)</div>
<div class="line"><a name="l00398"></a><span class="lineno"> 398</span>  {</div>
<div class="line"><a name="l00399"></a><span class="lineno"> 399</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> coarse_index = coarse_ids[i];</div>
<div class="line"><a name="l00400"></a><span class="lineno"> 400</span> </div>
<div class="line"><a name="l00401"></a><span class="lineno"> 401</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> j_stop = influences_row[i + 1];</div>
<div class="line"><a name="l00402"></a><span class="lineno"> 402</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> j = influences_row[i]; j < j_stop; ++j)</div>
<div class="line"><a name="l00403"></a><span class="lineno"> 403</span>  {</div>
<div class="line"><a name="l00404"></a><span class="lineno"> 404</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> influenced_point_id = influences_id[j];</div>
<div class="line"><a name="l00405"></a><span class="lineno"> 405</span>  coarse_ids[influenced_point_id] = coarse_index; <span class="comment">// Set aggregate index for fine point</span></div>
<div class="line"><a name="l00406"></a><span class="lineno"> 406</span> </div>
<div class="line"><a name="l00407"></a><span class="lineno"> 407</span>  <span class="keywordflow">if</span> (influenced_point_id != i) <span class="comment">// Note: Any write races between threads are harmless here</span></div>
<div class="line"><a name="l00408"></a><span class="lineno"> 408</span>  point_types[influenced_point_id] = <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637af803b8af4a6abdaf3d0fd08c18da6de6">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_FINE</a>;</div>
<div class="line"><a name="l00409"></a><span class="lineno"> 409</span>  }</div>
<div class="line"><a name="l00410"></a><span class="lineno"> 410</span>  }</div>
<div class="line"><a name="l00411"></a><span class="lineno"> 411</span>  }</div>
<div class="line"><a name="l00412"></a><span class="lineno"> 412</span> }</div>
<div class="line"><a name="l00413"></a><span class="lineno"> 413</span> </div>
<div class="line"><a name="l00414"></a><span class="lineno"> 414</span> </div>
<div class="line"><a name="l00415"></a><span class="lineno"> 415</span> <span class="keyword">template</span><<span class="keyword">typename</span> IndexT></div>
<div class="line"><a name="l00416"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#affaef0634b3cfec5a940b278051cb21d"> 416</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#affaef0634b3cfec5a940b278051cb21d">amg_agg_merge_undecided</a>(IndexT *point_types,</div>
<div class="line"><a name="l00417"></a><span class="lineno"> 417</span>  IndexT *coarse_ids,</div>
<div class="line"><a name="l00418"></a><span class="lineno"> 418</span>  IndexT <span class="keyword">const</span> *influences_row,</div>
<div class="line"><a name="l00419"></a><span class="lineno"> 419</span>  IndexT <span class="keyword">const</span> *influences_id,</div>
<div class="line"><a name="l00420"></a><span class="lineno"> 420</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>)</div>
<div class="line"><a name="l00421"></a><span class="lineno"> 421</span> {</div>
<div class="line"><a name="l00422"></a><span class="lineno"> 422</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_id = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00423"></a><span class="lineno"> 423</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_size = gridDim.x * blockDim.x;</div>
<div class="line"><a name="l00424"></a><span class="lineno"> 424</span> </div>
<div class="line"><a name="l00425"></a><span class="lineno"> 425</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = global_id; i < <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>; i += global_size)</div>
<div class="line"><a name="l00426"></a><span class="lineno"> 426</span>  {</div>
<div class="line"><a name="l00427"></a><span class="lineno"> 427</span>  <span class="keywordflow">if</span> (point_types[i] == <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637adf77f4d874aa905e58b1d01448d599b7">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_UNDECIDED</a>)</div>
<div class="line"><a name="l00428"></a><span class="lineno"> 428</span>  {</div>
<div class="line"><a name="l00429"></a><span class="lineno"> 429</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> j_stop = influences_row[i + 1];</div>
<div class="line"><a name="l00430"></a><span class="lineno"> 430</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> j = influences_row[i]; j < j_stop; ++j)</div>
<div class="line"><a name="l00431"></a><span class="lineno"> 431</span>  {</div>
<div class="line"><a name="l00432"></a><span class="lineno"> 432</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> influenced_point_id = influences_id[j];</div>
<div class="line"><a name="l00433"></a><span class="lineno"> 433</span>  <span class="keywordflow">if</span> (point_types[influenced_point_id] != <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637adf77f4d874aa905e58b1d01448d599b7">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_UNDECIDED</a>) <span class="comment">// either coarse or fine point</span></div>
<div class="line"><a name="l00434"></a><span class="lineno"> 434</span>  {</div>
<div class="line"><a name="l00435"></a><span class="lineno"> 435</span>  <span class="comment">//std::cout << "Setting fine node " << i << " to be aggregated with node " << *influence_iter << "/" << pointvector.get_coarse_index(*influence_iter) << std::endl;</span></div>
<div class="line"><a name="l00436"></a><span class="lineno"> 436</span>  coarse_ids[i] = coarse_ids[influenced_point_id];</div>
<div class="line"><a name="l00437"></a><span class="lineno"> 437</span>  <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00438"></a><span class="lineno"> 438</span>  }</div>
<div class="line"><a name="l00439"></a><span class="lineno"> 439</span>  }</div>
<div class="line"><a name="l00440"></a><span class="lineno"> 440</span>  }</div>
<div class="line"><a name="l00441"></a><span class="lineno"> 441</span>  }</div>
<div class="line"><a name="l00442"></a><span class="lineno"> 442</span> }</div>
<div class="line"><a name="l00443"></a><span class="lineno"> 443</span> </div>
<div class="line"><a name="l00444"></a><span class="lineno"> 444</span> </div>
<div class="line"><a name="l00445"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a4a60d31dadc06e04523a474fe067589f"> 445</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a4a60d31dadc06e04523a474fe067589f">amg_agg_merge_undecided_2</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *point_types,</div>
<div class="line"><a name="l00446"></a><span class="lineno"> 446</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>)</div>
<div class="line"><a name="l00447"></a><span class="lineno"> 447</span> {</div>
<div class="line"><a name="l00448"></a><span class="lineno"> 448</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_id = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00449"></a><span class="lineno"> 449</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_size = gridDim.x * blockDim.x;</div>
<div class="line"><a name="l00450"></a><span class="lineno"> 450</span> </div>
<div class="line"><a name="l00451"></a><span class="lineno"> 451</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = global_id; i < <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>; i += global_size)</div>
<div class="line"><a name="l00452"></a><span class="lineno"> 452</span>  {</div>
<div class="line"><a name="l00453"></a><span class="lineno"> 453</span>  <span class="keywordflow">if</span> (point_types[i] == <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637adf77f4d874aa905e58b1d01448d599b7">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_UNDECIDED</a>)</div>
<div class="line"><a name="l00454"></a><span class="lineno"> 454</span>  point_types[i] = <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637af803b8af4a6abdaf3d0fd08c18da6de6">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_FINE</a>;</div>
<div class="line"><a name="l00455"></a><span class="lineno"> 455</span>  }</div>
<div class="line"><a name="l00456"></a><span class="lineno"> 456</span> }</div>
<div class="line"><a name="l00457"></a><span class="lineno"> 457</span> </div>
<div class="line"><a name="l00458"></a><span class="lineno"> 458</span> </div>
<div class="line"><a name="l00465"></a><span class="lineno"> 465</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00466"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac4a8f8869f8ba360558b53e40059dacb"> 466</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac4a8f8869f8ba360558b53e40059dacb">amg_coarse_ag</a>(<a class="code" href="classviennacl_1_1compressed__matrix.html">compressed_matrix<NumericT></a> <span class="keyword">const</span> & A,</div>
<div class="line"><a name="l00467"></a><span class="lineno"> 467</span>  <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html">viennacl::linalg::detail::amg::amg_level_context</a> & amg_context,</div>
<div class="line"><a name="l00468"></a><span class="lineno"> 468</span>  <a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html">viennacl::linalg::amg_tag</a> & tag)</div>
<div class="line"><a name="l00469"></a><span class="lineno"> 469</span> {</div>
<div class="line"><a name="l00470"></a><span class="lineno"> 470</span> </div>
<div class="line"><a name="l00471"></a><span class="lineno"> 471</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac1b1f9a0666d83c46ee9b4c5e25cd2c6">amg_influence_trivial</a>(A, amg_context, tag);</div>
<div class="line"><a name="l00472"></a><span class="lineno"> 472</span> </div>
<div class="line"><a name="l00473"></a><span class="lineno"> 473</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00474"></a><span class="lineno"> 474</span>  <span class="comment">// Stage 1: Build aggregates:</span></div>
<div class="line"><a name="l00475"></a><span class="lineno"> 475</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00476"></a><span class="lineno"> 476</span>  <span class="keywordflow">if</span> (tag.<a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html#a37cf475ac353f457a3b14879a1140e14">get_coarsening_method</a>() == <a class="code" href="namespaceviennacl_1_1linalg.html#a3ba810acdca541a5eada4560982a645ca0d4c883a9aa8a8514fb260ac404e3c8b">viennacl::linalg::AMG_COARSENING_METHOD_MIS2_AGGREGATION</a>)</div>
<div class="line"><a name="l00477"></a><span class="lineno"> 477</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a24916ce5eec2c7fa4b4542a4c082e75e">amg_coarse_ag_stage1_mis2</a>(A, amg_context, tag);</div>
<div class="line"><a name="l00478"></a><span class="lineno"> 478</span>  <span class="keywordflow">else</span></div>
<div class="line"><a name="l00479"></a><span class="lineno"> 479</span>  <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">"Only MIS2 coarsening implemented. Selected coarsening not available with CUDA backend!"</span>);</div>
<div class="line"><a name="l00480"></a><span class="lineno"> 480</span> </div>
<div class="line"><a name="l00481"></a><span class="lineno"> 481</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a258c31de37f3c9831443b5f2ea5f4b19">viennacl::linalg::cuda::amg::enumerate_coarse_points</a>(amg_context);</div>
<div class="line"><a name="l00482"></a><span class="lineno"> 482</span> </div>
<div class="line"><a name="l00483"></a><span class="lineno"> 483</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00484"></a><span class="lineno"> 484</span>  <span class="comment">// Stage 2: Propagate coarse aggregate indices to neighbors:</span></div>
<div class="line"><a name="l00485"></a><span class="lineno"> 485</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00486"></a><span class="lineno"> 486</span>  amg_agg_propagate_coarse_indices<<<128, 128>>>(<a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">point_types_</a>),</div>
<div class="line"><a name="l00487"></a><span class="lineno"> 487</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa647069a4102267171e395fcfd10e7ac">coarse_id_</a>),</div>
<div class="line"><a name="l00488"></a><span class="lineno"> 488</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#ad537babcb184069cc920bfb2140860de">influence_jumper_</a>),</div>
<div class="line"><a name="l00489"></a><span class="lineno"> 489</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a262b6f406db2b16b53936b8759f83d05">influence_ids_</a>),</div>
<div class="line"><a name="l00490"></a><span class="lineno"> 490</span>  <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span> <span class="keywordtype">int</span><span class="keyword">></span>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>())</div>
<div class="line"><a name="l00491"></a><span class="lineno"> 491</span>  );</div>
<div class="line"><a name="l00492"></a><span class="lineno"> 492</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"amg_agg_propagate_coarse_indices"</span>);</div>
<div class="line"><a name="l00493"></a><span class="lineno"> 493</span> </div>
<div class="line"><a name="l00494"></a><span class="lineno"> 494</span> </div>
<div class="line"><a name="l00495"></a><span class="lineno"> 495</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00496"></a><span class="lineno"> 496</span>  <span class="comment">// Stage 3: Merge remaining undecided points (merging to first aggregate found when cycling over the hierarchy</span></div>
<div class="line"><a name="l00497"></a><span class="lineno"> 497</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00498"></a><span class="lineno"> 498</span>  amg_agg_merge_undecided<<<128, 128>>>(<a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">point_types_</a>),</div>
<div class="line"><a name="l00499"></a><span class="lineno"> 499</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa647069a4102267171e395fcfd10e7ac">coarse_id_</a>),</div>
<div class="line"><a name="l00500"></a><span class="lineno"> 500</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#ad537babcb184069cc920bfb2140860de">influence_jumper_</a>),</div>
<div class="line"><a name="l00501"></a><span class="lineno"> 501</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a262b6f406db2b16b53936b8759f83d05">influence_ids_</a>),</div>
<div class="line"><a name="l00502"></a><span class="lineno"> 502</span>  <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span> <span class="keywordtype">int</span><span class="keyword">></span>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>())</div>
<div class="line"><a name="l00503"></a><span class="lineno"> 503</span>  );</div>
<div class="line"><a name="l00504"></a><span class="lineno"> 504</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"amg_agg_merge_undecided"</span>);</div>
<div class="line"><a name="l00505"></a><span class="lineno"> 505</span> </div>
<div class="line"><a name="l00506"></a><span class="lineno"> 506</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00507"></a><span class="lineno"> 507</span>  <span class="comment">// Stage 4: Set undecided points to fine points (coarse ID already set in Stage 3)</span></div>
<div class="line"><a name="l00508"></a><span class="lineno"> 508</span>  <span class="comment">// Note: Stage 3 and Stage 4 were initially fused, but are now split in order to avoid race conditions (or a fallback to sequential execution).</span></div>
<div class="line"><a name="l00509"></a><span class="lineno"> 509</span>  <span class="comment">//</span></div>
<div class="line"><a name="l00510"></a><span class="lineno"> 510</span>  amg_agg_merge_undecided_2<<<128, 128>>>(<a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">point_types_</a>),</div>
<div class="line"><a name="l00511"></a><span class="lineno"> 511</span>  <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span> <span class="keywordtype">int</span><span class="keyword">></span>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>())</div>
<div class="line"><a name="l00512"></a><span class="lineno"> 512</span>  );</div>
<div class="line"><a name="l00513"></a><span class="lineno"> 513</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"amg_agg_merge_undecided_2"</span>);</div>
<div class="line"><a name="l00514"></a><span class="lineno"> 514</span> }</div>
<div class="line"><a name="l00515"></a><span class="lineno"> 515</span> </div>
<div class="line"><a name="l00516"></a><span class="lineno"> 516</span> </div>
<div class="line"><a name="l00517"></a><span class="lineno"> 517</span> </div>
<div class="line"><a name="l00518"></a><span class="lineno"> 518</span> </div>
<div class="line"><a name="l00525"></a><span class="lineno"> 525</span> <span class="keyword">template</span><<span class="keyword">typename</span> InternalT1></div>
<div class="line"><a name="l00526"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a0397785aabbeaa292cf3fbfe0d758dc1"> 526</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a0397785aabbeaa292cf3fbfe0d758dc1">amg_coarse</a>(InternalT1 & A,</div>
<div class="line"><a name="l00527"></a><span class="lineno"> 527</span>  <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html">viennacl::linalg::detail::amg::amg_level_context</a> & amg_context,</div>
<div class="line"><a name="l00528"></a><span class="lineno"> 528</span>  <a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html">viennacl::linalg::amg_tag</a> & tag)</div>
<div class="line"><a name="l00529"></a><span class="lineno"> 529</span> {</div>
<div class="line"><a name="l00530"></a><span class="lineno"> 530</span>  <span class="keywordflow">switch</span> (tag.<a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html#a37cf475ac353f457a3b14879a1140e14">get_coarsening_method</a>())</div>
<div class="line"><a name="l00531"></a><span class="lineno"> 531</span>  {</div>
<div class="line"><a name="l00532"></a><span class="lineno"> 532</span>  <span class="keywordflow">case</span> <a class="code" href="namespaceviennacl_1_1linalg.html#a3ba810acdca541a5eada4560982a645ca0d4c883a9aa8a8514fb260ac404e3c8b">viennacl::linalg::AMG_COARSENING_METHOD_MIS2_AGGREGATION</a>: <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac4a8f8869f8ba360558b53e40059dacb">amg_coarse_ag</a>(A, amg_context, tag); <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00533"></a><span class="lineno"> 533</span>  <span class="keywordflow">default</span>: <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">"not implemented yet"</span>);</div>
<div class="line"><a name="l00534"></a><span class="lineno"> 534</span>  }</div>
<div class="line"><a name="l00535"></a><span class="lineno"> 535</span> }</div>
<div class="line"><a name="l00536"></a><span class="lineno"> 536</span> </div>
<div class="line"><a name="l00537"></a><span class="lineno"> 537</span> </div>
<div class="line"><a name="l00538"></a><span class="lineno"> 538</span> </div>
<div class="line"><a name="l00539"></a><span class="lineno"> 539</span> </div>
<div class="line"><a name="l00541"></a><span class="lineno"> 541</span> </div>
<div class="line"><a name="l00542"></a><span class="lineno"> 542</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00543"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a696559c185d8b0ff86edc633f6cbc643"> 543</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a696559c185d8b0ff86edc633f6cbc643">amg_interpol_ag_kernel</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *P_row_buffer,</div>
<div class="line"><a name="l00544"></a><span class="lineno"> 544</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *P_col_buffer,</div>
<div class="line"><a name="l00545"></a><span class="lineno"> 545</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> *P_elements,</div>
<div class="line"><a name="l00546"></a><span class="lineno"> 546</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *coarse_ids,</div>
<div class="line"><a name="l00547"></a><span class="lineno"> 547</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>)</div>
<div class="line"><a name="l00548"></a><span class="lineno"> 548</span> {</div>
<div class="line"><a name="l00549"></a><span class="lineno"> 549</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_id = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00550"></a><span class="lineno"> 550</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_size = gridDim.x * blockDim.x;</div>
<div class="line"><a name="l00551"></a><span class="lineno"> 551</span> </div>
<div class="line"><a name="l00552"></a><span class="lineno"> 552</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = global_id; i < <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>; i += global_size)</div>
<div class="line"><a name="l00553"></a><span class="lineno"> 553</span>  {</div>
<div class="line"><a name="l00554"></a><span class="lineno"> 554</span>  P_row_buffer[i] = i;</div>
<div class="line"><a name="l00555"></a><span class="lineno"> 555</span>  P_col_buffer[i] = coarse_ids[i];</div>
<div class="line"><a name="l00556"></a><span class="lineno"> 556</span>  P_elements[i] = <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a>(1);</div>
<div class="line"><a name="l00557"></a><span class="lineno"> 557</span>  }</div>
<div class="line"><a name="l00558"></a><span class="lineno"> 558</span> </div>
<div class="line"><a name="l00559"></a><span class="lineno"> 559</span>  <span class="comment">// set last entry as well:</span></div>
<div class="line"><a name="l00560"></a><span class="lineno"> 560</span>  <span class="keywordflow">if</span> (global_id == 0)</div>
<div class="line"><a name="l00561"></a><span class="lineno"> 561</span>  P_row_buffer[<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>] = <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>;</div>
<div class="line"><a name="l00562"></a><span class="lineno"> 562</span> }</div>
<div class="line"><a name="l00563"></a><span class="lineno"> 563</span> </div>
<div class="line"><a name="l00571"></a><span class="lineno"> 571</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00572"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9cb19def4af89cc7d5e58b7599d5c2d6"> 572</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9cb19def4af89cc7d5e58b7599d5c2d6">amg_interpol_ag</a>(<a class="code" href="classviennacl_1_1compressed__matrix.html">compressed_matrix<NumericT></a> <span class="keyword">const</span> & A,</div>
<div class="line"><a name="l00573"></a><span class="lineno"> 573</span>  <a class="code" href="classviennacl_1_1compressed__matrix.html">compressed_matrix<NumericT></a> & P,</div>
<div class="line"><a name="l00574"></a><span class="lineno"> 574</span>  <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html">viennacl::linalg::detail::amg::amg_level_context</a> & amg_context,</div>
<div class="line"><a name="l00575"></a><span class="lineno"> 575</span>  <a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html">viennacl::linalg::amg_tag</a> & tag)</div>
<div class="line"><a name="l00576"></a><span class="lineno"> 576</span> {</div>
<div class="line"><a name="l00577"></a><span class="lineno"> 577</span>  (void)tag;</div>
<div class="line"><a name="l00578"></a><span class="lineno"> 578</span>  P = <a class="code" href="classviennacl_1_1compressed__matrix.html">compressed_matrix<NumericT></a>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aac5a6ef480cf58fb8fa490760bb94e35">num_coarse_</a>, A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(A));</div>
<div class="line"><a name="l00579"></a><span class="lineno"> 579</span> </div>
<div class="line"><a name="l00580"></a><span class="lineno"> 580</span>  amg_interpol_ag_kernel<<<128, 128>>>(viennacl::cuda_arg<unsigned int>(P.<a class="code" href="classviennacl_1_1compressed__matrix.html#af71dec61a70e8df4f78a527aa989a106">handle1</a>().cuda_handle()),</div>
<div class="line"><a name="l00581"></a><span class="lineno"> 581</span>  viennacl::cuda_arg<unsigned int>(P.<a class="code" href="classviennacl_1_1compressed__matrix.html#a91f5145351151a66f916bdc3901206f2">handle2</a>().cuda_handle()),</div>
<div class="line"><a name="l00582"></a><span class="lineno"> 582</span>  viennacl::cuda_arg<NumericT>(P.<a class="code" href="classviennacl_1_1compressed__matrix.html#a87a0ad5f26983b1c2d24ee302d886562">handle</a>().cuda_handle()),</div>
<div class="line"><a name="l00583"></a><span class="lineno"> 583</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa647069a4102267171e395fcfd10e7ac">coarse_id_</a>),</div>
<div class="line"><a name="l00584"></a><span class="lineno"> 584</span>  <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span> <span class="keywordtype">int</span><span class="keyword">></span>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>())</div>
<div class="line"><a name="l00585"></a><span class="lineno"> 585</span>  );</div>
<div class="line"><a name="l00586"></a><span class="lineno"> 586</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"amg_interpol_ag_kernel"</span>);</div>
<div class="line"><a name="l00587"></a><span class="lineno"> 587</span> </div>
<div class="line"><a name="l00588"></a><span class="lineno"> 588</span>  P.<a class="code" href="classviennacl_1_1compressed__matrix.html#ab5922a97b73b869fbeeb6a2fa40e3b06">generate_row_block_information</a>();</div>
<div class="line"><a name="l00589"></a><span class="lineno"> 589</span> }</div>
<div class="line"><a name="l00590"></a><span class="lineno"> 590</span> </div>
<div class="line"><a name="l00591"></a><span class="lineno"> 591</span> </div>
<div class="line"><a name="l00592"></a><span class="lineno"> 592</span> </div>
<div class="line"><a name="l00593"></a><span class="lineno"> 593</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00594"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a88cc74771dab339b07e06d16500dccb1"> 594</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a88cc74771dab339b07e06d16500dccb1">amg_interpol_sa_kernel</a>(</div>
<div class="line"><a name="l00595"></a><span class="lineno"> 595</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *A_row_indices,</div>
<div class="line"><a name="l00596"></a><span class="lineno"> 596</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *A_col_indices,</div>
<div class="line"><a name="l00597"></a><span class="lineno"> 597</span>  <span class="keyword">const</span> <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> *A_elements,</div>
<div class="line"><a name="l00598"></a><span class="lineno"> 598</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> A_size1,</div>
<div class="line"><a name="l00599"></a><span class="lineno"> 599</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> A_nnz,</div>
<div class="line"><a name="l00600"></a><span class="lineno"> 600</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *Jacobi_row_indices,</div>
<div class="line"><a name="l00601"></a><span class="lineno"> 601</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> *Jacobi_col_indices,</div>
<div class="line"><a name="l00602"></a><span class="lineno"> 602</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> *Jacobi_elements,</div>
<div class="line"><a name="l00603"></a><span class="lineno"> 603</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> omega</div>
<div class="line"><a name="l00604"></a><span class="lineno"> 604</span>  )</div>
<div class="line"><a name="l00605"></a><span class="lineno"> 605</span> {</div>
<div class="line"><a name="l00606"></a><span class="lineno"> 606</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_id = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00607"></a><span class="lineno"> 607</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> global_size = gridDim.x * blockDim.x;</div>
<div class="line"><a name="l00608"></a><span class="lineno"> 608</span> </div>
<div class="line"><a name="l00609"></a><span class="lineno"> 609</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> = global_id; <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> < A_size1; <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> += global_size)</div>
<div class="line"><a name="l00610"></a><span class="lineno"> 610</span>  {</div>
<div class="line"><a name="l00611"></a><span class="lineno"> 611</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> row_begin = A_row_indices[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>];</div>
<div class="line"><a name="l00612"></a><span class="lineno"> 612</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> row_end = A_row_indices[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>+1];</div>
<div class="line"><a name="l00613"></a><span class="lineno"> 613</span> </div>
<div class="line"><a name="l00614"></a><span class="lineno"> 614</span>  Jacobi_row_indices[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>] = row_begin;</div>
<div class="line"><a name="l00615"></a><span class="lineno"> 615</span> </div>
<div class="line"><a name="l00616"></a><span class="lineno"> 616</span>  <span class="comment">// Step 1: Extract diagonal:</span></div>
<div class="line"><a name="l00617"></a><span class="lineno"> 617</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> <a class="code" href="namespaceviennacl.html#a507d2ac469c79997f2bb6e82b37b7483">diag</a> = 0;</div>
<div class="line"><a name="l00618"></a><span class="lineno"> 618</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> j = row_begin; j < row_end; ++j)</div>
<div class="line"><a name="l00619"></a><span class="lineno"> 619</span>  {</div>
<div class="line"><a name="l00620"></a><span class="lineno"> 620</span>  <span class="keywordflow">if</span> (A_col_indices[j] == <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>)</div>
<div class="line"><a name="l00621"></a><span class="lineno"> 621</span>  {</div>
<div class="line"><a name="l00622"></a><span class="lineno"> 622</span>  diag = A_elements[j];</div>
<div class="line"><a name="l00623"></a><span class="lineno"> 623</span>  <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00624"></a><span class="lineno"> 624</span>  }</div>
<div class="line"><a name="l00625"></a><span class="lineno"> 625</span>  }</div>
<div class="line"><a name="l00626"></a><span class="lineno"> 626</span> </div>
<div class="line"><a name="l00627"></a><span class="lineno"> 627</span>  <span class="comment">// Step 2: Write entries:</span></div>
<div class="line"><a name="l00628"></a><span class="lineno"> 628</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> j = row_begin; j < row_end; ++j)</div>
<div class="line"><a name="l00629"></a><span class="lineno"> 629</span>  {</div>
<div class="line"><a name="l00630"></a><span class="lineno"> 630</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> col_index = A_col_indices[j];</div>
<div class="line"><a name="l00631"></a><span class="lineno"> 631</span>  Jacobi_col_indices[j] = col_index;</div>
<div class="line"><a name="l00632"></a><span class="lineno"> 632</span> </div>
<div class="line"><a name="l00633"></a><span class="lineno"> 633</span>  <span class="keywordflow">if</span> (col_index == <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>)</div>
<div class="line"><a name="l00634"></a><span class="lineno"> 634</span>  Jacobi_elements[j] = <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a>(1) - omega;</div>
<div class="line"><a name="l00635"></a><span class="lineno"> 635</span>  <span class="keywordflow">else</span></div>
<div class="line"><a name="l00636"></a><span class="lineno"> 636</span>  Jacobi_elements[j] = - omega * A_elements[j] / <a class="code" href="namespaceviennacl.html#a507d2ac469c79997f2bb6e82b37b7483">diag</a>;</div>
<div class="line"><a name="l00637"></a><span class="lineno"> 637</span>  }</div>
<div class="line"><a name="l00638"></a><span class="lineno"> 638</span>  }</div>
<div class="line"><a name="l00639"></a><span class="lineno"> 639</span> </div>
<div class="line"><a name="l00640"></a><span class="lineno"> 640</span>  <span class="keywordflow">if</span> (global_id == 0)</div>
<div class="line"><a name="l00641"></a><span class="lineno"> 641</span>  Jacobi_row_indices[A_size1] = A_nnz; <span class="comment">// don't forget finalizer</span></div>
<div class="line"><a name="l00642"></a><span class="lineno"> 642</span> }</div>
<div class="line"><a name="l00643"></a><span class="lineno"> 643</span> </div>
<div class="line"><a name="l00644"></a><span class="lineno"> 644</span> </div>
<div class="line"><a name="l00645"></a><span class="lineno"> 645</span> </div>
<div class="line"><a name="l00653"></a><span class="lineno"> 653</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00654"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9cc8c1d739430a807751738aa5559a32"> 654</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9cc8c1d739430a807751738aa5559a32">amg_interpol_sa</a>(<a class="code" href="classviennacl_1_1compressed__matrix.html">compressed_matrix<NumericT></a> <span class="keyword">const</span> & A,</div>
<div class="line"><a name="l00655"></a><span class="lineno"> 655</span>  <a class="code" href="classviennacl_1_1compressed__matrix.html">compressed_matrix<NumericT></a> & P,</div>
<div class="line"><a name="l00656"></a><span class="lineno"> 656</span>  <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html">viennacl::linalg::detail::amg::amg_level_context</a> & amg_context,</div>
<div class="line"><a name="l00657"></a><span class="lineno"> 657</span>  <a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html">viennacl::linalg::amg_tag</a> & tag)</div>
<div class="line"><a name="l00658"></a><span class="lineno"> 658</span> {</div>
<div class="line"><a name="l00659"></a><span class="lineno"> 659</span>  (void)tag;</div>
<div class="line"><a name="l00660"></a><span class="lineno"> 660</span>  <a class="code" href="classviennacl_1_1compressed__matrix.html">viennacl::compressed_matrix<NumericT></a> P_tentative(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), amg_context.<a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aac5a6ef480cf58fb8fa490760bb94e35">num_coarse_</a>, A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(A));</div>
<div class="line"><a name="l00661"></a><span class="lineno"> 661</span> </div>
<div class="line"><a name="l00662"></a><span class="lineno"> 662</span>  <span class="comment">// form tentative operator:</span></div>
<div class="line"><a name="l00663"></a><span class="lineno"> 663</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9cb19def4af89cc7d5e58b7599d5c2d6">amg_interpol_ag</a>(A, P_tentative, amg_context, tag);</div>
<div class="line"><a name="l00664"></a><span class="lineno"> 664</span> </div>
<div class="line"><a name="l00665"></a><span class="lineno"> 665</span>  <a class="code" href="classviennacl_1_1compressed__matrix.html">viennacl::compressed_matrix<NumericT></a> Jacobi(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>(), A.<a class="code" href="classviennacl_1_1compressed__matrix.html#ae69ca21ded644fdd0c7a5168011b13ed">nnz</a>(), <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(A));</div>
<div class="line"><a name="l00666"></a><span class="lineno"> 666</span> </div>
<div class="line"><a name="l00667"></a><span class="lineno"> 667</span>  amg_interpol_sa_kernel<<<128, 128>>>(viennacl::cuda_arg<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#af71dec61a70e8df4f78a527aa989a106">handle1</a>().cuda_handle()),</div>
<div class="line"><a name="l00668"></a><span class="lineno"> 668</span>  viennacl::cuda_arg<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a91f5145351151a66f916bdc3901206f2">handle2</a>().cuda_handle()),</div>
<div class="line"><a name="l00669"></a><span class="lineno"> 669</span>  viennacl::cuda_arg<NumericT>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a87a0ad5f26983b1c2d24ee302d886562">handle</a>().cuda_handle()),</div>
<div class="line"><a name="l00670"></a><span class="lineno"> 670</span>  static_cast<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">size1</a>()),</div>
<div class="line"><a name="l00671"></a><span class="lineno"> 671</span>  static_cast<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#ae69ca21ded644fdd0c7a5168011b13ed">nnz</a>()),</div>
<div class="line"><a name="l00672"></a><span class="lineno"> 672</span>  viennacl::cuda_arg<unsigned int>(Jacobi.handle1().cuda_handle()),</div>
<div class="line"><a name="l00673"></a><span class="lineno"> 673</span>  viennacl::cuda_arg<unsigned int>(Jacobi.handle2().cuda_handle()),</div>
<div class="line"><a name="l00674"></a><span class="lineno"> 674</span>  viennacl::cuda_arg<NumericT>(Jacobi.handle().cuda_handle()),</div>
<div class="line"><a name="l00675"></a><span class="lineno"> 675</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a>(tag.<a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html#ac040fe4a5f3a3ac02bcc951d6a72837b">get_jacobi_weight</a>())</div>
<div class="line"><a name="l00676"></a><span class="lineno"> 676</span>  );</div>
<div class="line"><a name="l00677"></a><span class="lineno"> 677</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"amg_interpol_sa_kernel"</span>);</div>
<div class="line"><a name="l00678"></a><span class="lineno"> 678</span> </div>
<div class="line"><a name="l00679"></a><span class="lineno"> 679</span>  P = <a class="code" href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a>(Jacobi, P_tentative);</div>
<div class="line"><a name="l00680"></a><span class="lineno"> 680</span> </div>
<div class="line"><a name="l00681"></a><span class="lineno"> 681</span>  P.<a class="code" href="classviennacl_1_1compressed__matrix.html#ab5922a97b73b869fbeeb6a2fa40e3b06">generate_row_block_information</a>();</div>
<div class="line"><a name="l00682"></a><span class="lineno"> 682</span> }</div>
<div class="line"><a name="l00683"></a><span class="lineno"> 683</span> </div>
<div class="line"><a name="l00684"></a><span class="lineno"> 684</span> </div>
<div class="line"><a name="l00692"></a><span class="lineno"> 692</span> <span class="keyword">template</span><<span class="keyword">typename</span> MatrixT></div>
<div class="line"><a name="l00693"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9fce75799e03103c73d005c09ac361e2"> 693</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9fce75799e03103c73d005c09ac361e2">amg_interpol</a>(MatrixT <span class="keyword">const</span> & A,</div>
<div class="line"><a name="l00694"></a><span class="lineno"> 694</span>  MatrixT & P,</div>
<div class="line"><a name="l00695"></a><span class="lineno"> 695</span>  <a class="code" href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html">viennacl::linalg::detail::amg::amg_level_context</a> & amg_context,</div>
<div class="line"><a name="l00696"></a><span class="lineno"> 696</span>  <a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html">viennacl::linalg::amg_tag</a> & tag)</div>
<div class="line"><a name="l00697"></a><span class="lineno"> 697</span> {</div>
<div class="line"><a name="l00698"></a><span class="lineno"> 698</span>  <span class="keywordflow">switch</span> (tag.<a class="code" href="classviennacl_1_1linalg_1_1amg__tag.html#afb4b14cf0b9e99161fa8c1da4647ad0d">get_interpolation_method</a>())</div>
<div class="line"><a name="l00699"></a><span class="lineno"> 699</span>  {</div>
<div class="line"><a name="l00700"></a><span class="lineno"> 700</span>  <span class="keywordflow">case</span> <a class="code" href="namespaceviennacl_1_1linalg.html#a9933216144a64dbd433ec02c95bbfdd7a31dbd459c3ba8068280a6ec1bca00482">viennacl::linalg::AMG_INTERPOLATION_METHOD_AGGREGATION</a>: <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9cb19def4af89cc7d5e58b7599d5c2d6">amg_interpol_ag</a> (A, P, amg_context, tag); <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00701"></a><span class="lineno"> 701</span>  <span class="keywordflow">case</span> <a class="code" href="namespaceviennacl_1_1linalg.html#a9933216144a64dbd433ec02c95bbfdd7afcffee5ed6e7ad032a9ffebe615b5932">viennacl::linalg::AMG_INTERPOLATION_METHOD_SMOOTHED_AGGREGATION</a>: <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9cc8c1d739430a807751738aa5559a32">amg_interpol_sa</a> (A, P, amg_context, tag); <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00702"></a><span class="lineno"> 702</span>  <span class="keywordflow">default</span>: <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">"Not implemented yet!"</span>);</div>
<div class="line"><a name="l00703"></a><span class="lineno"> 703</span>  }</div>
<div class="line"><a name="l00704"></a><span class="lineno"> 704</span> }</div>
<div class="line"><a name="l00705"></a><span class="lineno"> 705</span> </div>
<div class="line"><a name="l00706"></a><span class="lineno"> 706</span> </div>
<div class="line"><a name="l00707"></a><span class="lineno"> 707</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00708"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a644a8509ef334ceb151a8ffa6d8f6111"> 708</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a644a8509ef334ceb151a8ffa6d8f6111">compressed_matrix_assign_to_dense</a>(</div>
<div class="line"><a name="l00709"></a><span class="lineno"> 709</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> * row_indices,</div>
<div class="line"><a name="l00710"></a><span class="lineno"> 710</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> * column_indices,</div>
<div class="line"><a name="l00711"></a><span class="lineno"> 711</span>  <span class="keyword">const</span> <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> * elements,</div>
<div class="line"><a name="l00712"></a><span class="lineno"> 712</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> *B,</div>
<div class="line"><a name="l00713"></a><span class="lineno"> 713</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> B_row_start, <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> B_col_start,</div>
<div class="line"><a name="l00714"></a><span class="lineno"> 714</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> B_row_inc, <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> B_col_inc,</div>
<div class="line"><a name="l00715"></a><span class="lineno"> 715</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> B_row_size, <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> B_col_size,</div>
<div class="line"><a name="l00716"></a><span class="lineno"> 716</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> B_internal_rows, <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> B_internal_cols)</div>
<div class="line"><a name="l00717"></a><span class="lineno"> 717</span> {</div>
<div class="line"><a name="l00718"></a><span class="lineno"> 718</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00719"></a><span class="lineno"> 719</span>  <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> < B_row_size;</div>
<div class="line"><a name="l00720"></a><span class="lineno"> 720</span>  <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> += gridDim.x * blockDim.x)</div>
<div class="line"><a name="l00721"></a><span class="lineno"> 721</span>  {</div>
<div class="line"><a name="l00722"></a><span class="lineno"> 722</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> row_end = row_indices[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>+1];</div>
<div class="line"><a name="l00723"></a><span class="lineno"> 723</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> j = row_indices[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>]; j<row_end; j++)</div>
<div class="line"><a name="l00724"></a><span class="lineno"> 724</span>  B[(B_row_start + <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> * B_row_inc) * B_internal_cols + B_col_start + column_indices[j] * B_col_inc] = elements[j];</div>
<div class="line"><a name="l00725"></a><span class="lineno"> 725</span>  }</div>
<div class="line"><a name="l00726"></a><span class="lineno"> 726</span> }</div>
<div class="line"><a name="l00727"></a><span class="lineno"> 727</span> </div>
<div class="line"><a name="l00728"></a><span class="lineno"> 728</span> </div>
<div class="line"><a name="l00729"></a><span class="lineno"> 729</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT, <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> AlignmentV></div>
<div class="line"><a name="l00730"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac6c4463d335fc3dd604639b87ed6229d"> 730</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac6c4463d335fc3dd604639b87ed6229d">assign_to_dense</a>(<a class="code" href="classviennacl_1_1compressed__matrix.html">viennacl::compressed_matrix<NumericT, AlignmentV></a> <span class="keyword">const</span> & A,</div>
<div class="line"><a name="l00731"></a><span class="lineno"> 731</span>  <a class="code" href="classviennacl_1_1matrix__base.html">viennacl::matrix_base<NumericT></a> & B)</div>
<div class="line"><a name="l00732"></a><span class="lineno"> 732</span> {</div>
<div class="line"><a name="l00733"></a><span class="lineno"> 733</span>  compressed_matrix_assign_to_dense<<<128, 128>>>(viennacl::cuda_arg<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#af71dec61a70e8df4f78a527aa989a106">handle1</a>().cuda_handle()),</div>
<div class="line"><a name="l00734"></a><span class="lineno"> 734</span>  viennacl::cuda_arg<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a91f5145351151a66f916bdc3901206f2">handle2</a>().cuda_handle()),</div>
<div class="line"><a name="l00735"></a><span class="lineno"> 735</span>  viennacl::cuda_arg<NumericT>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a87a0ad5f26983b1c2d24ee302d886562">handle</a>().cuda_handle()),</div>
<div class="line"><a name="l00736"></a><span class="lineno"> 736</span>  viennacl::cuda_arg<NumericT>(B),</div>
<div class="line"><a name="l00737"></a><span class="lineno"> 737</span>  <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span> <span class="keywordtype">int</span><span class="keyword">></span>(<a class="code" href="namespaceviennacl_1_1traits.html#ae601425decc5f1a8763ab5272e9e492f">viennacl::traits::start1</a>(B)), static_cast<unsigned int>(<a class="code" href="namespaceviennacl_1_1traits.html#ac53fc8cc9836953dc87aaaaa56f382c2">viennacl::traits::start2</a>(B)),</div>
<div class="line"><a name="l00738"></a><span class="lineno"> 738</span>  static_cast<unsigned int>(<a class="code" href="namespaceviennacl_1_1traits.html#a53a39f11907d9098e6f144c87998fe5e">viennacl::traits::stride1</a>(B)), static_cast<unsigned int>(<a class="code" href="namespaceviennacl_1_1traits.html#ace596004f16c075adbfcd329e6c60e91">viennacl::traits::stride2</a>(B)),</div>
<div class="line"><a name="l00739"></a><span class="lineno"> 739</span>  static_cast<unsigned int>(<a class="code" href="namespaceviennacl_1_1traits.html#aa756f5d6820722094cae0d8b9bb6d5e2">viennacl::traits::size1</a>(B)), static_cast<unsigned int>(<a class="code" href="namespaceviennacl_1_1traits.html#a3658e7c29ac0f60a20cb5871f5b5fd98">viennacl::traits::size2</a>(B)),</div>
<div class="line"><a name="l00740"></a><span class="lineno"> 740</span>  static_cast<unsigned int>(<a class="code" href="namespaceviennacl_1_1traits.html#aedc426f055f1b4c5d00111cc8a46e50d">viennacl::traits::internal_size1</a>(B)), static_cast<unsigned int>(<a class="code" href="namespaceviennacl_1_1traits.html#a2cd7269b5d00b5ebadab1c4b5a94a7c1">viennacl::traits::internal_size2</a>(B))</div>
<div class="line"><a name="l00741"></a><span class="lineno"> 741</span>  );</div>
<div class="line"><a name="l00742"></a><span class="lineno"> 742</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"compressed_matrix_assign_to_dense"</span>);</div>
<div class="line"><a name="l00743"></a><span class="lineno"> 743</span> }</div>
<div class="line"><a name="l00744"></a><span class="lineno"> 744</span> </div>
<div class="line"><a name="l00745"></a><span class="lineno"> 745</span> </div>
<div class="line"><a name="l00746"></a><span class="lineno"> 746</span> </div>
<div class="line"><a name="l00747"></a><span class="lineno"> 747</span> </div>
<div class="line"><a name="l00748"></a><span class="lineno"> 748</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00749"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#acff2449ac77ddd8c483db7f168b54ca6"> 749</a></span> __global__ <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#acff2449ac77ddd8c483db7f168b54ca6">compressed_matrix_smooth_jacobi_kernel</a>(</div>
<div class="line"><a name="l00750"></a><span class="lineno"> 750</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> * row_indices,</div>
<div class="line"><a name="l00751"></a><span class="lineno"> 751</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> * column_indices,</div>
<div class="line"><a name="l00752"></a><span class="lineno"> 752</span>  <span class="keyword">const</span> <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> * elements,</div>
<div class="line"><a name="l00753"></a><span class="lineno"> 753</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> weight,</div>
<div class="line"><a name="l00754"></a><span class="lineno"> 754</span>  <span class="keyword">const</span> <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> * x_old,</div>
<div class="line"><a name="l00755"></a><span class="lineno"> 755</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> * x_new,</div>
<div class="line"><a name="l00756"></a><span class="lineno"> 756</span>  <span class="keyword">const</span> <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> * rhs,</div>
<div class="line"><a name="l00757"></a><span class="lineno"> 757</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>)</div>
<div class="line"><a name="l00758"></a><span class="lineno"> 758</span> {</div>
<div class="line"><a name="l00759"></a><span class="lineno"> 759</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> = blockDim.x * blockIdx.x + threadIdx.x;</div>
<div class="line"><a name="l00760"></a><span class="lineno"> 760</span>  <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> < size;</div>
<div class="line"><a name="l00761"></a><span class="lineno"> 761</span>  <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> += gridDim.x * blockDim.x)</div>
<div class="line"><a name="l00762"></a><span class="lineno"> 762</span>  {</div>
<div class="line"><a name="l00763"></a><span class="lineno"> 763</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> <a class="code" href="namespaceviennacl_1_1linalg.html#a4117795095db49147ba7305d3e0a1af5">sum</a> = <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a>(0);</div>
<div class="line"><a name="l00764"></a><span class="lineno"> 764</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> <a class="code" href="namespaceviennacl.html#a507d2ac469c79997f2bb6e82b37b7483">diag</a> = <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a>(1);</div>
<div class="line"><a name="l00765"></a><span class="lineno"> 765</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> row_end = row_indices[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>+1];</div>
<div class="line"><a name="l00766"></a><span class="lineno"> 766</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> j = row_indices[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>]; j < row_end; ++j)</div>
<div class="line"><a name="l00767"></a><span class="lineno"> 767</span>  {</div>
<div class="line"><a name="l00768"></a><span class="lineno"> 768</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> col = column_indices[j];</div>
<div class="line"><a name="l00769"></a><span class="lineno"> 769</span>  <span class="keywordflow">if</span> (col == <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>)</div>
<div class="line"><a name="l00770"></a><span class="lineno"> 770</span>  diag = elements[j];</div>
<div class="line"><a name="l00771"></a><span class="lineno"> 771</span>  <span class="keywordflow">else</span></div>
<div class="line"><a name="l00772"></a><span class="lineno"> 772</span>  sum += elements[j] * x_old[col];</div>
<div class="line"><a name="l00773"></a><span class="lineno"> 773</span>  }</div>
<div class="line"><a name="l00774"></a><span class="lineno"> 774</span>  x_new[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>] = weight * (rhs[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>] - <a class="code" href="namespaceviennacl_1_1linalg.html#a4117795095db49147ba7305d3e0a1af5">sum</a>) / diag + (<a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a>(1) - weight) * x_old[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>];</div>
<div class="line"><a name="l00775"></a><span class="lineno"> 775</span>  }</div>
<div class="line"><a name="l00776"></a><span class="lineno"> 776</span> }</div>
<div class="line"><a name="l00777"></a><span class="lineno"> 777</span> </div>
<div class="line"><a name="l00778"></a><span class="lineno"> 778</span> </div>
<div class="line"><a name="l00779"></a><span class="lineno"> 779</span> </div>
<div class="line"><a name="l00780"></a><span class="lineno"> 780</span> </div>
<div class="line"><a name="l00790"></a><span class="lineno"> 790</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00791"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#aed74cfedec05f6e080eee9abdd60f123"> 791</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#aed74cfedec05f6e080eee9abdd60f123">smooth_jacobi</a>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> iterations,</div>
<div class="line"><a name="l00792"></a><span class="lineno"> 792</span>  <a class="code" href="classviennacl_1_1compressed__matrix.html">compressed_matrix<NumericT></a> <span class="keyword">const</span> & A,</div>
<div class="line"><a name="l00793"></a><span class="lineno"> 793</span>  <a class="code" href="classviennacl_1_1vector.html">vector<NumericT></a> & x,</div>
<div class="line"><a name="l00794"></a><span class="lineno"> 794</span>  <a class="code" href="classviennacl_1_1vector.html">vector<NumericT></a> & x_backup,</div>
<div class="line"><a name="l00795"></a><span class="lineno"> 795</span>  <a class="code" href="classviennacl_1_1vector.html">vector<NumericT></a> <span class="keyword">const</span> & rhs_smooth,</div>
<div class="line"><a name="l00796"></a><span class="lineno"> 796</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> weight)</div>
<div class="line"><a name="l00797"></a><span class="lineno"> 797</span> {</div>
<div class="line"><a name="l00798"></a><span class="lineno"> 798</span>  <span class="keywordflow">for</span> (<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i=0; i<iterations; ++i)</div>
<div class="line"><a name="l00799"></a><span class="lineno"> 799</span>  {</div>
<div class="line"><a name="l00800"></a><span class="lineno"> 800</span>  x_backup = x;</div>
<div class="line"><a name="l00801"></a><span class="lineno"> 801</span> </div>
<div class="line"><a name="l00802"></a><span class="lineno"> 802</span>  compressed_matrix_smooth_jacobi_kernel<<<128, 128>>>(viennacl::cuda_arg<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#af71dec61a70e8df4f78a527aa989a106">handle1</a>().cuda_handle()),</div>
<div class="line"><a name="l00803"></a><span class="lineno"> 803</span>  viennacl::cuda_arg<unsigned int>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a91f5145351151a66f916bdc3901206f2">handle2</a>().cuda_handle()),</div>
<div class="line"><a name="l00804"></a><span class="lineno"> 804</span>  viennacl::cuda_arg<NumericT>(A.<a class="code" href="classviennacl_1_1compressed__matrix.html#a87a0ad5f26983b1c2d24ee302d886562">handle</a>().cuda_handle()),</div>
<div class="line"><a name="l00805"></a><span class="lineno"> 805</span>  static_cast<NumericT>(weight),</div>
<div class="line"><a name="l00806"></a><span class="lineno"> 806</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(x_backup),</div>
<div class="line"><a name="l00807"></a><span class="lineno"> 807</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(x),</div>
<div class="line"><a name="l00808"></a><span class="lineno"> 808</span>  <a class="code" href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a>(rhs_smooth),</div>
<div class="line"><a name="l00809"></a><span class="lineno"> 809</span>  <span class="keyword">static_cast<</span><span class="keywordtype">unsigned</span> <span class="keywordtype">int</span><span class="keyword">></span>(rhs_smooth.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>())</div>
<div class="line"><a name="l00810"></a><span class="lineno"> 810</span>  );</div>
<div class="line"><a name="l00811"></a><span class="lineno"> 811</span>  <a class="code" href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a>(<span class="stringliteral">"compressed_matrix_smooth_jacobi_kernel"</span>);</div>
<div class="line"><a name="l00812"></a><span class="lineno"> 812</span>  }</div>
<div class="line"><a name="l00813"></a><span class="lineno"> 813</span> }</div>
<div class="line"><a name="l00814"></a><span class="lineno"> 814</span> </div>
<div class="line"><a name="l00815"></a><span class="lineno"> 815</span> </div>
<div class="line"><a name="l00816"></a><span class="lineno"> 816</span> } <span class="comment">//namespace amg</span></div>
<div class="line"><a name="l00817"></a><span class="lineno"> 817</span> } <span class="comment">//namespace host_based</span></div>
<div class="line"><a name="l00818"></a><span class="lineno"> 818</span> } <span class="comment">//namespace linalg</span></div>
<div class="line"><a name="l00819"></a><span class="lineno"> 819</span> } <span class="comment">//namespace viennacl</span></div>
<div class="line"><a name="l00820"></a><span class="lineno"> 820</span> </div>
<div class="line"><a name="l00821"></a><span class="lineno"> 821</span> <span class="preprocessor">#endif</span></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_ac1b1f9a0666d83c46ee9b4c5e25cd2c6"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac1b1f9a0666d83c46ee9b4c5e25cd2c6">viennacl::linalg::cuda::amg::amg_influence_trivial</a></div><div class="ttdeci">void amg_influence_trivial(compressed_matrix< NumericT > const &A, viennacl::linalg::detail::amg::amg_level_context &amg_context, viennacl::linalg::amg_tag &tag)</div><div class="ttdoc">Routine for taking all connections in the matrix as strong. </div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00074">amg_operations.hpp:74</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a258c31de37f3c9831443b5f2ea5f4b19"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a258c31de37f3c9831443b5f2ea5f4b19">viennacl::linalg::cuda::amg::enumerate_coarse_points</a></div><div class="ttdeci">void enumerate_coarse_points(viennacl::linalg::detail::amg::amg_level_context &amg_context)</div><div class="ttdoc">Assign IDs to coarse points. </div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00115">amg_operations.hpp:115</a></div></div>
<div class="ttc" id="classviennacl_1_1backend_1_1typesafe__host__array_html"><div class="ttname"><a href="classviennacl_1_1backend_1_1typesafe__host__array.html">viennacl::backend::typesafe_host_array</a></div><div class="ttdoc">Helper class implementing an array on the host. Default case: No conversion necessary. </div><div class="ttdef"><b>Definition:</b> <a href="backend_2util_8hpp_source.html#l00092">util.hpp:92</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a4a60d31dadc06e04523a474fe067589f"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a4a60d31dadc06e04523a474fe067589f">viennacl::linalg::cuda::amg::amg_agg_merge_undecided_2</a></div><div class="ttdeci">__global__ void amg_agg_merge_undecided_2(unsigned int *point_types, unsigned int size)</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00445">amg_operations.hpp:445</a></div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1amg__tag_html_a37cf475ac353f457a3b14879a1140e14"><div class="ttname"><a href="classviennacl_1_1linalg_1_1amg__tag.html#a37cf475ac353f457a3b14879a1140e14">viennacl::linalg::amg_tag::get_coarsening_method</a></div><div class="ttdeci">amg_coarsening_method get_coarsening_method() const </div><div class="ttdoc">Returns the current coarsening strategy. </div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00088">amg_base.hpp:88</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1backend_html_a06bdedb2bc72dc1922cada91e9bbbd61"><div class="ttname"><a href="namespaceviennacl_1_1backend.html#a06bdedb2bc72dc1922cada91e9bbbd61">viennacl::backend::memory_write</a></div><div class="ttdeci">void memory_write(mem_handle &dst_buffer, vcl_size_t dst_offset, vcl_size_t bytes_to_write, const void *ptr, bool async=false)</div><div class="ttdoc">Writes data from main RAM identified by 'ptr' to the buffer identified by 'dst_buffer'. </div><div class="ttdef"><b>Definition:</b> <a href="memory_8hpp_source.html#l00220">memory.hpp:220</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_a53a39f11907d9098e6f144c87998fe5e"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#a53a39f11907d9098e6f144c87998fe5e">viennacl::traits::stride1</a></div><div class="ttdeci">result_of::size_type< matrix_base< NumericT > >::type stride1(matrix_base< NumericT > const &s)</div><div class="ttdef"><b>Definition:</b> <a href="stride_8hpp_source.html#l00055">stride.hpp:55</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_html_a4117795095db49147ba7305d3e0a1af5"><div class="ttname"><a href="namespaceviennacl_1_1linalg.html#a4117795095db49147ba7305d3e0a1af5">viennacl::linalg::sum</a></div><div class="ttdeci">viennacl::scalar_expression< const viennacl::vector_base< NumericT >, const viennacl::vector_base< NumericT >, viennacl::op_sum > sum(viennacl::vector_base< NumericT > const &x)</div><div class="ttdoc">User interface function for computing the sum of all elements of a vector. </div><div class="ttdef"><b>Definition:</b> <a href="sum_8hpp_source.html#l00045">sum.hpp:45</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_acff2449ac77ddd8c483db7f168b54ca6"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#acff2449ac77ddd8c483db7f168b54ca6">viennacl::linalg::cuda::amg::compressed_matrix_smooth_jacobi_kernel</a></div><div class="ttdeci">__global__ void compressed_matrix_smooth_jacobi_kernel(const unsigned int *row_indices, const unsigned int *column_indices, const NumericT *elements, NumericT weight, const NumericT *x_old, NumericT *x_new, const NumericT *rhs, unsigned int size)</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00749">amg_operations.hpp:749</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context_html"><div class="ttname"><a href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html">viennacl::linalg::detail::amg::amg_level_context</a></div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00167">amg_base.hpp:167</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_ad251eca20f99e452229d76237d791a0e"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ad251eca20f99e452229d76237d791a0e">viennacl::linalg::cuda::amg::amg_influence_advanced</a></div><div class="ttdeci">void amg_influence_advanced(compressed_matrix< NumericT > const &A, viennacl::linalg::detail::amg::amg_level_context &amg_context, viennacl::linalg::amg_tag &tag)</div><div class="ttdoc">Routine for extracting strongly connected points considering a user-provided threshold value...</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00094">amg_operations.hpp:94</a></div></div>
<div class="ttc" id="classviennacl_1_1compressed__matrix_html_a463cf1739f9cdd387aa185cb574db183"><div class="ttname"><a href="classviennacl_1_1compressed__matrix.html#a463cf1739f9cdd387aa185cb574db183">viennacl::compressed_matrix::size1</a></div><div class="ttdeci">const vcl_size_t & size1() const </div><div class="ttdoc">Returns the number of rows. </div><div class="ttdef"><b>Definition:</b> <a href="compressed__matrix_8hpp_source.html#l00927">compressed_matrix.hpp:927</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_ad5ee409e7f7e64210c17025092da89cd"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ad5ee409e7f7e64210c17025092da89cd">viennacl::linalg::cuda::amg::amg_pmis2_mark_mis_nodes</a></div><div class="ttdeci">__global__ void amg_pmis2_mark_mis_nodes(IndexT const *work_state, IndexT const *work_index, IndexT *point_types, IndexT *undecided_buffer, unsigned int size)</div><div class="ttdoc">CUDA kernel for marking MIS and non-MIS nodes. </div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00229">amg_operations.hpp:229</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_aedc426f055f1b4c5d00111cc8a46e50d"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#aedc426f055f1b4c5d00111cc8a46e50d">viennacl::traits::internal_size1</a></div><div class="ttdeci">vcl_size_t internal_size1(matrix_base< NumericT > const &mat)</div><div class="ttdoc">Helper routine for obtaining the internal number of entries per row of a ViennaCL matrix...</div><div class="ttdef"><b>Definition:</b> <a href="size_8hpp_source.html#l00386">size.hpp:386</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_aa756f5d6820722094cae0d8b9bb6d5e2"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#aa756f5d6820722094cae0d8b9bb6d5e2">viennacl::traits::size1</a></div><div class="ttdeci">vcl_size_t size1(MatrixType const &mat)</div><div class="ttdoc">Generic routine for obtaining the number of rows of a matrix (ViennaCL, uBLAS, etc.) </div><div class="ttdef"><b>Definition:</b> <a href="size_8hpp_source.html#l00163">size.hpp:163</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_ae34c65a23e53597faff3357364fc4c2d"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ae34c65a23e53597faff3357364fc4c2d">viennacl::linalg::cuda::amg::amg_pmis2_init_workdata</a></div><div class="ttdeci">__global__ void amg_pmis2_init_workdata(IndexT *work_state, IndexT *work_random, IndexT *work_index, IndexT const *point_types, IndexT const *random_weights, unsigned int size)</div><div class="ttdoc">CUDA kernel initializing the work vectors at each PMIS iteration. </div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00139">amg_operations.hpp:139</a></div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1amg__tag_html_ac040fe4a5f3a3ac02bcc951d6a72837b"><div class="ttname"><a href="classviennacl_1_1linalg_1_1amg__tag.html#ac040fe4a5f3a3ac02bcc951d6a72837b">viennacl::linalg::amg_tag::get_jacobi_weight</a></div><div class="ttdeci">double get_jacobi_weight() const </div><div class="ttdoc">Returns the Jacobi smoother weight (damping). </div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00113">amg_base.hpp:113</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_a2cd7269b5d00b5ebadab1c4b5a94a7c1"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#a2cd7269b5d00b5ebadab1c4b5a94a7c1">viennacl::traits::internal_size2</a></div><div class="ttdeci">vcl_size_t internal_size2(matrix_base< NumericT > const &mat)</div><div class="ttdoc">Helper routine for obtaining the internal number of entries per column of a ViennaCL matrix...</div><div class="ttdef"><b>Definition:</b> <a href="size_8hpp_source.html#l00394">size.hpp:394</a></div></div>
<div class="ttc" id="classviennacl_1_1matrix__base_html"><div class="ttname"><a href="classviennacl_1_1matrix__base.html">viennacl::matrix_base< NumericT ></a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_a09997870f4802fa5d4ac2c43cf4020d1"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a></div><div class="ttdeci">result_of::size_type< viennacl::vector_base< T > >::type stride(viennacl::vector_base< T > const &s)</div><div class="ttdef"><b>Definition:</b> <a href="stride_8hpp_source.html#l00045">stride.hpp:45</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_ae601425decc5f1a8763ab5272e9e492f"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#ae601425decc5f1a8763ab5272e9e492f">viennacl::traits::start1</a></div><div class="ttdeci">result_of::size_type< T >::type start1(T const &obj)</div><div class="ttdef"><b>Definition:</b> <a href="start_8hpp_source.html#l00065">start.hpp:65</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a9cb19def4af89cc7d5e58b7599d5c2d6"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9cb19def4af89cc7d5e58b7599d5c2d6">viennacl::linalg::cuda::amg::amg_interpol_ag</a></div><div class="ttdeci">void amg_interpol_ag(compressed_matrix< NumericT > const &A, compressed_matrix< NumericT > &P, viennacl::linalg::detail::amg::amg_level_context &amg_context, viennacl::linalg::amg_tag &tag)</div><div class="ttdoc">AG (aggregation based) interpolation. Multi-Threaded! (VIENNACL_INTERPOL_SA) </div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00572">amg_operations.hpp:572</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1backend_html_a62854cfd6f04404b274f8ede36f63e2d"><div class="ttname"><a href="namespaceviennacl_1_1backend.html#a62854cfd6f04404b274f8ede36f63e2d">viennacl::backend::memory_read</a></div><div class="ttdeci">void memory_read(mem_handle const &src_buffer, vcl_size_t src_offset, vcl_size_t bytes_to_read, void *ptr, bool async=false)</div><div class="ttdoc">Reads data from a buffer back to main RAM. </div><div class="ttdef"><b>Definition:</b> <a href="memory_8hpp_source.html#l00261">memory.hpp:261</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_html_a9933216144a64dbd433ec02c95bbfdd7a31dbd459c3ba8068280a6ec1bca00482"><div class="ttname"><a href="namespaceviennacl_1_1linalg.html#a9933216144a64dbd433ec02c95bbfdd7a31dbd459c3ba8068280a6ec1bca00482">viennacl::linalg::AMG_INTERPOLATION_METHOD_AGGREGATION</a></div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00057">amg_base.hpp:57</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a0397785aabbeaa292cf3fbfe0d758dc1"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a0397785aabbeaa292cf3fbfe0d758dc1">viennacl::linalg::cuda::amg::amg_coarse</a></div><div class="ttdeci">void amg_coarse(InternalT1 &A, viennacl::linalg::detail::amg::amg_level_context &amg_context, viennacl::linalg::amg_tag &tag)</div><div class="ttdoc">Calls the right coarsening procedure. </div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00526">amg_operations.hpp:526</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_a3658e7c29ac0f60a20cb5871f5b5fd98"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#a3658e7c29ac0f60a20cb5871f5b5fd98">viennacl::traits::size2</a></div><div class="ttdeci">result_of::size_type< MatrixType >::type size2(MatrixType const &mat)</div><div class="ttdoc">Generic routine for obtaining the number of columns of a matrix (ViennaCL, uBLAS, etc...</div><div class="ttdef"><b>Definition:</b> <a href="size_8hpp_source.html#l00201">size.hpp:201</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_affaef0634b3cfec5a940b278051cb21d"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#affaef0634b3cfec5a940b278051cb21d">viennacl::linalg::cuda::amg::amg_agg_merge_undecided</a></div><div class="ttdeci">__global__ void amg_agg_merge_undecided(IndexT *point_types, IndexT *coarse_ids, IndexT const *influences_row, IndexT const *influences_id, unsigned int size)</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00416">amg_operations.hpp:416</a></div></div>
<div class="ttc" id="classviennacl_1_1compressed__matrix_html_a87a0ad5f26983b1c2d24ee302d886562"><div class="ttname"><a href="classviennacl_1_1compressed__matrix.html#a87a0ad5f26983b1c2d24ee302d886562">viennacl::compressed_matrix::handle</a></div><div class="ttdeci">const handle_type & handle() const </div><div class="ttdoc">Returns the OpenCL handle to the matrix entry array. </div><div class="ttdef"><b>Definition:</b> <a href="compressed__matrix_8hpp_source.html#l00942">compressed_matrix.hpp:942</a></div></div>
<div class="ttc" id="classviennacl_1_1compressed__matrix_html_af71dec61a70e8df4f78a527aa989a106"><div class="ttname"><a href="classviennacl_1_1compressed__matrix.html#af71dec61a70e8df4f78a527aa989a106">viennacl::compressed_matrix::handle1</a></div><div class="ttdeci">const handle_type & handle1() const </div><div class="ttdoc">Returns the OpenCL handle to the row index array. </div><div class="ttdef"><b>Definition:</b> <a href="compressed__matrix_8hpp_source.html#l00936">compressed_matrix.hpp:936</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_html_a3ba810acdca541a5eada4560982a645ca0d4c883a9aa8a8514fb260ac404e3c8b"><div class="ttname"><a href="namespaceviennacl_1_1linalg.html#a3ba810acdca541a5eada4560982a645ca0d4c883a9aa8a8514fb260ac404e3c8b">viennacl::linalg::AMG_COARSENING_METHOD_MIS2_AGGREGATION</a></div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00050">amg_base.hpp:50</a></div></div>
<div class="ttc" id="classviennacl_1_1compressed__matrix_html_ae69ca21ded644fdd0c7a5168011b13ed"><div class="ttname"><a href="classviennacl_1_1compressed__matrix.html#ae69ca21ded644fdd0c7a5168011b13ed">viennacl::compressed_matrix::nnz</a></div><div class="ttdeci">const vcl_size_t & nnz() const </div><div class="ttdoc">Returns the number of nonzero entries. </div><div class="ttdef"><b>Definition:</b> <a href="compressed__matrix_8hpp_source.html#l00931">compressed_matrix.hpp:931</a></div></div>
<div class="ttc" id="tests_2src_2bisect_8cpp_html_a52b5d30a2d7b064678644a3bf49b7f6c"><div class="ttname"><a href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a></div><div class="ttdeci">float NumericT</div><div class="ttdef"><b>Definition:</b> <a href="tests_2src_2bisect_8cpp_source.html#l00040">bisect.cpp:40</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a2d8aec3a05feaaff512af0bcf5e94ccd"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a2d8aec3a05feaaff512af0bcf5e94ccd">viennacl::linalg::cuda::amg::amg_influence_trivial_kernel</a></div><div class="ttdeci">__global__ void amg_influence_trivial_kernel(const unsigned int *row_indices, const unsigned int *column_indices, unsigned int size1, unsigned int nnz, unsigned int *influences_row, unsigned int *influences_id, unsigned int *influences_values)</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00044">amg_operations.hpp:44</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a9fce75799e03103c73d005c09ac361e2"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9fce75799e03103c73d005c09ac361e2">viennacl::linalg::cuda::amg::amg_interpol</a></div><div class="ttdeci">void amg_interpol(MatrixT const &A, MatrixT &P, viennacl::linalg::detail::amg::amg_level_context &amg_context, viennacl::linalg::amg_tag &tag)</div><div class="ttdoc">Dispatcher for building the interpolation matrix. </div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00693">amg_operations.hpp:693</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a88cc74771dab339b07e06d16500dccb1"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a88cc74771dab339b07e06d16500dccb1">viennacl::linalg::cuda::amg::amg_interpol_sa_kernel</a></div><div class="ttdeci">__global__ void amg_interpol_sa_kernel(const unsigned int *A_row_indices, const unsigned int *A_col_indices, const NumericT *A_elements, unsigned int A_size1, unsigned int A_nnz, unsigned int *Jacobi_row_indices, unsigned int *Jacobi_col_indices, NumericT *Jacobi_elements, NumericT omega)</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00594">amg_operations.hpp:594</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_html_aa18d10f8a90e38bd9ff43c650fc670ef"><div class="ttname"><a href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a></div><div class="ttdeci">VectorT prod(std::vector< std::vector< T, A1 >, A2 > const &matrix, VectorT const &vector)</div><div class="ttdef"><b>Definition:</b> <a href="prod_8hpp_source.html#l00102">prod.hpp:102</a></div></div>
<div class="ttc" id="classviennacl_1_1compressed__matrix_html_ab5922a97b73b869fbeeb6a2fa40e3b06"><div class="ttname"><a href="classviennacl_1_1compressed__matrix.html#ab5922a97b73b869fbeeb6a2fa40e3b06">viennacl::compressed_matrix::generate_row_block_information</a></div><div class="ttdeci">void generate_row_block_information()</div><div class="ttdoc">Builds the row block information needed for fast sparse matrix-vector multiplications. </div><div class="ttdef"><b>Definition:</b> <a href="compressed__matrix_8hpp_source.html#l00999">compressed_matrix.hpp:999</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_aa2344ea20469f55fbc15a8e9526494d0"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a></div><div class="ttdeci">vcl_size_t size(VectorType const &vec)</div><div class="ttdoc">Generic routine for obtaining the size of a vector (ViennaCL, uBLAS, etc.) </div><div class="ttdef"><b>Definition:</b> <a href="size_8hpp_source.html#l00239">size.hpp:239</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_ac53fc8cc9836953dc87aaaaa56f382c2"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#ac53fc8cc9836953dc87aaaaa56f382c2">viennacl::traits::start2</a></div><div class="ttdeci">result_of::size_type< T >::type start2(T const &obj)</div><div class="ttdef"><b>Definition:</b> <a href="start_8hpp_source.html#l00084">start.hpp:84</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_html_a9933216144a64dbd433ec02c95bbfdd7afcffee5ed6e7ad032a9ffebe615b5932"><div class="ttname"><a href="namespaceviennacl_1_1linalg.html#a9933216144a64dbd433ec02c95bbfdd7afcffee5ed6e7ad032a9ffebe615b5932">viennacl::linalg::AMG_INTERPOLATION_METHOD_SMOOTHED_AGGREGATION</a></div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00058">amg_base.hpp:58</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context_html_aac5a6ef480cf58fb8fa490760bb94e35"><div class="ttname"><a href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aac5a6ef480cf58fb8fa490760bb94e35">viennacl::linalg::detail::amg::amg_level_context::num_coarse_</a></div><div class="ttdeci">unsigned int num_coarse_</div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00199">amg_base.hpp:199</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_ac6c4463d335fc3dd604639b87ed6229d"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac6c4463d335fc3dd604639b87ed6229d">viennacl::linalg::cuda::amg::assign_to_dense</a></div><div class="ttdeci">void assign_to_dense(viennacl::compressed_matrix< NumericT, AlignmentV > const &A, viennacl::matrix_base< NumericT > &B)</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00730">amg_operations.hpp:730</a></div></div>
<div class="ttc" id="classviennacl_1_1compressed__matrix_html_a91f5145351151a66f916bdc3901206f2"><div class="ttname"><a href="classviennacl_1_1compressed__matrix.html#a91f5145351151a66f916bdc3901206f2">viennacl::compressed_matrix::handle2</a></div><div class="ttdeci">const handle_type & handle2() const </div><div class="ttdoc">Returns the OpenCL handle to the column index array. </div><div class="ttdef"><b>Definition:</b> <a href="compressed__matrix_8hpp_source.html#l00938">compressed_matrix.hpp:938</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a24916ce5eec2c7fa4b4542a4c082e75e"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a24916ce5eec2c7fa4b4542a4c082e75e">viennacl::linalg::cuda::amg::amg_coarse_ag_stage1_mis2</a></div><div class="ttdeci">void amg_coarse_ag_stage1_mis2(compressed_matrix< NumericT > const &A, viennacl::linalg::detail::amg::amg_level_context &amg_context, viennacl::linalg::amg_tag &tag)</div><div class="ttdoc">AG (aggregation based) coarsening, single-threaded version of stage 1. </div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00290">amg_operations.hpp:290</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a696559c185d8b0ff86edc633f6cbc643"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a696559c185d8b0ff86edc633f6cbc643">viennacl::linalg::cuda::amg::amg_interpol_ag_kernel</a></div><div class="ttdeci">__global__ void amg_interpol_ag_kernel(unsigned int *P_row_buffer, unsigned int *P_col_buffer, NumericT *P_elements, unsigned int *coarse_ids, unsigned int size)</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00543">amg_operations.hpp:543</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_aed74cfedec05f6e080eee9abdd60f123"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#aed74cfedec05f6e080eee9abdd60f123">viennacl::linalg::cuda::amg::smooth_jacobi</a></div><div class="ttdeci">void smooth_jacobi(unsigned int iterations, compressed_matrix< NumericT > const &A, vector< NumericT > &x, vector< NumericT > &x_backup, vector< NumericT > const &rhs_smooth, NumericT weight)</div><div class="ttdoc">Damped Jacobi Smoother (CUDA version) </div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00791">amg_operations.hpp:791</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context_html_aa97530b4793135fb8d5e71010c8ff637adf77f4d874aa905e58b1d01448d599b7"><div class="ttname"><a href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637adf77f4d874aa905e58b1d01448d599b7">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_UNDECIDED</a></div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00189">amg_base.hpp:189</a></div></div>
<div class="ttc" id="classviennacl_1_1vector_html"><div class="ttname"><a href="classviennacl_1_1vector.html">viennacl::vector< unsigned int ></a></div></div>
<div class="ttc" id="namespaceviennacl_html_a507d2ac469c79997f2bb6e82b37b7483"><div class="ttname"><a href="namespaceviennacl.html#a507d2ac469c79997f2bb6e82b37b7483">viennacl::diag</a></div><div class="ttdeci">vector_expression< const matrix_base< NumericT >, const int, op_matrix_diag > diag(const matrix_base< NumericT > &A, int k=0)</div><div class="ttdef"><b>Definition:</b> <a href="matrix_8hpp_source.html#l00895">matrix.hpp:895</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a72f36c48c3a517297e28ec9b87aea14f"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a72f36c48c3a517297e28ec9b87aea14f">viennacl::linalg::cuda::amg::amg_agg_propagate_coarse_indices</a></div><div class="ttdeci">__global__ void amg_agg_propagate_coarse_indices(IndexT *point_types, IndexT *coarse_ids, IndexT const *influences_row, IndexT const *influences_id, unsigned int size)</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00386">amg_operations.hpp:386</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_ace596004f16c075adbfcd329e6c60e91"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#ace596004f16c075adbfcd329e6c60e91">viennacl::traits::stride2</a></div><div class="ttdeci">result_of::size_type< matrix_base< NumericT > >::type stride2(matrix_base< NumericT > const &s)</div><div class="ttdef"><b>Definition:</b> <a href="stride_8hpp_source.html#l00065">stride.hpp:65</a></div></div>
<div class="ttc" id="namespaceviennacl_html_a0a574e6cd04ca0e42298b4ab845700e4"><div class="ttname"><a href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">viennacl::row</a></div><div class="ttdeci">vector_expression< const matrix_base< NumericT, F >, const unsigned int, op_row > row(const matrix_base< NumericT, F > &A, unsigned int i)</div><div class="ttdef"><b>Definition:</b> <a href="matrix_8hpp_source.html#l00910">matrix.hpp:910</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context_html_aa97530b4793135fb8d5e71010c8ff637af803b8af4a6abdaf3d0fd08c18da6de6"><div class="ttname"><a href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637af803b8af4a6abdaf3d0fd08c18da6de6">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_FINE</a></div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00191">amg_base.hpp:191</a></div></div>
<div class="ttc" id="namespaceviennacl_html_a00b40450b6b2fd87aad3527d9b2084b8a427356f0fb1b8d32b28f37e36b272df4"><div class="ttname"><a href="namespaceviennacl.html#a00b40450b6b2fd87aad3527d9b2084b8a427356f0fb1b8d32b28f37e36b272df4">viennacl::MAIN_MEMORY</a></div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00348">forwards.h:348</a></div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1amg__tag_html"><div class="ttname"><a href="classviennacl_1_1linalg_1_1amg__tag.html">viennacl::linalg::amg_tag</a></div><div class="ttdoc">A tag for algebraic multigrid (AMG). Used to transport information from the user to the implementatio...</div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00064">amg_base.hpp:64</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_a6707f5dab8f482170d2046a605f46ef8"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a></div><div class="ttdeci">viennacl::context context(T const &t)</div><div class="ttdoc">Returns an ID for the currently active memory domain of an object. </div><div class="ttdef"><b>Definition:</b> <a href="traits_2context_8hpp_source.html#l00040">context.hpp:40</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a9cc8c1d739430a807751738aa5559a32"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a9cc8c1d739430a807751738aa5559a32">viennacl::linalg::cuda::amg::amg_interpol_sa</a></div><div class="ttdeci">void amg_interpol_sa(compressed_matrix< NumericT > const &A, compressed_matrix< NumericT > &P, viennacl::linalg::detail::amg::amg_level_context &amg_context, viennacl::linalg::amg_tag &tag)</div><div class="ttdoc">Smoothed aggregation interpolation. (VIENNACL_INTERPOL_SA) </div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00654">amg_operations.hpp:654</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__base_html_a15c47ae4326098aeaa4ed6b91fc6df9b"><div class="ttname"><a href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">viennacl::vector_base::size</a></div><div class="ttdeci">size_type size() const </div><div class="ttdoc">Returns the length of the vector (cf. std::vector) </div><div class="ttdef"><b>Definition:</b> <a href="vector__def_8hpp_source.html#l00118">vector_def.hpp:118</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context_html_a8856e6db54e88c12e2ac728b5fcbe1e4"><div class="ttname"><a href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a8856e6db54e88c12e2ac728b5fcbe1e4">viennacl::linalg::detail::amg::amg_level_context::point_types_</a></div><div class="ttdeci">viennacl::vector< unsigned int > point_types_</div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00197">amg_base.hpp:197</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a644a8509ef334ceb151a8ffa6d8f6111"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a644a8509ef334ceb151a8ffa6d8f6111">viennacl::linalg::cuda::amg::compressed_matrix_assign_to_dense</a></div><div class="ttdeci">__global__ void compressed_matrix_assign_to_dense(const unsigned int *row_indices, const unsigned int *column_indices, const NumericT *elements, NumericT *B, unsigned int B_row_start, unsigned int B_col_start, unsigned int B_row_inc, unsigned int B_col_inc, unsigned int B_row_size, unsigned int B_col_size, unsigned int B_internal_rows, unsigned int B_internal_cols)</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00708">amg_operations.hpp:708</a></div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1amg__tag_html_afb4b14cf0b9e99161fa8c1da4647ad0d"><div class="ttname"><a href="classviennacl_1_1linalg_1_1amg__tag.html#afb4b14cf0b9e99161fa8c1da4647ad0d">viennacl::linalg::amg_tag::get_interpolation_method</a></div><div class="ttdeci">amg_interpolation_method get_interpolation_method() const </div><div class="ttdoc">Returns the current interpolation method. </div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00093">amg_base.hpp:93</a></div></div>
<div class="ttc" id="classviennacl_1_1backend_1_1mem__handle_html_ac8373f0d899b89c843e14de4cb7a1c4a"><div class="ttname"><a href="classviennacl_1_1backend_1_1mem__handle.html#ac8373f0d899b89c843e14de4cb7a1c4a">viennacl::backend::mem_handle::raw_size</a></div><div class="ttdeci">vcl_size_t raw_size() const </div><div class="ttdoc">Returns the number of bytes of the currently active buffer. </div><div class="ttdef"><b>Definition:</b> <a href="mem__handle_8hpp_source.html#l00230">mem_handle.hpp:230</a></div></div>
<div class="ttc" id="classviennacl_1_1compressed__matrix_html"><div class="ttname"><a href="classviennacl_1_1compressed__matrix.html">viennacl::compressed_matrix< NumericT ></a></div></div>
<div class="ttc" id="linalg_2cuda_2common_8hpp_html_acdb31f22f4d1e12f1c2a27d4c4aa6865"><div class="ttname"><a href="linalg_2cuda_2common_8hpp.html#acdb31f22f4d1e12f1c2a27d4c4aa6865">VIENNACL_CUDA_LAST_ERROR_CHECK</a></div><div class="ttdeci">#define VIENNACL_CUDA_LAST_ERROR_CHECK(message)</div><div class="ttdef"><b>Definition:</b> <a href="linalg_2cuda_2common_8hpp_source.html#l00030">common.hpp:30</a></div></div>
<div class="ttc" id="namespaceviennacl_html_ae7d5db0c2c91be75218db5b52c4d13da"><div class="ttname"><a href="namespaceviennacl.html#ae7d5db0c2c91be75218db5b52c4d13da">viennacl::cuda_arg</a></div><div class="ttdeci">NumericT * cuda_arg(scalar< NumericT > &obj)</div><div class="ttdoc">Convenience helper function for extracting the CUDA handle from a ViennaCL scalar. Non-const version. </div><div class="ttdef"><b>Definition:</b> <a href="linalg_2cuda_2common_8hpp_source.html#l00039">common.hpp:39</a></div></div>
<div class="ttc" id="amg__base_8hpp_html"><div class="ttname"><a href="amg__base_8hpp.html">amg_base.hpp</a></div><div class="ttdoc">Helper classes and functions for the AMG preconditioner. Experimental. </div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context_html_aa97530b4793135fb8d5e71010c8ff637afbc2c39efc86491c26c2401d06f2cc8a"><div class="ttname"><a href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa97530b4793135fb8d5e71010c8ff637afbc2c39efc86491c26c2401d06f2cc8a">viennacl::linalg::detail::amg::amg_level_context::POINT_TYPE_COARSE</a></div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00190">amg_base.hpp:190</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context_html_aa647069a4102267171e395fcfd10e7ac"><div class="ttname"><a href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#aa647069a4102267171e395fcfd10e7ac">viennacl::linalg::detail::amg::amg_level_context::coarse_id_</a></div><div class="ttdeci">viennacl::vector< unsigned int > coarse_id_</div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00198">amg_base.hpp:198</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a1c10960302d546fd274e68564f1409de"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a1c10960302d546fd274e68564f1409de">viennacl::linalg::cuda::amg::amg_pmis2_reset_state</a></div><div class="ttdeci">__global__ void amg_pmis2_reset_state(unsigned int *point_types, unsigned int size)</div><div class="ttdoc">CUDA kernel for resetting non-MIS (i.e. coarse) points to undecided so that subsequent kernels work...</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00271">amg_operations.hpp:271</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__base_html_a64e98aea5aa298ad63e3832a04c19648"><div class="ttname"><a href="classviennacl_1_1vector__base.html#a64e98aea5aa298ad63e3832a04c19648">viennacl::vector_base::handle</a></div><div class="ttdeci">const handle_type & handle() const </div><div class="ttdoc">Returns the memory handle. </div><div class="ttdef"><b>Definition:</b> <a href="vector__def_8hpp_source.html#l00128">vector_def.hpp:128</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context_html_a757fe2a72ed0d9eb3649ecda1c83129e"><div class="ttname"><a href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a757fe2a72ed0d9eb3649ecda1c83129e">viennacl::linalg::detail::amg::amg_level_context::influence_values_</a></div><div class="ttdeci">viennacl::vector< unsigned int > influence_values_</div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00196">amg_base.hpp:196</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_ac6522518fb686a2fe0bd3db0d34a3fcd"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac6522518fb686a2fe0bd3db0d34a3fcd">viennacl::linalg::cuda::amg::amg_pmis2_max_neighborhood</a></div><div class="ttdeci">__global__ void amg_pmis2_max_neighborhood(IndexT const *work_state, IndexT const *work_random, IndexT const *work_index, IndexT *work_state2, IndexT *work_random2, IndexT *work_index2, IndexT const *influences_row, IndexT const *influences_id, unsigned int size)</div><div class="ttdoc">CUDA kernel propagating the state triple (status, weight, nodeID) to neighbors using a max()-operatio...</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00167">amg_operations.hpp:167</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context_html_a262b6f406db2b16b53936b8759f83d05"><div class="ttname"><a href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#a262b6f406db2b16b53936b8759f83d05">viennacl::linalg::detail::amg::amg_level_context::influence_ids_</a></div><div class="ttdeci">viennacl::vector< unsigned int > influence_ids_</div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00195">amg_base.hpp:195</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_ac4a8f8869f8ba360558b53e40059dacb"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#ac4a8f8869f8ba360558b53e40059dacb">viennacl::linalg::cuda::amg::amg_coarse_ag</a></div><div class="ttdeci">void amg_coarse_ag(compressed_matrix< NumericT > const &A, viennacl::linalg::detail::amg::amg_level_context &amg_context, viennacl::linalg::amg_tag &tag)</div><div class="ttdoc">AG (aggregation based) coarsening. Partially single-threaded version (VIENNACL_AMG_COARSE_AG) ...</div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00466">amg_operations.hpp:466</a></div></div>
<div class="ttc" id="classviennacl_1_1vector_html_a59f2ec43f298cc04d2f2bbbeee239bfe"><div class="ttname"><a href="classviennacl_1_1vector.html#a59f2ec43f298cc04d2f2bbbeee239bfe">viennacl::vector::switch_memory_context</a></div><div class="ttdeci">void switch_memory_context(viennacl::context new_ctx)</div><div class="ttdef"><b>Definition:</b> <a href="vector_8hpp_source.html#l01064">vector.hpp:1064</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1cuda_1_1amg_html_a28e3755d2f30432e39bb842732129098"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1cuda_1_1amg.html#a28e3755d2f30432e39bb842732129098">viennacl::linalg::cuda::amg::amg_influence</a></div><div class="ttdeci">void amg_influence(compressed_matrix< NumericT > const &A, viennacl::linalg::detail::amg::amg_level_context &amg_context, viennacl::linalg::amg_tag &tag)</div><div class="ttdoc">Dispatcher for influence processing. </div><div class="ttdef"><b>Definition:</b> <a href="cuda_2amg__operations_8hpp_source.html#l00103">amg_operations.hpp:103</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context_html_ad537babcb184069cc920bfb2140860de"><div class="ttname"><a href="structviennacl_1_1linalg_1_1detail_1_1amg_1_1amg__level__context.html#ad537babcb184069cc920bfb2140860de">viennacl::linalg::detail::amg::amg_level_context::influence_jumper_</a></div><div class="ttdeci">viennacl::vector< unsigned int > influence_jumper_</div><div class="ttdef"><b>Definition:</b> <a href="amg__base_8hpp_source.html#l00194">amg_base.hpp:194</a></div></div>
</div><!-- fragment --></div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
<li class="navelem"><a class="el" href="dir_c82e3d11dd171600f4a6e0cab1ec1e0d.html">viennacl</a></li><li class="navelem"><a class="el" href="dir_63cde087767c4ed65c7901ffc6e293fe.html">linalg</a></li><li class="navelem"><a class="el" href="dir_2aede027c3fab12899418e3db60d7e7a.html">cuda</a></li><li class="navelem"><a class="el" href="cuda_2amg__operations_8hpp.html">amg_operations.hpp</a></li>
<li class="footer">Generated on Wed Jan 20 2016 22:32:40 for ViennaCL - The Vienna Computing Library by
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.6 </li>
</ul>
</div>
</body>
</html>
|