File: eigen-with-viennacl_8cpp-example.html

package info (click to toggle)
viennacl 1.7.1%2Bdfsg1-6
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 114,428 kB
  • sloc: sh: 454,206; cpp: 109,088; ansic: 2,103; perl: 104; makefile: 22
file content (442 lines) | stat: -rw-r--r-- 36,665 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.6"/>
<title>ViennaCL - The Vienna Computing Library: eigen-with-viennacl.cpp</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
  $(document).ready(initResizable);
  $(window).load(resizeHeight);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
  $(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td style="padding-left: 0.5em;">
   <div id="projectname">ViennaCL - The Vienna Computing Library
   &#160;<span id="projectnumber">1.7.1</span>
   </div>
   <div id="projectbrief">Free open-source GPU-accelerated linear algebra and solver library.</div>
  </td>
   <td>        <div id="MSearchBox" class="MSearchBoxInactive">
        <span class="left">
          <img id="MSearchSelect" src="search/mag_sel.png"
               onmouseover="return searchBox.OnSearchSelectShow()"
               onmouseout="return searchBox.OnSearchSelectHide()"
               alt=""/>
          <input type="text" id="MSearchField" value="Search" accesskey="S"
               onfocus="searchBox.OnSearchFieldFocus(true)" 
               onblur="searchBox.OnSearchFieldFocus(false)" 
               onkeyup="searchBox.OnSearchFieldChange(event)"/>
          </span><span class="right">
            <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
          </span>
        </div>
</td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.6 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
  <div id="nav-tree">
    <div id="nav-tree-contents">
      <div id="nav-sync" class="sync"></div>
    </div>
  </div>
  <div id="splitbar" style="-moz-user-select:none;" 
       class="ui-resizable-handle">
  </div>
</div>
<script type="text/javascript">
$(document).ready(function(){initNavTree('eigen-with-viennacl_8cpp-example.html','');});
</script>
<div id="doc-content">
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark">&#160;</span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark">&#160;</span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark">&#160;</span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(9)"><span class="SelectionMark">&#160;</span>Friends</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(10)"><span class="SelectionMark">&#160;</span>Macros</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(11)"><span class="SelectionMark">&#160;</span>Pages</a></div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div class="header">
  <div class="headertitle">
<div class="title">eigen-with-viennacl.cpp</div>  </div>
</div><!--header-->
<div class="contents">
<p>This tutorial shows how data can be directly transferred from the <a href="http://eigen.tuxfamily.org/">Eigen Library</a> to ViennaCL objects using the built-in convenience wrappers.</p>
<p>The first step is to include the necessary headers and activate the Eigen convenience functions in ViennaCL: </p>
<div class="fragment"><div class="line"><span class="comment">// System headers</span></div>
<div class="line"><span class="preprocessor">#include &lt;iostream&gt;</span></div>
<div class="line"></div>
<div class="line"><span class="comment">// Eigen headers</span></div>
<div class="line"><span class="preprocessor">#include &lt;Eigen/Core&gt;</span></div>
<div class="line"><span class="preprocessor">#include &lt;Eigen/Sparse&gt;</span></div>
<div class="line"></div>
<div class="line"><span class="comment">// IMPORTANT: Must be set prior to any ViennaCL includes if you want to use ViennaCL algorithms on Eigen objects</span></div>
<div class="line"><span class="preprocessor">#define VIENNACL_WITH_EIGEN 1</span></div>
<div class="line"></div>
<div class="line"></div>
<div class="line"><span class="comment">// ViennaCL includes</span></div>
<div class="line"><span class="preprocessor">#include &quot;<a class="code" href="vector_8hpp.html">viennacl/vector.hpp</a>&quot;</span></div>
<div class="line"><span class="preprocessor">#include &quot;<a class="code" href="matrix_8hpp.html">viennacl/matrix.hpp</a>&quot;</span></div>
<div class="line"><span class="preprocessor">#include &quot;<a class="code" href="compressed__matrix_8hpp.html">viennacl/compressed_matrix.hpp</a>&quot;</span></div>
<div class="line"><span class="preprocessor">#include &quot;<a class="code" href="prod_8hpp.html">viennacl/linalg/prod.hpp</a>&quot;</span></div>
<div class="line"></div>
<div class="line"></div>
<div class="line"><span class="comment">// Helper functions for this tutorial:</span></div>
<div class="line"><span class="preprocessor">#include &quot;<a class="code" href="vector-io_8hpp.html">vector-io.hpp</a>&quot;</span></div>
</div><!-- fragment --><p> The following is a set of auxiliary dispatchers for obtaining the right Eigen types for a given floating point type. This is merely an implementation detail, so feel free to skip over it. </p>
<div class="fragment"><div class="line"><span class="comment">//dense matrix:</span></div>
<div class="line"><span class="keyword">template</span>&lt;<span class="keyword">typename</span> T&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_dense_matrix</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> <span class="keyword">typename</span> T::ERROR_NO_EIGEN_TYPE_AVAILABLE   error_type;</div>
<div class="line">};</div>
<div class="line"></div>
<div class="line"><span class="keyword">template</span>&lt;&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_dense_matrix&lt;float&gt;</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> Eigen::MatrixXf  type;</div>
<div class="line">};</div>
<div class="line"></div>
<div class="line"><span class="keyword">template</span>&lt;&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_dense_matrix&lt;double&gt;</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> Eigen::MatrixXd  type;</div>
<div class="line">};</div>
<div class="line"></div>
<div class="line"></div>
<div class="line"><span class="comment">//sparse matrix</span></div>
<div class="line"><span class="keyword">template</span>&lt;<span class="keyword">typename</span> T&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_vector</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> <span class="keyword">typename</span> T::ERROR_NO_EIGEN_TYPE_AVAILABLE   error_type;</div>
<div class="line">};</div>
<div class="line"></div>
<div class="line"><span class="keyword">template</span>&lt;&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_vector&lt;float&gt;</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> Eigen::VectorXf  type;</div>
<div class="line">};</div>
<div class="line"></div>
<div class="line"><span class="keyword">template</span>&lt;&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_vector&lt;double&gt;</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> Eigen::VectorXd  type;</div>
<div class="line">};</div>
</div><!-- fragment --><p> The following function contains the main code for this tutorial. It consists of the following steps:</p>
<ul>
<li>Creates Eigen matrices and vectors</li>
<li>Initializes them with data</li>
<li>Create ViennaCL objects</li>
<li>Copy them over to the respective ViennaCL objects</li>
<li>Compute matrix-vector products in both Eigen and ViennaCL and compare results.</li>
</ul>
<div class="fragment"><div class="line"><span class="keyword">template</span>&lt;<span class="keyword">typename</span> ScalarType&gt;</div>
<div class="line"><span class="keywordtype">void</span> run_tutorial()</div>
<div class="line">{</div>
</div><!-- fragment --><p> Get Eigen matrix and vector types for the provided ScalarType. Involves a little bit of template-metaprogramming. </p>
<div class="fragment"><div class="line"><span class="keyword">typedef</span> <span class="keyword">typename</span> Eigen_dense_matrix&lt;ScalarType&gt;::type  EigenMatrix;</div>
<div class="line"><span class="keyword">typedef</span> <span class="keyword">typename</span> Eigen_vector&lt;ScalarType&gt;::type        EigenVector;</div>
</div><!-- fragment --><p> Create and fill dense matrices from the Eigen library: </p>
<div class="fragment"><div class="line">EigenMatrix eigen_densemat(6, 5);</div>
<div class="line">EigenMatrix eigen_densemat2(6, 5);</div>
<div class="line">eigen_densemat(0,0) = 2.0;   eigen_densemat(0,1) = -1.0;</div>
<div class="line">eigen_densemat(1,0) = -1.0;  eigen_densemat(1,1) =  2.0;  eigen_densemat(1,2) = -1.0;</div>
<div class="line">eigen_densemat(2,1) = -1.0;  eigen_densemat(2,2) = -1.0;  eigen_densemat(2,3) = -1.0;</div>
<div class="line">eigen_densemat(3,2) = -1.0;  eigen_densemat(3,3) =  2.0;  eigen_densemat(3,4) = -1.0;</div>
<div class="line">                             eigen_densemat(5,4) = -1.0;  eigen_densemat(4,4) = -1.0;</div>
<div class="line">Eigen::Map&lt;EigenMatrix&gt; eigen_densemat_map(eigen_densemat.data(), 6, 5); <span class="comment">// same as eigen_densemat, but emulating user-provided buffer</span></div>
</div><!-- fragment --><p> Create and fill sparse matrices from the Eigen library: </p>
<div class="fragment"><div class="line">Eigen::SparseMatrix&lt;ScalarType, Eigen::RowMajor&gt; eigen_sparsemat(6, 5);</div>
<div class="line">Eigen::SparseMatrix&lt;ScalarType, Eigen::RowMajor&gt; eigen_sparsemat2(6, 5);</div>
<div class="line">eigen_sparsemat.reserve(5*2);</div>
<div class="line">eigen_sparsemat.insert(0,0) = 2.0;   eigen_sparsemat.insert(0,1) = -1.0;</div>
<div class="line">eigen_sparsemat.insert(1,1) = 2.0;   eigen_sparsemat.insert(1,2) = -1.0;</div>
<div class="line">eigen_sparsemat.insert(2,2) = -1.0;  eigen_sparsemat.insert(2,3) = -1.0;</div>
<div class="line">eigen_sparsemat.insert(3,3) = 2.0;   eigen_sparsemat.insert(3,4) = -1.0;</div>
<div class="line">eigen_sparsemat.insert(5,4) = -1.0;</div>
<div class="line"><span class="comment">//eigen_sparsemat.endFill();</span></div>
</div><!-- fragment --><p> Create and fill a few vectors from the Eigen library: </p>
<div class="fragment"><div class="line">EigenVector eigen_rhs(5);</div>
<div class="line">Eigen::Map&lt;EigenVector&gt; eigen_rhs_map(eigen_rhs.data(), 5);</div>
<div class="line">EigenVector eigen_result(6);</div>
<div class="line">EigenVector eigen_temp(6);</div>
<div class="line"></div>
<div class="line">eigen_rhs(0) = 10.0;</div>
<div class="line">eigen_rhs(1) = 11.0;</div>
<div class="line">eigen_rhs(2) = 12.0;</div>
<div class="line">eigen_rhs(3) = 13.0;</div>
<div class="line">eigen_rhs(4) = 14.0;</div>
</div><!-- fragment --><p> Create the corresponding ViennaCL objects: </p>
<div class="fragment"><div class="line"><a name="_a0"></a><a class="code" href="classviennacl_1_1vector.html">viennacl::vector&lt;ScalarType&gt;</a> vcl_rhs(5);</div>
<div class="line"><a class="code" href="classviennacl_1_1vector.html">viennacl::vector&lt;ScalarType&gt;</a> vcl_result(6);</div>
<div class="line"><a name="_a1"></a><a class="code" href="classviennacl_1_1matrix.html">viennacl::matrix&lt;ScalarType&gt;</a> vcl_densemat(6, 5);</div>
<div class="line"><a name="_a2"></a><a class="code" href="classviennacl_1_1compressed__matrix.html">viennacl::compressed_matrix&lt;ScalarType&gt;</a> vcl_sparsemat(6, 5);</div>
</div><!-- fragment --><p> Directly copy the Eigen objects to ViennaCL objects </p>
<div class="fragment"><div class="line"><a name="a3"></a><a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(&amp;(eigen_rhs[0]), &amp;(eigen_rhs[0]) + 5, vcl_rhs.begin());  <span class="comment">// Method 1: via iterator interface (cf. std::copy())</span></div>
<div class="line"><a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigen_rhs, vcl_rhs);                                     <span class="comment">// Method 2: via built-in wrappers (convenience layer)</span></div>
<div class="line"><a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigen_rhs_map, vcl_rhs);                                 <span class="comment">// Same as method 2, but for a mapped vector</span></div>
<div class="line"></div>
<div class="line"><a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigen_densemat, vcl_densemat);</div>
<div class="line"><a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigen_densemat_map, vcl_densemat); <span class="comment">//same as above, using mapped matrix</span></div>
<div class="line"><a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigen_sparsemat, vcl_sparsemat);</div>
<div class="line">std::cout &lt;&lt; <span class="stringliteral">&quot;VCL sparsematrix dimensions: &quot;</span> &lt;&lt; vcl_sparsemat.size1() &lt;&lt; <span class="stringliteral">&quot;, &quot;</span> &lt;&lt; vcl_sparsemat.size2() &lt;&lt; std::endl;</div>
<div class="line"></div>
<div class="line"><span class="comment">// For completeness: Copy matrices from ViennaCL back to Eigen:</span></div>
<div class="line"><a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(vcl_densemat, eigen_densemat2);</div>
<div class="line"><a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(vcl_sparsemat, eigen_sparsemat2);</div>
</div><!-- fragment --><p> Run dense matrix-vector products and compare results: </p>
<div class="fragment"><div class="line">eigen_result = eigen_densemat * eigen_rhs;</div>
<div class="line">vcl_result = <a name="a4"></a><a class="code" href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a>(vcl_densemat, vcl_rhs);</div>
<div class="line"><a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(vcl_result, eigen_temp);</div>
<div class="line">std::cout &lt;&lt; <span class="stringliteral">&quot;Difference for dense matrix-vector product: &quot;</span> &lt;&lt; (eigen_result - eigen_temp).norm() &lt;&lt; std::endl;</div>
<div class="line">std::cout &lt;&lt; <span class="stringliteral">&quot;Difference for dense matrix-vector product (Eigen-&gt;ViennaCL-&gt;Eigen): &quot;</span></div>
<div class="line">          &lt;&lt; (eigen_densemat2 * eigen_rhs - eigen_temp).norm() &lt;&lt; std::endl;</div>
</div><!-- fragment --><p> Run sparse matrix-vector products and compare results: </p>
<div class="fragment"><div class="line">  eigen_result = eigen_sparsemat * eigen_rhs;</div>
<div class="line">  vcl_result = <a class="code" href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a>(vcl_sparsemat, vcl_rhs);</div>
<div class="line">  <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(vcl_result, eigen_temp);</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;Difference for sparse matrix-vector product: &quot;</span> &lt;&lt; (eigen_result - eigen_temp).norm() &lt;&lt; std::endl;</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;Difference for sparse matrix-vector product (Eigen-&gt;ViennaCL-&gt;Eigen): &quot;</span></div>
<div class="line">            &lt;&lt; (eigen_sparsemat2 * eigen_rhs - eigen_temp).norm() &lt;&lt; std::endl;</div>
<div class="line">}</div>
</div><!-- fragment --><p> In the <a class="el" href="tests_2src_2bisect_8cpp.html#ae66f6b31b5ad750f1fe042a706a4e3d4">main()</a> routine we only call the worker function defined above with both single and double precision arithmetic. </p>
<div class="fragment"><div class="line"><span class="keywordtype">int</span> <a name="a5"></a><a class="code" href="tests_2src_2bisect_8cpp.html#ae66f6b31b5ad750f1fe042a706a4e3d4">main</a>(<span class="keywordtype">int</span>, <span class="keywordtype">char</span> *[])</div>
<div class="line">{</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;----------------------------------------------&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;## Single precision&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;----------------------------------------------&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">  run_tutorial&lt;float&gt;();</div>
<div class="line"></div>
<div class="line"><span class="preprocessor">#ifdef VIENNACL_HAVE_OPENCL</span></div>
<div class="line">  <span class="keywordflow">if</span> ( <a name="a6"></a><a class="code" href="namespaceviennacl_1_1ocl.html#ac54d59a74deaccec81f64e738b856348">viennacl::ocl::current_device</a>().<a name="a7"></a><a class="code" href="classviennacl_1_1ocl_1_1device.html#a5182025f56c76de6770e26b14165b00a">double_support</a>() )</div>
<div class="line">#endif</div>
<div class="line">  {</div>
<div class="line">    std::cout &lt;&lt; <span class="stringliteral">&quot;----------------------------------------------&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">    std::cout &lt;&lt; <span class="stringliteral">&quot;## Double precision&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">    std::cout &lt;&lt; <span class="stringliteral">&quot;----------------------------------------------&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">    run_tutorial&lt;double&gt;();</div>
<div class="line">  }</div>
</div><!-- fragment --><p> That's it. Print a success message and exit. </p>
<div class="fragment"><div class="line">  std::cout &lt;&lt; std::endl;</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;!!!! TUTORIAL COMPLETED SUCCESSFULLY !!!!&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">  std::cout &lt;&lt; std::endl;</div>
<div class="line"></div>
<div class="line">}</div>
</div><!-- fragment --> <h2>Full Example Code</h2>
<div class="fragment"><div class="line"><span class="comment">/* =========================================================================</span></div>
<div class="line"><span class="comment">   Copyright (c) 2010-2016, Institute for Microelectronics,</span></div>
<div class="line"><span class="comment">                            Institute for Analysis and Scientific Computing,</span></div>
<div class="line"><span class="comment">                            TU Wien.</span></div>
<div class="line"><span class="comment">   Portions of this software are copyright by UChicago Argonne, LLC.</span></div>
<div class="line"><span class="comment"></span></div>
<div class="line"><span class="comment">                            -----------------</span></div>
<div class="line"><span class="comment">                  ViennaCL - The Vienna Computing Library</span></div>
<div class="line"><span class="comment">                            -----------------</span></div>
<div class="line"><span class="comment"></span></div>
<div class="line"><span class="comment">   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at</span></div>
<div class="line"><span class="comment"></span></div>
<div class="line"><span class="comment">   (A list of authors and contributors can be found in the PDF manual)</span></div>
<div class="line"><span class="comment"></span></div>
<div class="line"><span class="comment">   License:         MIT (X11), see file LICENSE in the base directory</span></div>
<div class="line"><span class="comment">============================================================================= */</span></div>
<div class="line"></div>
<div class="line"><span class="comment">// System headers</span></div>
<div class="line"><span class="preprocessor">#include &lt;iostream&gt;</span></div>
<div class="line"></div>
<div class="line"><span class="comment">// Eigen headers</span></div>
<div class="line"><span class="preprocessor">#include &lt;Eigen/Core&gt;</span></div>
<div class="line"><span class="preprocessor">#include &lt;Eigen/Sparse&gt;</span></div>
<div class="line"></div>
<div class="line"><span class="comment">// IMPORTANT: Must be set prior to any ViennaCL includes if you want to use ViennaCL algorithms on Eigen objects</span></div>
<div class="line"><span class="preprocessor">#define VIENNACL_WITH_EIGEN 1</span></div>
<div class="line"></div>
<div class="line"></div>
<div class="line"><span class="comment">// ViennaCL includes</span></div>
<div class="line"><span class="preprocessor">#include &quot;<a class="code" href="vector_8hpp.html">viennacl/vector.hpp</a>&quot;</span></div>
<div class="line"><span class="preprocessor">#include &quot;<a class="code" href="matrix_8hpp.html">viennacl/matrix.hpp</a>&quot;</span></div>
<div class="line"><span class="preprocessor">#include &quot;<a class="code" href="compressed__matrix_8hpp.html">viennacl/compressed_matrix.hpp</a>&quot;</span></div>
<div class="line"><span class="preprocessor">#include &quot;<a class="code" href="prod_8hpp.html">viennacl/linalg/prod.hpp</a>&quot;</span></div>
<div class="line"></div>
<div class="line"></div>
<div class="line"><span class="comment">// Helper functions for this tutorial:</span></div>
<div class="line"><span class="preprocessor">#include &quot;<a class="code" href="vector-io_8hpp.html">vector-io.hpp</a>&quot;</span></div>
<div class="line"></div>
<div class="line"><span class="comment">//dense matrix:</span></div>
<div class="line"><span class="keyword">template</span>&lt;<span class="keyword">typename</span> T&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_dense_matrix</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> <span class="keyword">typename</span> T::ERROR_NO_EIGEN_TYPE_AVAILABLE   error_type;</div>
<div class="line">};</div>
<div class="line"></div>
<div class="line"><span class="keyword">template</span>&lt;&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_dense_matrix&lt;float&gt;</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> Eigen::MatrixXf  type;</div>
<div class="line">};</div>
<div class="line"></div>
<div class="line"><span class="keyword">template</span>&lt;&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_dense_matrix&lt;double&gt;</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> Eigen::MatrixXd  type;</div>
<div class="line">};</div>
<div class="line"></div>
<div class="line"></div>
<div class="line"><span class="comment">//sparse matrix</span></div>
<div class="line"><span class="keyword">template</span>&lt;<span class="keyword">typename</span> T&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_vector</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> <span class="keyword">typename</span> T::ERROR_NO_EIGEN_TYPE_AVAILABLE   error_type;</div>
<div class="line">};</div>
<div class="line"></div>
<div class="line"><span class="keyword">template</span>&lt;&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_vector&lt;float&gt;</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> Eigen::VectorXf  type;</div>
<div class="line">};</div>
<div class="line"></div>
<div class="line"><span class="keyword">template</span>&lt;&gt;</div>
<div class="line"><span class="keyword">struct </span>Eigen_vector&lt;double&gt;</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> Eigen::VectorXd  type;</div>
<div class="line">};</div>
<div class="line"></div>
<div class="line"></div>
<div class="line"></div>
<div class="line"><span class="keyword">template</span>&lt;<span class="keyword">typename</span> ScalarType&gt;</div>
<div class="line"><span class="keywordtype">void</span> run_tutorial()</div>
<div class="line">{</div>
<div class="line">  <span class="keyword">typedef</span> <span class="keyword">typename</span> Eigen_dense_matrix&lt;ScalarType&gt;::type  EigenMatrix;</div>
<div class="line">  <span class="keyword">typedef</span> <span class="keyword">typename</span> Eigen_vector&lt;ScalarType&gt;::type        EigenVector;</div>
<div class="line"></div>
<div class="line">  EigenMatrix eigen_densemat(6, 5);</div>
<div class="line">  EigenMatrix eigen_densemat2(6, 5);</div>
<div class="line">  eigen_densemat(0,0) = 2.0;   eigen_densemat(0,1) = -1.0;</div>
<div class="line">  eigen_densemat(1,0) = -1.0;  eigen_densemat(1,1) =  2.0;  eigen_densemat(1,2) = -1.0;</div>
<div class="line">  eigen_densemat(2,1) = -1.0;  eigen_densemat(2,2) = -1.0;  eigen_densemat(2,3) = -1.0;</div>
<div class="line">  eigen_densemat(3,2) = -1.0;  eigen_densemat(3,3) =  2.0;  eigen_densemat(3,4) = -1.0;</div>
<div class="line">                               eigen_densemat(5,4) = -1.0;  eigen_densemat(4,4) = -1.0;</div>
<div class="line">  Eigen::Map&lt;EigenMatrix&gt; eigen_densemat_map(eigen_densemat.data(), 6, 5); <span class="comment">// same as eigen_densemat, but emulating user-provided buffer</span></div>
<div class="line"></div>
<div class="line">  Eigen::SparseMatrix&lt;ScalarType, Eigen::RowMajor&gt; eigen_sparsemat(6, 5);</div>
<div class="line">  Eigen::SparseMatrix&lt;ScalarType, Eigen::RowMajor&gt; eigen_sparsemat2(6, 5);</div>
<div class="line">  eigen_sparsemat.reserve(5*2);</div>
<div class="line">  eigen_sparsemat.insert(0,0) = 2.0;   eigen_sparsemat.insert(0,1) = -1.0;</div>
<div class="line">  eigen_sparsemat.insert(1,1) = 2.0;   eigen_sparsemat.insert(1,2) = -1.0;</div>
<div class="line">  eigen_sparsemat.insert(2,2) = -1.0;  eigen_sparsemat.insert(2,3) = -1.0;</div>
<div class="line">  eigen_sparsemat.insert(3,3) = 2.0;   eigen_sparsemat.insert(3,4) = -1.0;</div>
<div class="line">  eigen_sparsemat.insert(5,4) = -1.0;</div>
<div class="line">  <span class="comment">//eigen_sparsemat.endFill();</span></div>
<div class="line"></div>
<div class="line">  EigenVector eigen_rhs(5);</div>
<div class="line">  Eigen::Map&lt;EigenVector&gt; eigen_rhs_map(eigen_rhs.data(), 5);</div>
<div class="line">  EigenVector eigen_result(6);</div>
<div class="line">  EigenVector eigen_temp(6);</div>
<div class="line"></div>
<div class="line">  eigen_rhs(0) = 10.0;</div>
<div class="line">  eigen_rhs(1) = 11.0;</div>
<div class="line">  eigen_rhs(2) = 12.0;</div>
<div class="line">  eigen_rhs(3) = 13.0;</div>
<div class="line">  eigen_rhs(4) = 14.0;</div>
<div class="line"></div>
<div class="line"></div>
<div class="line">  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector&lt;ScalarType&gt;</a> vcl_rhs(5);</div>
<div class="line">  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector&lt;ScalarType&gt;</a> vcl_result(6);</div>
<div class="line">  <a class="code" href="classviennacl_1_1matrix.html">viennacl::matrix&lt;ScalarType&gt;</a> vcl_densemat(6, 5);</div>
<div class="line">  <a class="code" href="classviennacl_1_1compressed__matrix.html">viennacl::compressed_matrix&lt;ScalarType&gt;</a> vcl_sparsemat(6, 5);</div>
<div class="line"></div>
<div class="line"></div>
<div class="line">  <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(&amp;(eigen_rhs[0]), &amp;(eigen_rhs[0]) + 5, vcl_rhs.begin());  <span class="comment">// Method 1: via iterator interface (cf. std::copy())</span></div>
<div class="line">  <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigen_rhs, vcl_rhs);                                     <span class="comment">// Method 2: via built-in wrappers (convenience layer)</span></div>
<div class="line">  <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigen_rhs_map, vcl_rhs);                                 <span class="comment">// Same as method 2, but for a mapped vector</span></div>
<div class="line"></div>
<div class="line">  <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigen_densemat, vcl_densemat);</div>
<div class="line">  <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigen_densemat_map, vcl_densemat); <span class="comment">//same as above, using mapped matrix</span></div>
<div class="line">  <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigen_sparsemat, vcl_sparsemat);</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;VCL sparsematrix dimensions: &quot;</span> &lt;&lt; vcl_sparsemat.size1() &lt;&lt; <span class="stringliteral">&quot;, &quot;</span> &lt;&lt; vcl_sparsemat.size2() &lt;&lt; std::endl;</div>
<div class="line"></div>
<div class="line">  <span class="comment">// For completeness: Copy matrices from ViennaCL back to Eigen:</span></div>
<div class="line">  <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(vcl_densemat, eigen_densemat2);</div>
<div class="line">  <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(vcl_sparsemat, eigen_sparsemat2);</div>
<div class="line"></div>
<div class="line"></div>
<div class="line">  eigen_result = eigen_densemat * eigen_rhs;</div>
<div class="line">  vcl_result = <a class="code" href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a>(vcl_densemat, vcl_rhs);</div>
<div class="line">  <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(vcl_result, eigen_temp);</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;Difference for dense matrix-vector product: &quot;</span> &lt;&lt; (eigen_result - eigen_temp).norm() &lt;&lt; std::endl;</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;Difference for dense matrix-vector product (Eigen-&gt;ViennaCL-&gt;Eigen): &quot;</span></div>
<div class="line">            &lt;&lt; (eigen_densemat2 * eigen_rhs - eigen_temp).norm() &lt;&lt; std::endl;</div>
<div class="line"></div>
<div class="line">  eigen_result = eigen_sparsemat * eigen_rhs;</div>
<div class="line">  vcl_result = <a class="code" href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a>(vcl_sparsemat, vcl_rhs);</div>
<div class="line">  <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(vcl_result, eigen_temp);</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;Difference for sparse matrix-vector product: &quot;</span> &lt;&lt; (eigen_result - eigen_temp).norm() &lt;&lt; std::endl;</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;Difference for sparse matrix-vector product (Eigen-&gt;ViennaCL-&gt;Eigen): &quot;</span></div>
<div class="line">            &lt;&lt; (eigen_sparsemat2 * eigen_rhs - eigen_temp).norm() &lt;&lt; std::endl;</div>
<div class="line">}</div>
<div class="line"></div>
<div class="line"></div>
<div class="line"><span class="keywordtype">int</span> <a class="code" href="tests_2src_2bisect_8cpp.html#ae66f6b31b5ad750f1fe042a706a4e3d4">main</a>(<span class="keywordtype">int</span>, <span class="keywordtype">char</span> *[])</div>
<div class="line">{</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;----------------------------------------------&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;## Single precision&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;----------------------------------------------&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">  run_tutorial&lt;float&gt;();</div>
<div class="line"></div>
<div class="line"><span class="preprocessor">#ifdef VIENNACL_HAVE_OPENCL</span></div>
<div class="line">  <span class="keywordflow">if</span> ( <a class="code" href="namespaceviennacl_1_1ocl.html#ac54d59a74deaccec81f64e738b856348">viennacl::ocl::current_device</a>().<a class="code" href="classviennacl_1_1ocl_1_1device.html#a5182025f56c76de6770e26b14165b00a">double_support</a>() )</div>
<div class="line">#endif</div>
<div class="line">  {</div>
<div class="line">    std::cout &lt;&lt; <span class="stringliteral">&quot;----------------------------------------------&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">    std::cout &lt;&lt; <span class="stringliteral">&quot;## Double precision&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">    std::cout &lt;&lt; <span class="stringliteral">&quot;----------------------------------------------&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">    run_tutorial&lt;double&gt;();</div>
<div class="line">  }</div>
<div class="line"></div>
<div class="line">  std::cout &lt;&lt; std::endl;</div>
<div class="line">  std::cout &lt;&lt; <span class="stringliteral">&quot;!!!! TUTORIAL COMPLETED SUCCESSFULLY !!!!&quot;</span> &lt;&lt; std::endl;</div>
<div class="line">  std::cout &lt;&lt; std::endl;</div>
<div class="line"></div>
<div class="line">}</div>
</div><!-- fragment --> </div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
  <ul>
    <li class="footer">Generated on Wed Jan 20 2016 22:32:38 for ViennaCL - The Vienna Computing Library by
    <a href="http://www.doxygen.org/index.html">
    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.6 </li>
  </ul>
</div>
</body>
</html>