File: lanczos_8hpp_source.html

package info (click to toggle)
viennacl 1.7.1%2Bdfsg1-6
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 114,428 kB
  • sloc: sh: 454,206; cpp: 109,088; ansic: 2,103; perl: 104; makefile: 22
file content (600 lines) | stat: -rw-r--r-- 106,929 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.6"/>
<title>ViennaCL - The Vienna Computing Library: viennacl/linalg/lanczos.hpp Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
  $(document).ready(initResizable);
  $(window).load(resizeHeight);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
  $(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td style="padding-left: 0.5em;">
   <div id="projectname">ViennaCL - The Vienna Computing Library
   &#160;<span id="projectnumber">1.7.1</span>
   </div>
   <div id="projectbrief">Free open-source GPU-accelerated linear algebra and solver library.</div>
  </td>
   <td>        <div id="MSearchBox" class="MSearchBoxInactive">
        <span class="left">
          <img id="MSearchSelect" src="search/mag_sel.png"
               onmouseover="return searchBox.OnSearchSelectShow()"
               onmouseout="return searchBox.OnSearchSelectHide()"
               alt=""/>
          <input type="text" id="MSearchField" value="Search" accesskey="S"
               onfocus="searchBox.OnSearchFieldFocus(true)" 
               onblur="searchBox.OnSearchFieldFocus(false)" 
               onkeyup="searchBox.OnSearchFieldChange(event)"/>
          </span><span class="right">
            <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
          </span>
        </div>
</td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.6 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
  <div id="nav-tree">
    <div id="nav-tree-contents">
      <div id="nav-sync" class="sync"></div>
    </div>
  </div>
  <div id="splitbar" style="-moz-user-select:none;" 
       class="ui-resizable-handle">
  </div>
</div>
<script type="text/javascript">
$(document).ready(function(){initNavTree('lanczos_8hpp_source.html','');});
</script>
<div id="doc-content">
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark">&#160;</span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark">&#160;</span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark">&#160;</span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(9)"><span class="SelectionMark">&#160;</span>Friends</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(10)"><span class="SelectionMark">&#160;</span>Macros</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(11)"><span class="SelectionMark">&#160;</span>Pages</a></div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div class="header">
  <div class="headertitle">
<div class="title">lanczos.hpp</div>  </div>
</div><!--header-->
<div class="contents">
<a href="lanczos_8hpp.html">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="preprocessor">#ifndef VIENNACL_LINALG_LANCZOS_HPP_</span></div>
<div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="preprocessor">#define VIENNACL_LINALG_LANCZOS_HPP_</span></div>
<div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;</div>
<div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment">/* =========================================================================</span></div>
<div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment">   Copyright (c) 2010-2016, Institute for Microelectronics,</span></div>
<div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment">                            Institute for Analysis and Scientific Computing,</span></div>
<div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment">                            TU Wien.</span></div>
<div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment">   Portions of this software are copyright by UChicago Argonne, LLC.</span></div>
<div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment">                            -----------------</span></div>
<div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment">                  ViennaCL - The Vienna Computing Library</span></div>
<div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment">                            -----------------</span></div>
<div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment">   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at</span></div>
<div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment">   (A list of authors and contributors can be found in the manual)</span></div>
<div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"></span></div>
<div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment">   License:         MIT (X11), see file LICENSE in the base directory</span></div>
<div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment">============================================================================= */</span></div>
<div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;</div>
<div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;<span class="preprocessor">#include &lt;cmath&gt;</span></div>
<div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="preprocessor">#include &lt;vector&gt;</span></div>
<div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="vector_8hpp.html">viennacl/vector.hpp</a>&quot;</span></div>
<div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="compressed__matrix_8hpp.html">viennacl/compressed_matrix.hpp</a>&quot;</span></div>
<div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="prod_8hpp.html">viennacl/linalg/prod.hpp</a>&quot;</span></div>
<div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="inner__prod_8hpp.html">viennacl/linalg/inner_prod.hpp</a>&quot;</span></div>
<div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="norm__2_8hpp.html">viennacl/linalg/norm_2.hpp</a>&quot;</span></div>
<div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="matrix__market_8hpp.html">viennacl/io/matrix_market.hpp</a>&quot;</span></div>
<div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="bisect_8hpp.html">viennacl/linalg/bisect.hpp</a>&quot;</span></div>
<div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="random_8hpp.html">viennacl/tools/random.hpp</a>&quot;</span></div>
<div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;</div>
<div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;<span class="keyword">namespace </span>viennacl</div>
<div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;{</div>
<div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;<span class="keyword">namespace </span>linalg</div>
<div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;{</div>
<div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;</div>
<div class="line"><a name="l00045"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html">   45</a></span>&#160;<span class="keyword">class </span><a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html">lanczos_tag</a></div>
<div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;{</div>
<div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;<span class="keyword">public</span>:</div>
<div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;</div>
<div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;  <span class="keyword">enum</span></div>
<div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;  {</div>
<div class="line"><a name="l00051"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a937ee8052e51309672b2bcdba4bb015e">   51</a></span>&#160;    <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a937ee8052e51309672b2bcdba4bb015e">partial_reorthogonalization</a> = 0,</div>
<div class="line"><a name="l00052"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a8ecf6c75a5bd6248e628651a83a9adf1">   52</a></span>&#160;    <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a8ecf6c75a5bd6248e628651a83a9adf1">full_reorthogonalization</a>,</div>
<div class="line"><a name="l00053"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a5a98f73ee4246c0d97c82917edeca27e">   53</a></span>&#160;    <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a5a98f73ee4246c0d97c82917edeca27e">no_reorthogonalization</a></div>
<div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;  };</div>
<div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;</div>
<div class="line"><a name="l00064"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#aa71eae96da7f83e2c510ae02a2c7dbce">   64</a></span>&#160;  <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#aa71eae96da7f83e2c510ae02a2c7dbce">lanczos_tag</a>(<span class="keywordtype">double</span> <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a47e14babee64097056526536b277dbae">factor</a> = 0.75,</div>
<div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;              <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> numeig = 10,</div>
<div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;              <span class="keywordtype">int</span> met = 0,</div>
<div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;              <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> krylov = 100) : factor_(<a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a47e14babee64097056526536b277dbae">factor</a>), num_eigenvalues_(numeig), method_(met), krylov_size_(krylov) {}</div>
<div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;</div>
<div class="line"><a name="l00070"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#ae744c43467774ee300f5fab0c607aed1">   70</a></span>&#160;  <span class="keywordtype">void</span> <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#ae744c43467774ee300f5fab0c607aed1">num_eigenvalues</a>(<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> numeig){ num_eigenvalues_ = numeig; }</div>
<div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;</div>
<div class="line"><a name="l00073"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#abfff89303690a662fab2fbabcca2ee25">   73</a></span>&#160;  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#abfff89303690a662fab2fbabcca2ee25">num_eigenvalues</a>()<span class="keyword"> const </span>{ <span class="keywordflow">return</span> num_eigenvalues_; }</div>
<div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;</div>
<div class="line"><a name="l00076"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a3ce84b79a3ff77dd91a656232311cd52">   76</a></span>&#160;  <span class="keywordtype">void</span> <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a3ce84b79a3ff77dd91a656232311cd52">factor</a>(<span class="keywordtype">double</span> fct) { factor_ = fct; }</div>
<div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;</div>
<div class="line"><a name="l00079"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a47e14babee64097056526536b277dbae">   79</a></span>&#160;  <span class="keywordtype">double</span> <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a47e14babee64097056526536b277dbae">factor</a>()<span class="keyword"> const </span>{ <span class="keywordflow">return</span> factor_; }</div>
<div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;</div>
<div class="line"><a name="l00082"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a4e07073e383c1f5ed160d007f05d6eb3">   82</a></span>&#160;  <span class="keywordtype">void</span> <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a4e07073e383c1f5ed160d007f05d6eb3">krylov_size</a>(<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> <a class="code" href="namespaceviennacl_1_1linalg.html#adfd5b21910a692a78c547b22b9157c2e">max</a>) { krylov_size_ = <a class="code" href="namespaceviennacl_1_1linalg.html#adfd5b21910a692a78c547b22b9157c2e">max</a>; }</div>
<div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;</div>
<div class="line"><a name="l00085"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#aaad9aa2dc06eb4a5ca272d7fc78fb072">   85</a></span>&#160;  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a>  <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#aaad9aa2dc06eb4a5ca272d7fc78fb072">krylov_size</a>()<span class="keyword"> const </span>{ <span class="keywordflow">return</span> krylov_size_; }</div>
<div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;</div>
<div class="line"><a name="l00088"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#aad5c2c34a2b41e2a6a9b52dedd1d2ecf">   88</a></span>&#160;  <span class="keywordtype">void</span> <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#aad5c2c34a2b41e2a6a9b52dedd1d2ecf">method</a>(<span class="keywordtype">int</span> met){ method_ = met; }</div>
<div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;</div>
<div class="line"><a name="l00091"></a><span class="lineno"><a class="line" href="classviennacl_1_1linalg_1_1lanczos__tag.html#af2126adae7cd63d5c9c380066cdfabf1">   91</a></span>&#160;  <span class="keywordtype">int</span> <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#af2126adae7cd63d5c9c380066cdfabf1">method</a>()<span class="keyword"> const </span>{ <span class="keywordflow">return</span> method_; }</div>
<div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;</div>
<div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;</div>
<div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;<span class="keyword">private</span>:</div>
<div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;  <span class="keywordtype">double</span> factor_;</div>
<div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> num_eigenvalues_;</div>
<div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;  <span class="keywordtype">int</span> method_; <span class="comment">// see enum defined above for possible values</span></div>
<div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> krylov_size_;</div>
<div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;};</div>
<div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;</div>
<div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;</div>
<div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;<span class="keyword">namespace </span>detail</div>
<div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;{</div>
<div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;  <span class="keyword">template</span>&lt;<span class="keyword">typename</span> NumericT&gt;</div>
<div class="line"><a name="l00109"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1detail.html#ab967b62c4a6c67c3e37623eac4cc4fc1">  109</a></span>&#160;  <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1detail.html#ab967b62c4a6c67c3e37623eac4cc4fc1">inverse_iteration</a>(std::vector&lt;NumericT&gt; <span class="keyword">const</span> &amp; alphas, std::vector&lt;NumericT&gt; <span class="keyword">const</span> &amp; betas,</div>
<div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;                         <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> &amp; eigenvalue, std::vector&lt;NumericT&gt; &amp; eigenvector)</div>
<div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;  {</div>
<div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;    std::vector&lt;NumericT&gt; alpha_sweeped = alphas;</div>
<div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;    <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> i=0; i&lt;alpha_sweeped.size(); ++i)</div>
<div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;      alpha_sweeped[i] -= eigenvalue;</div>
<div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;    <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>=1; <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> &lt; alpha_sweeped.size(); ++<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>)</div>
<div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;      alpha_sweeped[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>] -= betas[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>] * betas[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>] / alpha_sweeped[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>-1];</div>
<div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;</div>
<div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;    <span class="comment">// starting guess: ignore last equation</span></div>
<div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;    eigenvector[alphas.size() - 1] = 1.0;</div>
<div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;</div>
<div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;    <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> iter=0; iter&lt;1; ++iter)</div>
<div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;    {</div>
<div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;      <span class="comment">// solve first n-1 equations (A - \lambda I) y = -beta[n]</span></div>
<div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;      eigenvector[alphas.size() - 1] /= alpha_sweeped[alphas.size() - 1];</div>
<div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;      <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> row2=1; row2 &lt; alphas.size(); ++row2)</div>
<div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;      {</div>
<div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;        <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> <a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a> = alphas.size() - row2 - 1;</div>
<div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;        eigenvector[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>] -= eigenvector[row+1] * betas[row+1];</div>
<div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;        eigenvector[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>] /= alpha_sweeped[<a class="code" href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">row</a>];</div>
<div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;      }</div>
<div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;</div>
<div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;      <span class="comment">// normalize eigenvector:</span></div>
<div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;      <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> norm_vector = 0;</div>
<div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;      <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> i=0; i&lt;eigenvector.size(); ++i)</div>
<div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;        norm_vector += eigenvector[i] * eigenvector[i];</div>
<div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;      norm_vector = std::sqrt(norm_vector);</div>
<div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;      <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> i=0; i&lt;eigenvector.size(); ++i)</div>
<div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;        eigenvector[i] /= norm_vector;</div>
<div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    }</div>
<div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;</div>
<div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;    <span class="comment">//eigenvalue = (alphas[0] * eigenvector[0] + betas[1] * eigenvector[1]) / eigenvector[0];</span></div>
<div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;  }</div>
<div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;</div>
<div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;  <span class="keyword">template</span>&lt;<span class="keyword">typename</span> MatrixT, <span class="keyword">typename</span> DenseMatrixT, <span class="keyword">typename</span> NumericT&gt;</div>
<div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;  std::vector&lt;NumericT&gt;</div>
<div class="line"><a name="l00158"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1detail.html#a07c896c3efe02f24adf912b1f89e5c07">  158</a></span>&#160;  <a class="code" href="namespaceviennacl_1_1linalg_1_1detail.html#a07c896c3efe02f24adf912b1f89e5c07">lanczosPRO</a> (MatrixT <span class="keyword">const</span>&amp; A, <a class="code" href="classviennacl_1_1vector__base.html">vector_base&lt;NumericT&gt;</a> &amp; r, DenseMatrixT &amp; eigenvectors_A, <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>, <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html">lanczos_tag</a> <span class="keyword">const</span> &amp; tag, <span class="keywordtype">bool</span> compute_eigenvectors)</div>
<div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;  {</div>
<div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;    <span class="comment">// generation of some random numbers, used for lanczos PRO algorithm</span></div>
<div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;    <a class="code" href="classviennacl_1_1tools_1_1normal__random__numbers.html">viennacl::tools::normal_random_numbers&lt;NumericT&gt;</a> get_N;</div>
<div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;</div>
<div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;    std::vector&lt;vcl_size_t&gt; l_bound(size/2), u_bound(size/2);</div>
<div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;    <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> n = r.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>();</div>
<div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;    std::vector&lt;NumericT&gt; w(size), w_old(size); <span class="comment">//w_k, w_{k-1}</span></div>
<div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;</div>
<div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;    <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> inner_rt;</div>
<div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;    std::vector&lt;NumericT&gt; alphas, betas;</div>
<div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;    <a class="code" href="classviennacl_1_1matrix.html">viennacl::matrix&lt;NumericT, viennacl::column_major&gt;</a> Q(n, size); <span class="comment">//column-major matrix holding the Krylov basis vectors</span></div>
<div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;</div>
<div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;    <span class="keywordtype">bool</span> second_step = <span class="keyword">false</span>;</div>
<div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;    <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> eps = std::numeric_limits&lt;NumericT&gt;::epsilon();</div>
<div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;    <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> squ_eps = std::sqrt(eps);</div>
<div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;    <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> eta = std::exp(std::log(eps) * tag.<a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a3ce84b79a3ff77dd91a656232311cd52">factor</a>());</div>
<div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;</div>
<div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;    <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> beta = <a class="code" href="namespaceviennacl_1_1linalg.html#ae46f15d01c01f92a153b3f555a15096b">viennacl::linalg::norm_2</a>(r);</div>
<div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;</div>
<div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;    r /= beta;</div>
<div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;</div>
<div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;    <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q_0(Q.<a class="code" href="classviennacl_1_1matrix__base.html#a4082cd3586bc99deb68733257b30c51f">handle</a>(), Q.<a class="code" href="classviennacl_1_1matrix__base.html#a24e4f5fa27a1af5ad47e52a97c065d68">size1</a>(), 0, 1);</div>
<div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;    q_0 = r;</div>
<div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;</div>
<div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;    <a class="code" href="classviennacl_1_1vector.html">viennacl::vector&lt;NumericT&gt;</a> u = <a class="code" href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a>(A, r);</div>
<div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;    <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> alpha = <a class="code" href="namespaceviennacl_1_1linalg.html#ab35950c4374eb3be08a03d852508c01a">viennacl::linalg::inner_prod</a>(u, r);</div>
<div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;    alphas.push_back(alpha);</div>
<div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;    w[0] = 1;</div>
<div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;    betas.push_back(beta);</div>
<div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;</div>
<div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;    <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> batches = 0;</div>
<div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;    <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> i = 1; i &lt; <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a>; i++) <span class="comment">// Main loop for setting up the Krylov space</span></div>
<div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;    {</div>
<div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;      <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q_iminus1(Q.<a class="code" href="classviennacl_1_1matrix__base.html#a4082cd3586bc99deb68733257b30c51f">handle</a>(), Q.<a class="code" href="classviennacl_1_1matrix__base.html#a24e4f5fa27a1af5ad47e52a97c065d68">size1</a>(), (i-1) * Q.<a class="code" href="classviennacl_1_1matrix__base.html#a82018b4e169973bdfb9d3be68ceb5be0">internal_size1</a>(), 1);</div>
<div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;      r = u - alpha * q_iminus1;</div>
<div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;      beta = <a class="code" href="namespaceviennacl_1_1linalg.html#ae46f15d01c01f92a153b3f555a15096b">viennacl::linalg::norm_2</a>(r);</div>
<div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;</div>
<div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;      betas.push_back(beta);</div>
<div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;      r = r / beta;</div>
<div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;</div>
<div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;      <span class="comment">//</span></div>
<div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;      <span class="comment">// Update recurrence relation for estimating orthogonality loss</span></div>
<div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;      <span class="comment">//</span></div>
<div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;      w_old = w;</div>
<div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;      w[0] = (betas[1] * w_old[1] + (alphas[0] - alpha) * w_old[0] - betas[i - 1] * w_old[0]) / beta + eps * 0.3 * get_N() * (betas[1] + beta);</div>
<div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;      <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> j = 1; j &lt; i - 1; j++)</div>
<div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;        w[j] = (betas[j + 1] * w_old[j + 1] + (alphas[j] - alpha) * w_old[j] + betas[j] * w_old[j - 1] - betas[i - 1] * w_old[j]) / beta + eps * 0.3 * get_N() * (betas[j + 1] + beta);</div>
<div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;      w[i-1] = 0.6 * eps * <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a>(n) * get_N() * betas[1] / beta;</div>
<div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;</div>
<div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;      <span class="comment">//</span></div>
<div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;      <span class="comment">// Check whether there has been a need for reorthogonalization detected in the previous iteration.</span></div>
<div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;      <span class="comment">// If so, run the reorthogonalization for each batch</span></div>
<div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;      <span class="comment">//</span></div>
<div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;      <span class="keywordflow">if</span> (second_step)</div>
<div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;      {</div>
<div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;        <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> j = 0; j &lt; batches; j++)</div>
<div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;        {</div>
<div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;          <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> k = l_bound[j] + 1; k &lt; u_bound[j] - 1; k++)</div>
<div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;          {</div>
<div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;            <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q_k(Q.<a class="code" href="classviennacl_1_1matrix__base.html#a4082cd3586bc99deb68733257b30c51f">handle</a>(), Q.<a class="code" href="classviennacl_1_1matrix__base.html#a24e4f5fa27a1af5ad47e52a97c065d68">size1</a>(), k * Q.<a class="code" href="classviennacl_1_1matrix__base.html#a82018b4e169973bdfb9d3be68ceb5be0">internal_size1</a>(), 1);</div>
<div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;            inner_rt = <a class="code" href="namespaceviennacl_1_1linalg.html#ab35950c4374eb3be08a03d852508c01a">viennacl::linalg::inner_prod</a>(r, q_k);</div>
<div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;            r = r - inner_rt * q_k;</div>
<div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;            w[k] = 1.5 * eps * get_N();</div>
<div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;          }</div>
<div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;        }</div>
<div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;        <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> temp = <a class="code" href="namespaceviennacl_1_1linalg.html#ae46f15d01c01f92a153b3f555a15096b">viennacl::linalg::norm_2</a>(r);</div>
<div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;        r = r / temp;</div>
<div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;        beta = beta * temp;</div>
<div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;        second_step = <span class="keyword">false</span>;</div>
<div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;      }</div>
<div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;      batches = 0;</div>
<div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;</div>
<div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;      <span class="comment">//</span></div>
<div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;      <span class="comment">// Check for semiorthogonality</span></div>
<div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;      <span class="comment">//</span></div>
<div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;      <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> j = 0; j &lt; i; j++)</div>
<div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;      {</div>
<div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;        <span class="keywordflow">if</span> (std::fabs(w[j]) &gt;= squ_eps) <span class="comment">// tentative loss of orthonormality, hence reorthonomalize</span></div>
<div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;        {</div>
<div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;          <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q_j(Q.<a class="code" href="classviennacl_1_1matrix__base.html#a4082cd3586bc99deb68733257b30c51f">handle</a>(), Q.<a class="code" href="classviennacl_1_1matrix__base.html#a24e4f5fa27a1af5ad47e52a97c065d68">size1</a>(), j * Q.<a class="code" href="classviennacl_1_1matrix__base.html#a82018b4e169973bdfb9d3be68ceb5be0">internal_size1</a>(), 1);</div>
<div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;          inner_rt = <a class="code" href="namespaceviennacl_1_1linalg.html#ab35950c4374eb3be08a03d852508c01a">viennacl::linalg::inner_prod</a>(r, q_j);</div>
<div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;          r = r - inner_rt * q_j;</div>
<div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;          w[j] = 1.5 * eps * get_N();</div>
<div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;          <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> k = j - 1;</div>
<div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;</div>
<div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;          <span class="comment">// orthogonalization with respect to earlier basis vectors</span></div>
<div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;          <span class="keywordflow">while</span> (std::fabs(w[k]) &gt; eta)</div>
<div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;          {</div>
<div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;            <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q_k(Q.<a class="code" href="classviennacl_1_1matrix__base.html#a4082cd3586bc99deb68733257b30c51f">handle</a>(), Q.<a class="code" href="classviennacl_1_1matrix__base.html#a24e4f5fa27a1af5ad47e52a97c065d68">size1</a>(), k * Q.<a class="code" href="classviennacl_1_1matrix__base.html#a82018b4e169973bdfb9d3be68ceb5be0">internal_size1</a>(), 1);</div>
<div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;            inner_rt = <a class="code" href="namespaceviennacl_1_1linalg.html#ab35950c4374eb3be08a03d852508c01a">viennacl::linalg::inner_prod</a>(r, q_k);</div>
<div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;            r = r - inner_rt * q_k;</div>
<div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;            w[k] = 1.5 * eps * get_N();</div>
<div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;            <span class="keywordflow">if</span> (k == 0) <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;            k--;</div>
<div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;          }</div>
<div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;          l_bound[batches] = k;</div>
<div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;</div>
<div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;          <span class="comment">// orthogonalization with respect to later basis vectors</span></div>
<div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;          k = j + 1;</div>
<div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;          <span class="keywordflow">while</span> (k &lt; i &amp;&amp; std::fabs(w[k]) &gt; eta)</div>
<div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;          {</div>
<div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;            <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q_k(Q.<a class="code" href="classviennacl_1_1matrix__base.html#a4082cd3586bc99deb68733257b30c51f">handle</a>(), Q.<a class="code" href="classviennacl_1_1matrix__base.html#a24e4f5fa27a1af5ad47e52a97c065d68">size1</a>(), k * Q.<a class="code" href="classviennacl_1_1matrix__base.html#a82018b4e169973bdfb9d3be68ceb5be0">internal_size1</a>(), 1);</div>
<div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;            inner_rt = <a class="code" href="namespaceviennacl_1_1linalg.html#ab35950c4374eb3be08a03d852508c01a">viennacl::linalg::inner_prod</a>(r, q_k);</div>
<div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;            r = r - inner_rt * q_k;</div>
<div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;            w[k] = 1.5 * eps * get_N();</div>
<div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;            k++;</div>
<div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;          }</div>
<div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;          u_bound[batches] = k - 1;</div>
<div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;          batches++;</div>
<div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;</div>
<div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;          j = k-1; <span class="comment">// go to end of current batch</span></div>
<div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;        }</div>
<div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;      }</div>
<div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;</div>
<div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;      <span class="comment">//</span></div>
<div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;      <span class="comment">// Normalize basis vector and reorthogonalize as needed</span></div>
<div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;      <span class="comment">//</span></div>
<div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;      <span class="keywordflow">if</span> (batches &gt; 0)</div>
<div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;      {</div>
<div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;        <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> temp = <a class="code" href="namespaceviennacl_1_1linalg.html#ae46f15d01c01f92a153b3f555a15096b">viennacl::linalg::norm_2</a>(r);</div>
<div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;        r = r / temp;</div>
<div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;        beta = beta * temp;</div>
<div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;        second_step = <span class="keyword">true</span>;</div>
<div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;      }</div>
<div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;</div>
<div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;      <span class="comment">// store Krylov vector in Q:</span></div>
<div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;      <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q_i(Q.<a class="code" href="classviennacl_1_1matrix__base.html#a4082cd3586bc99deb68733257b30c51f">handle</a>(), Q.<a class="code" href="classviennacl_1_1matrix__base.html#a24e4f5fa27a1af5ad47e52a97c065d68">size1</a>(), i * Q.<a class="code" href="classviennacl_1_1matrix__base.html#a82018b4e169973bdfb9d3be68ceb5be0">internal_size1</a>(), 1);</div>
<div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;      q_i = r;</div>
<div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;</div>
<div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;      <span class="comment">//</span></div>
<div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;      <span class="comment">// determine and store alpha = &lt;r, u&gt; with u = A q_i - beta q_{i-1}</span></div>
<div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;      <span class="comment">//</span></div>
<div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;      u = <a class="code" href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a>(A, r);</div>
<div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;      u += (-beta) * q_iminus1;</div>
<div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;      alpha = <a class="code" href="namespaceviennacl_1_1linalg.html#ab35950c4374eb3be08a03d852508c01a">viennacl::linalg::inner_prod</a>(u, r);</div>
<div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;      alphas.push_back(alpha);</div>
<div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;    }</div>
<div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;</div>
<div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;    <span class="comment">//</span></div>
<div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;    <span class="comment">// Step 2: Compute eigenvalues of tridiagonal matrix obtained during Lanczos iterations:</span></div>
<div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;    <span class="comment">//</span></div>
<div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;    std::vector&lt;NumericT&gt; eigenvalues = <a class="code" href="namespaceviennacl_1_1linalg.html#a54d70c731aed90556e228b7f14ac3a52">bisect</a>(alphas, betas);</div>
<div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;</div>
<div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;    <span class="comment">//</span></div>
<div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;    <span class="comment">// Step 3: Compute eigenvectors via inverse iteration. Does not update eigenvalues, so only approximate by nature.</span></div>
<div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;    <span class="comment">//</span></div>
<div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;    <span class="keywordflow">if</span> (compute_eigenvectors)</div>
<div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;    {</div>
<div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;      std::vector&lt;NumericT&gt; eigenvector_tridiag(alphas.size());</div>
<div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;      <span class="keywordflow">for</span> (std::size_t i=0; i &lt; tag.<a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#ae744c43467774ee300f5fab0c607aed1">num_eigenvalues</a>(); ++i)</div>
<div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;      {</div>
<div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;        <span class="comment">// compute eigenvector of tridiagonal matrix via inverse:</span></div>
<div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;        <a class="code" href="namespaceviennacl_1_1linalg_1_1detail.html#ab967b62c4a6c67c3e37623eac4cc4fc1">inverse_iteration</a>(alphas, betas, eigenvalues[eigenvalues.size() - i - 1], eigenvector_tridiag);</div>
<div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;</div>
<div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;        <span class="comment">// eigenvector w of full matrix A. Given as w = Q * u, where u is the eigenvector of the tridiagonal matrix</span></div>
<div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;        <a class="code" href="classviennacl_1_1vector.html">viennacl::vector&lt;NumericT&gt;</a> eigenvector_u(eigenvector_tridiag.size());</div>
<div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;        <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigenvector_tridiag, eigenvector_u);</div>
<div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;</div>
<div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;        <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> eigenvector_A(eigenvectors_A.handle(),</div>
<div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;                                                      eigenvectors_A.size1(),</div>
<div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;                                                      eigenvectors_A.row_major() ? i : i * eigenvectors_A.internal_size1(),</div>
<div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;                                                      eigenvectors_A.row_major() ? eigenvectors_A.internal_size2() : 1);</div>
<div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;        eigenvector_A = <a class="code" href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a>(<a class="code" href="namespaceviennacl.html#adc45a895937fe299100e2b235a442748">project</a>(Q,</div>
<div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;                                                       <a class="code" href="namespaceviennacl.html#ae92c62d9fd59870c1f6b881e391d32aa">range</a>(0, Q.<a class="code" href="classviennacl_1_1matrix__base.html#a24e4f5fa27a1af5ad47e52a97c065d68">size1</a>()),</div>
<div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;                                                       <a class="code" href="namespaceviennacl.html#ae92c62d9fd59870c1f6b881e391d32aa">range</a>(0, eigenvector_u.size())),</div>
<div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;                                               eigenvector_u);</div>
<div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;      }</div>
<div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;    }</div>
<div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;</div>
<div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;    <span class="keywordflow">return</span> eigenvalues;</div>
<div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;  }</div>
<div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;</div>
<div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;</div>
<div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;  <span class="keyword">template</span>&lt; <span class="keyword">typename</span> MatrixT, <span class="keyword">typename</span> DenseMatrixT, <span class="keyword">typename</span> NumericT&gt;</div>
<div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;  std::vector&lt;NumericT&gt;</div>
<div class="line"><a name="l00345"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1detail.html#a26da2e5971bed8094c415bd6ced7ac48">  345</a></span>&#160;  <a class="code" href="namespaceviennacl_1_1linalg_1_1detail.html#a26da2e5971bed8094c415bd6ced7ac48">lanczos</a>(MatrixT <span class="keyword">const</span>&amp; A, <a class="code" href="classviennacl_1_1vector__base.html">vector_base&lt;NumericT&gt;</a> &amp; r, DenseMatrixT &amp; eigenvectors_A, <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> krylov_dim, <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html">lanczos_tag</a> <span class="keyword">const</span> &amp; tag, <span class="keywordtype">bool</span> compute_eigenvectors)</div>
<div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;  {</div>
<div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;    std::vector&lt;NumericT&gt; alphas, betas;</div>
<div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;    <a class="code" href="classviennacl_1_1vector.html">viennacl::vector&lt;NumericT&gt;</a> Aq(r.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>());</div>
<div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;    <a class="code" href="classviennacl_1_1matrix.html">viennacl::matrix&lt;NumericT, viennacl::column_major&gt;</a> Q(r.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>(), krylov_dim + 1);  <span class="comment">// Krylov basis (each Krylov vector is one column)</span></div>
<div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;</div>
<div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;    <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> norm_r = <a class="code" href="namespaceviennacl_1_1linalg.html#ae46f15d01c01f92a153b3f555a15096b">norm_2</a>(r);</div>
<div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;    <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> beta = norm_r;</div>
<div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;    r /= norm_r;</div>
<div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;</div>
<div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;    <span class="comment">// first Krylov vector:</span></div>
<div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;    <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q0(Q.handle(), Q.size1(), 0, 1);</div>
<div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;    q0 = r;</div>
<div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;</div>
<div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;    <span class="comment">//</span></div>
<div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;    <span class="comment">// Step 1: Run Lanczos&#39; method to obtain tridiagonal matrix</span></div>
<div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;    <span class="comment">//</span></div>
<div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;    <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> i = 0; i &lt; krylov_dim; i++)</div>
<div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;    {</div>
<div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;      betas.push_back(beta);</div>
<div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;      <span class="comment">// last available vector from Krylov basis:</span></div>
<div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;      <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q_i(Q.handle(), Q.size1(), i * Q.internal_size1(), 1);</div>
<div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;</div>
<div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;      <span class="comment">// Lanczos algorithm:</span></div>
<div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;      <span class="comment">// - Compute A * q:</span></div>
<div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;      Aq = <a class="code" href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a>(A, q_i);</div>
<div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;</div>
<div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;      <span class="comment">// - Form Aq &lt;- Aq - &lt;Aq, q_i&gt; * q_i - beta * q_{i-1}, where beta is ||q_i|| before normalization in previous iteration</span></div>
<div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;      <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> alpha = <a class="code" href="namespaceviennacl_1_1linalg.html#ab35950c4374eb3be08a03d852508c01a">viennacl::linalg::inner_prod</a>(Aq, q_i);</div>
<div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;      Aq -= alpha * q_i;</div>
<div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;</div>
<div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;      <span class="keywordflow">if</span> (i &gt; 0)</div>
<div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;      {</div>
<div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;        <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q_iminus1(Q.handle(), Q.size1(), (i-1) * Q.internal_size1(), 1);</div>
<div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;        Aq -= beta * q_iminus1;</div>
<div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;</div>
<div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;        <span class="comment">// Extra measures for improved numerical stability?</span></div>
<div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;        <span class="keywordflow">if</span> (tag.<a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#aad5c2c34a2b41e2a6a9b52dedd1d2ecf">method</a>() == <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a8ecf6c75a5bd6248e628651a83a9adf1">lanczos_tag::full_reorthogonalization</a>)</div>
<div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;        {</div>
<div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;          <span class="comment">// Gram-Schmidt (re-)orthogonalization:</span></div>
<div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;          <span class="comment">// TODO: Reuse fast (pipelined) routines from GMRES or GEMV</span></div>
<div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;          <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> j = 0; j &lt; i; j++)</div>
<div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;          {</div>
<div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;            <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q_j(Q.handle(), Q.size1(), j * Q.internal_size1(), 1);</div>
<div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;            <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> inner_rq = <a class="code" href="namespaceviennacl_1_1linalg.html#ab35950c4374eb3be08a03d852508c01a">viennacl::linalg::inner_prod</a>(Aq, q_j);</div>
<div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;            Aq -= inner_rq * q_j;</div>
<div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;          }</div>
<div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;        }</div>
<div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;      }</div>
<div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;</div>
<div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;      <span class="comment">// normalize Aq and add to Krylov basis at column i+1 in Q:</span></div>
<div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;      beta = <a class="code" href="namespaceviennacl_1_1linalg.html#ae46f15d01c01f92a153b3f555a15096b">viennacl::linalg::norm_2</a>(Aq);</div>
<div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;      <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> q_iplus1(Q.handle(), Q.size1(), (i+1) * Q.internal_size1(), 1);</div>
<div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;      q_iplus1 = Aq / beta;</div>
<div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;</div>
<div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;      alphas.push_back(alpha);</div>
<div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;    }</div>
<div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;</div>
<div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;    <span class="comment">//</span></div>
<div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;    <span class="comment">// Step 2: Compute eigenvalues of tridiagonal matrix obtained during Lanczos iterations:</span></div>
<div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;    <span class="comment">//</span></div>
<div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;    std::vector&lt;NumericT&gt; eigenvalues = <a class="code" href="namespaceviennacl_1_1linalg.html#a54d70c731aed90556e228b7f14ac3a52">bisect</a>(alphas, betas);</div>
<div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;</div>
<div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;    <span class="comment">//</span></div>
<div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;    <span class="comment">// Step 3: Compute eigenvectors via inverse iteration. Does not update eigenvalues, so only approximate by nature.</span></div>
<div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;    <span class="comment">//</span></div>
<div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;    <span class="keywordflow">if</span> (compute_eigenvectors)</div>
<div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;    {</div>
<div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;      std::vector&lt;NumericT&gt; eigenvector_tridiag(alphas.size());</div>
<div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;      <span class="keywordflow">for</span> (std::size_t i=0; i &lt; tag.<a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#ae744c43467774ee300f5fab0c607aed1">num_eigenvalues</a>(); ++i)</div>
<div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;      {</div>
<div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;        <span class="comment">// compute eigenvector of tridiagonal matrix via inverse:</span></div>
<div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;        <a class="code" href="namespaceviennacl_1_1linalg_1_1detail.html#ab967b62c4a6c67c3e37623eac4cc4fc1">inverse_iteration</a>(alphas, betas, eigenvalues[eigenvalues.size() - i - 1], eigenvector_tridiag);</div>
<div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;</div>
<div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;        <span class="comment">// eigenvector w of full matrix A. Given as w = Q * u, where u is the eigenvector of the tridiagonal matrix</span></div>
<div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;        <a class="code" href="classviennacl_1_1vector.html">viennacl::vector&lt;NumericT&gt;</a> eigenvector_u(eigenvector_tridiag.size());</div>
<div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;        <a class="code" href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a>(eigenvector_tridiag, eigenvector_u);</div>
<div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;</div>
<div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;        <a class="code" href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt;NumericT&gt;</a> eigenvector_A(eigenvectors_A.handle(),</div>
<div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;                                                      eigenvectors_A.size1(),</div>
<div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;                                                      eigenvectors_A.row_major() ? i : i * eigenvectors_A.internal_size1(),</div>
<div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;                                                      eigenvectors_A.row_major() ? eigenvectors_A.internal_size2() : 1);</div>
<div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;        eigenvector_A = <a class="code" href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a>(<a class="code" href="namespaceviennacl.html#adc45a895937fe299100e2b235a442748">project</a>(Q,</div>
<div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;                                                       <a class="code" href="namespaceviennacl.html#ae92c62d9fd59870c1f6b881e391d32aa">range</a>(0, Q.size1()),</div>
<div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;                                                       <a class="code" href="namespaceviennacl.html#ae92c62d9fd59870c1f6b881e391d32aa">range</a>(0, eigenvector_u.size())),</div>
<div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;                                               eigenvector_u);</div>
<div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;      }</div>
<div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;    }</div>
<div class="line"><a name="l00433"></a><span class="lineno">  433</span>&#160;</div>
<div class="line"><a name="l00434"></a><span class="lineno">  434</span>&#160;    <span class="keywordflow">return</span> eigenvalues;</div>
<div class="line"><a name="l00435"></a><span class="lineno">  435</span>&#160;  }</div>
<div class="line"><a name="l00436"></a><span class="lineno">  436</span>&#160;</div>
<div class="line"><a name="l00437"></a><span class="lineno">  437</span>&#160;} <span class="comment">// end namespace detail</span></div>
<div class="line"><a name="l00438"></a><span class="lineno">  438</span>&#160;</div>
<div class="line"><a name="l00450"></a><span class="lineno">  450</span>&#160;<span class="keyword">template</span>&lt;<span class="keyword">typename</span> MatrixT, <span class="keyword">typename</span> DenseMatrixT&gt;</div>
<div class="line"><a name="l00451"></a><span class="lineno">  451</span>&#160;std::vector&lt; typename viennacl::result_of::cpu_value_type&lt;typename MatrixT::value_type&gt;::type &gt;</div>
<div class="line"><a name="l00452"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg.html#af5002a88fa4cc3fbe65a904797a0ecba">  452</a></span>&#160;<a class="code" href="namespaceviennacl_1_1linalg.html#af5002a88fa4cc3fbe65a904797a0ecba">eig</a>(MatrixT <span class="keyword">const</span> &amp; <a class="code" href="classviennacl_1_1matrix.html">matrix</a>, DenseMatrixT &amp; eigenvectors_A, <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html">lanczos_tag</a> <span class="keyword">const</span> &amp; tag, <span class="keywordtype">bool</span> compute_eigenvectors = <span class="keyword">true</span>)</div>
<div class="line"><a name="l00453"></a><span class="lineno">  453</span>&#160;{</div>
<div class="line"><a name="l00454"></a><span class="lineno">  454</span>&#160;  <span class="keyword">typedef</span> <span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1value__type.html#a1fccdddb6d57eaba8f19506cea2051a3">viennacl::result_of::value_type&lt;MatrixT&gt;::type</a>           NumericType;</div>
<div class="line"><a name="l00455"></a><span class="lineno">  455</span>&#160;  <span class="keyword">typedef</span> <span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cpu__value__type.html#aa015d93f419985879a7c13b09633c5c6">viennacl::result_of::cpu_value_type&lt;NumericType&gt;::type</a>   CPU_NumericType;</div>
<div class="line"><a name="l00456"></a><span class="lineno">  456</span>&#160;  <span class="keyword">typedef</span> <span class="keyword">typename</span> viennacl::result_of::vector_for_matrix&lt;MatrixT&gt;::type    VectorT;</div>
<div class="line"><a name="l00457"></a><span class="lineno">  457</span>&#160;</div>
<div class="line"><a name="l00458"></a><span class="lineno">  458</span>&#160;  <a class="code" href="classviennacl_1_1tools_1_1uniform__random__numbers.html">viennacl::tools::uniform_random_numbers&lt;CPU_NumericType&gt;</a> random_gen;</div>
<div class="line"><a name="l00459"></a><span class="lineno">  459</span>&#160;</div>
<div class="line"><a name="l00460"></a><span class="lineno">  460</span>&#160;  std::vector&lt;CPU_NumericType&gt; eigenvalues;</div>
<div class="line"><a name="l00461"></a><span class="lineno">  461</span>&#160;  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> matrix_size = matrix.size1();</div>
<div class="line"><a name="l00462"></a><span class="lineno">  462</span>&#160;  VectorT r(matrix_size);</div>
<div class="line"><a name="l00463"></a><span class="lineno">  463</span>&#160;  std::vector&lt;CPU_NumericType&gt; s(matrix_size);</div>
<div class="line"><a name="l00464"></a><span class="lineno">  464</span>&#160;</div>
<div class="line"><a name="l00465"></a><span class="lineno">  465</span>&#160;  <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> i=0; i&lt;s.size(); ++i)</div>
<div class="line"><a name="l00466"></a><span class="lineno">  466</span>&#160;    s[i] = CPU_NumericType(0.5) + random_gen();</div>
<div class="line"><a name="l00467"></a><span class="lineno">  467</span>&#160;</div>
<div class="line"><a name="l00468"></a><span class="lineno">  468</span>&#160;  <a class="code" href="namespaceviennacl_1_1linalg_1_1detail.html#a182fc6f710cc79252cebd332b480fe27">detail::copy_vec_to_vec</a>(s,r);</div>
<div class="line"><a name="l00469"></a><span class="lineno">  469</span>&#160;</div>
<div class="line"><a name="l00470"></a><span class="lineno">  470</span>&#160;  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> size_krylov = (matrix_size &lt; tag.<a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a4e07073e383c1f5ed160d007f05d6eb3">krylov_size</a>()) ? matrix_size</div>
<div class="line"><a name="l00471"></a><span class="lineno">  471</span>&#160;                                                              : tag.<a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a4e07073e383c1f5ed160d007f05d6eb3">krylov_size</a>();</div>
<div class="line"><a name="l00472"></a><span class="lineno">  472</span>&#160;</div>
<div class="line"><a name="l00473"></a><span class="lineno">  473</span>&#160;  <span class="keywordflow">switch</span> (tag.<a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#aad5c2c34a2b41e2a6a9b52dedd1d2ecf">method</a>())</div>
<div class="line"><a name="l00474"></a><span class="lineno">  474</span>&#160;  {</div>
<div class="line"><a name="l00475"></a><span class="lineno">  475</span>&#160;  <span class="keywordflow">case</span> <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a937ee8052e51309672b2bcdba4bb015e">lanczos_tag::partial_reorthogonalization</a>:</div>
<div class="line"><a name="l00476"></a><span class="lineno">  476</span>&#160;    eigenvalues = <a class="code" href="namespaceviennacl_1_1linalg_1_1detail.html#a07c896c3efe02f24adf912b1f89e5c07">detail::lanczosPRO</a>(matrix, r, eigenvectors_A, size_krylov, tag, compute_eigenvectors);</div>
<div class="line"><a name="l00477"></a><span class="lineno">  477</span>&#160;    <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00478"></a><span class="lineno">  478</span>&#160;  <span class="keywordflow">case</span> <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a8ecf6c75a5bd6248e628651a83a9adf1">lanczos_tag::full_reorthogonalization</a>:</div>
<div class="line"><a name="l00479"></a><span class="lineno">  479</span>&#160;  <span class="keywordflow">case</span> <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a5a98f73ee4246c0d97c82917edeca27e">lanczos_tag::no_reorthogonalization</a>:</div>
<div class="line"><a name="l00480"></a><span class="lineno">  480</span>&#160;    eigenvalues = <a class="code" href="namespaceviennacl_1_1linalg_1_1detail.html#a26da2e5971bed8094c415bd6ced7ac48">detail::lanczos</a>(matrix, r, eigenvectors_A, size_krylov, tag, compute_eigenvectors);</div>
<div class="line"><a name="l00481"></a><span class="lineno">  481</span>&#160;    <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00482"></a><span class="lineno">  482</span>&#160;  }</div>
<div class="line"><a name="l00483"></a><span class="lineno">  483</span>&#160;</div>
<div class="line"><a name="l00484"></a><span class="lineno">  484</span>&#160;  std::vector&lt;CPU_NumericType&gt; largest_eigenvalues;</div>
<div class="line"><a name="l00485"></a><span class="lineno">  485</span>&#160;</div>
<div class="line"><a name="l00486"></a><span class="lineno">  486</span>&#160;  <span class="keywordflow">for</span> (<a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> i = 1; i&lt;=tag.<a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#ae744c43467774ee300f5fab0c607aed1">num_eigenvalues</a>(); i++)</div>
<div class="line"><a name="l00487"></a><span class="lineno">  487</span>&#160;    largest_eigenvalues.push_back(eigenvalues[size_krylov-i]);</div>
<div class="line"><a name="l00488"></a><span class="lineno">  488</span>&#160;</div>
<div class="line"><a name="l00489"></a><span class="lineno">  489</span>&#160;</div>
<div class="line"><a name="l00490"></a><span class="lineno">  490</span>&#160;  <span class="keywordflow">return</span> largest_eigenvalues;</div>
<div class="line"><a name="l00491"></a><span class="lineno">  491</span>&#160;}</div>
<div class="line"><a name="l00492"></a><span class="lineno">  492</span>&#160;</div>
<div class="line"><a name="l00493"></a><span class="lineno">  493</span>&#160;</div>
<div class="line"><a name="l00503"></a><span class="lineno">  503</span>&#160;<span class="keyword">template</span>&lt;<span class="keyword">typename</span> MatrixT&gt;</div>
<div class="line"><a name="l00504"></a><span class="lineno">  504</span>&#160;std::vector&lt; typename viennacl::result_of::cpu_value_type&lt;typename MatrixT::value_type&gt;::type &gt;</div>
<div class="line"><a name="l00505"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg.html#a7afda6c5b14466eaec9b3bd9db81d988">  505</a></span>&#160;<a class="code" href="namespaceviennacl_1_1linalg.html#af5002a88fa4cc3fbe65a904797a0ecba">eig</a>(MatrixT <span class="keyword">const</span> &amp; <a class="code" href="classviennacl_1_1matrix.html">matrix</a>, <a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html">lanczos_tag</a> <span class="keyword">const</span> &amp; tag)</div>
<div class="line"><a name="l00506"></a><span class="lineno">  506</span>&#160;{</div>
<div class="line"><a name="l00507"></a><span class="lineno">  507</span>&#160;  <span class="keyword">typedef</span> <span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cpu__value__type.html#aa015d93f419985879a7c13b09633c5c6">viennacl::result_of::cpu_value_type&lt;typename MatrixT::value_type&gt;::type</a>  NumericType;</div>
<div class="line"><a name="l00508"></a><span class="lineno">  508</span>&#160;</div>
<div class="line"><a name="l00509"></a><span class="lineno">  509</span>&#160;  <a class="code" href="classviennacl_1_1matrix.html">viennacl::matrix&lt;NumericType&gt;</a> eigenvectors(matrix.size1(), tag.<a class="code" href="classviennacl_1_1linalg_1_1lanczos__tag.html#ae744c43467774ee300f5fab0c607aed1">num_eigenvalues</a>());</div>
<div class="line"><a name="l00510"></a><span class="lineno">  510</span>&#160;  <span class="keywordflow">return</span> <a class="code" href="namespaceviennacl_1_1linalg.html#af5002a88fa4cc3fbe65a904797a0ecba">eig</a>(matrix, eigenvectors, tag, <span class="keyword">false</span>);</div>
<div class="line"><a name="l00511"></a><span class="lineno">  511</span>&#160;}</div>
<div class="line"><a name="l00512"></a><span class="lineno">  512</span>&#160;</div>
<div class="line"><a name="l00513"></a><span class="lineno">  513</span>&#160;} <span class="comment">// end namespace linalg</span></div>
<div class="line"><a name="l00514"></a><span class="lineno">  514</span>&#160;} <span class="comment">// end namespace viennacl</span></div>
<div class="line"><a name="l00515"></a><span class="lineno">  515</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_af2126adae7cd63d5c9c380066cdfabf1"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#af2126adae7cd63d5c9c380066cdfabf1">viennacl::linalg::lanczos_tag::method</a></div><div class="ttdeci">int method() const </div><div class="ttdoc">Returns the reorthogonalization method. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00091">lanczos.hpp:91</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_html_ae46f15d01c01f92a153b3f555a15096b"><div class="ttname"><a href="namespaceviennacl_1_1linalg.html#ae46f15d01c01f92a153b3f555a15096b">viennacl::linalg::norm_2</a></div><div class="ttdeci">T norm_2(std::vector&lt; T, A &gt; const &amp;v1)</div><div class="ttdef"><b>Definition:</b> <a href="norm__2_8hpp_source.html#l00096">norm_2.hpp:96</a></div></div>
<div class="ttc" id="matrix__market_8hpp_html"><div class="ttname"><a href="matrix__market_8hpp.html">matrix_market.hpp</a></div><div class="ttdoc">A reader and writer for the matrix market format is implemented here. </div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_aaad9aa2dc06eb4a5ca272d7fc78fb072"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#aaad9aa2dc06eb4a5ca272d7fc78fb072">viennacl::linalg::lanczos_tag::krylov_size</a></div><div class="ttdeci">vcl_size_t krylov_size() const </div><div class="ttdoc">Returns the size of the kylov space. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00085">lanczos.hpp:85</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_html_af5002a88fa4cc3fbe65a904797a0ecba"><div class="ttname"><a href="namespaceviennacl_1_1linalg.html#af5002a88fa4cc3fbe65a904797a0ecba">viennacl::linalg::eig</a></div><div class="ttdeci">std::vector&lt; typename viennacl::result_of::cpu_value_type&lt; typename MatrixT::value_type &gt;::type &gt; eig(MatrixT const &amp;matrix, DenseMatrixT &amp;eigenvectors_A, lanczos_tag const &amp;tag, bool compute_eigenvectors=true)</div><div class="ttdoc">Implementation of the calculation of eigenvalues using lanczos (with and without reorthogonalization)...</div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00452">lanczos.hpp:452</a></div></div>
<div class="ttc" id="norm__2_8hpp_html"><div class="ttname"><a href="norm__2_8hpp.html">norm_2.hpp</a></div><div class="ttdoc">Generic interface for the l^2-norm. See viennacl/linalg/vector_operations.hpp for implementations...</div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_aad5c2c34a2b41e2a6a9b52dedd1d2ecf"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#aad5c2c34a2b41e2a6a9b52dedd1d2ecf">viennacl::linalg::lanczos_tag::method</a></div><div class="ttdeci">void method(int met)</div><div class="ttdoc">Sets the reorthogonalization method. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00088">lanczos.hpp:88</a></div></div>
<div class="ttc" id="prod_8hpp_html"><div class="ttname"><a href="prod_8hpp.html">prod.hpp</a></div><div class="ttdoc">Generic interface for matrix-vector and matrix-matrix products. See viennacl/linalg/vector_operations...</div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1detail_html_a07c896c3efe02f24adf912b1f89e5c07"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1detail.html#a07c896c3efe02f24adf912b1f89e5c07">viennacl::linalg::detail::lanczosPRO</a></div><div class="ttdeci">std::vector&lt; NumericT &gt; lanczosPRO(MatrixT const &amp;A, vector_base&lt; NumericT &gt; &amp;r, DenseMatrixT &amp;eigenvectors_A, vcl_size_t size, lanczos_tag const &amp;tag, bool compute_eigenvectors)</div><div class="ttdoc">Implementation of the Lanczos PRO algorithm (partial reorthogonalization) </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00158">lanczos.hpp:158</a></div></div>
<div class="ttc" id="classviennacl_1_1tools_1_1normal__random__numbers_html"><div class="ttname"><a href="classviennacl_1_1tools_1_1normal__random__numbers.html">viennacl::tools::normal_random_numbers</a></div><div class="ttdoc">Random number generator for returning normally distributed values. </div><div class="ttdef"><b>Definition:</b> <a href="random_8hpp_source.html#l00057">random.hpp:57</a></div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_aa71eae96da7f83e2c510ae02a2c7dbce"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#aa71eae96da7f83e2c510ae02a2c7dbce">viennacl::linalg::lanczos_tag::lanczos_tag</a></div><div class="ttdeci">lanczos_tag(double factor=0.75, vcl_size_t numeig=10, int met=0, vcl_size_t krylov=100)</div><div class="ttdoc">The constructor. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00064">lanczos.hpp:64</a></div></div>
<div class="ttc" id="classviennacl_1_1matrix_html"><div class="ttname"><a href="classviennacl_1_1matrix.html">viennacl::matrix</a></div><div class="ttdoc">A dense matrix class. </div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00375">forwards.h:375</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_html_ab35950c4374eb3be08a03d852508c01a"><div class="ttname"><a href="namespaceviennacl_1_1linalg.html#ab35950c4374eb3be08a03d852508c01a">viennacl::linalg::inner_prod</a></div><div class="ttdeci">viennacl::enable_if&lt; viennacl::is_stl&lt; typename viennacl::traits::tag_of&lt; VectorT1 &gt;::type &gt;::value, typename VectorT1::value_type &gt;::type inner_prod(VectorT1 const &amp;v1, VectorT2 const &amp;v2)</div><div class="ttdef"><b>Definition:</b> <a href="inner__prod_8hpp_source.html#l00100">inner_prod.hpp:100</a></div></div>
<div class="ttc" id="structviennacl_1_1result__of_1_1value__type_html_a1fccdddb6d57eaba8f19506cea2051a3"><div class="ttname"><a href="structviennacl_1_1result__of_1_1value__type.html#a1fccdddb6d57eaba8f19506cea2051a3">viennacl::result_of::value_type::type</a></div><div class="ttdeci">T::value_type type</div><div class="ttdef"><b>Definition:</b> <a href="result__of_8hpp_source.html#l00213">result_of.hpp:213</a></div></div>
<div class="ttc" id="inner__prod_8hpp_html"><div class="ttname"><a href="inner__prod_8hpp.html">inner_prod.hpp</a></div><div class="ttdoc">Generic interface for the computation of inner products. See viennacl/linalg/vector_operations.hpp for implementations. </div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_a8a743b9f474124a0f779ed35c6f6a684a937ee8052e51309672b2bcdba4bb015e"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a937ee8052e51309672b2bcdba4bb015e">viennacl::linalg::lanczos_tag::partial_reorthogonalization</a></div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00051">lanczos.hpp:51</a></div></div>
<div class="ttc" id="tests_2src_2bisect_8cpp_html_a52b5d30a2d7b064678644a3bf49b7f6c"><div class="ttname"><a href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a></div><div class="ttdeci">float NumericT</div><div class="ttdef"><b>Definition:</b> <a href="tests_2src_2bisect_8cpp_source.html#l00040">bisect.cpp:40</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_html_a54d70c731aed90556e228b7f14ac3a52"><div class="ttname"><a href="namespaceviennacl_1_1linalg.html#a54d70c731aed90556e228b7f14ac3a52">viennacl::linalg::bisect</a></div><div class="ttdeci">std::vector&lt; typename viennacl::result_of::cpu_value_type&lt; typename VectorT::value_type &gt;::type &gt; bisect(VectorT const &amp;alphas, VectorT const &amp;betas)</div><div class="ttdoc">Implementation of the bisect-algorithm for the calculation of the eigenvalues of a tridiagonal matrix...</div><div class="ttdef"><b>Definition:</b> <a href="bisect_8hpp_source.html#l00078">bisect.hpp:78</a></div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_a8a743b9f474124a0f779ed35c6f6a684a5a98f73ee4246c0d97c82917edeca27e"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a5a98f73ee4246c0d97c82917edeca27e">viennacl::linalg::lanczos_tag::no_reorthogonalization</a></div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00053">lanczos.hpp:53</a></div></div>
<div class="ttc" id="namespaceviennacl_html_ae92c62d9fd59870c1f6b881e391d32aa"><div class="ttname"><a href="namespaceviennacl.html#ae92c62d9fd59870c1f6b881e391d32aa">viennacl::range</a></div><div class="ttdeci">basic_range range</div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00424">forwards.h:424</a></div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_a8a743b9f474124a0f779ed35c6f6a684a8ecf6c75a5bd6248e628651a83a9adf1"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#a8a743b9f474124a0f779ed35c6f6a684a8ecf6c75a5bd6248e628651a83a9adf1">viennacl::linalg::lanczos_tag::full_reorthogonalization</a></div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00052">lanczos.hpp:52</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_html_aa18d10f8a90e38bd9ff43c650fc670ef"><div class="ttname"><a href="namespaceviennacl_1_1linalg.html#aa18d10f8a90e38bd9ff43c650fc670ef">viennacl::linalg::prod</a></div><div class="ttdeci">VectorT prod(std::vector&lt; std::vector&lt; T, A1 &gt;, A2 &gt; const &amp;matrix, VectorT const &amp;vector)</div><div class="ttdef"><b>Definition:</b> <a href="prod_8hpp_source.html#l00102">prod.hpp:102</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_aa2344ea20469f55fbc15a8e9526494d0"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a></div><div class="ttdeci">vcl_size_t size(VectorType const &amp;vec)</div><div class="ttdoc">Generic routine for obtaining the size of a vector (ViennaCL, uBLAS, etc.) </div><div class="ttdef"><b>Definition:</b> <a href="size_8hpp_source.html#l00239">size.hpp:239</a></div></div>
<div class="ttc" id="classviennacl_1_1tools_1_1uniform__random__numbers_html"><div class="ttname"><a href="classviennacl_1_1tools_1_1uniform__random__numbers.html">viennacl::tools::uniform_random_numbers</a></div><div class="ttdoc">Random number generator for returning uniformly distributed values in the closed interval [0...</div><div class="ttdef"><b>Definition:</b> <a href="random_8hpp_source.html#l00044">random.hpp:44</a></div></div>
<div class="ttc" id="compressed__matrix_8hpp_html"><div class="ttname"><a href="compressed__matrix_8hpp.html">compressed_matrix.hpp</a></div><div class="ttdoc">Implementation of the compressed_matrix class. </div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1detail_html_a182fc6f710cc79252cebd332b480fe27"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1detail.html#a182fc6f710cc79252cebd332b480fe27">viennacl::linalg::detail::copy_vec_to_vec</a></div><div class="ttdeci">void copy_vec_to_vec(viennacl::vector&lt; NumericT &gt; const &amp;src, OtherVectorT &amp;dest)</div><div class="ttdoc">overloaded function for copying vectors </div><div class="ttdef"><b>Definition:</b> <a href="bisect_8hpp_source.html#l00044">bisect.hpp:44</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__base_html"><div class="ttname"><a href="classviennacl_1_1vector__base.html">viennacl::vector_base&lt; NumericT &gt;</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1detail_html_a26da2e5971bed8094c415bd6ced7ac48"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1detail.html#a26da2e5971bed8094c415bd6ced7ac48">viennacl::linalg::detail::lanczos</a></div><div class="ttdeci">std::vector&lt; NumericT &gt; lanczos(MatrixT const &amp;A, vector_base&lt; NumericT &gt; &amp;r, DenseMatrixT &amp;eigenvectors_A, vcl_size_t krylov_dim, lanczos_tag const &amp;tag, bool compute_eigenvectors)</div><div class="ttdoc">Implementation of the Lanczos FRO algorithm. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00345">lanczos.hpp:345</a></div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_ae744c43467774ee300f5fab0c607aed1"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#ae744c43467774ee300f5fab0c607aed1">viennacl::linalg::lanczos_tag::num_eigenvalues</a></div><div class="ttdeci">void num_eigenvalues(vcl_size_t numeig)</div><div class="ttdoc">Sets the number of eigenvalues. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00070">lanczos.hpp:70</a></div></div>
<div class="ttc" id="namespaceviennacl_html_adc45a895937fe299100e2b235a442748"><div class="ttname"><a href="namespaceviennacl.html#adc45a895937fe299100e2b235a442748">viennacl::project</a></div><div class="ttdeci">matrix_range&lt; MatrixType &gt; project(MatrixType const &amp;A, viennacl::range const &amp;r1, viennacl::range const &amp;r2)</div><div class="ttdef"><b>Definition:</b> <a href="matrix__proxy_8hpp_source.html#l00326">matrix_proxy.hpp:326</a></div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_abfff89303690a662fab2fbabcca2ee25"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#abfff89303690a662fab2fbabcca2ee25">viennacl::linalg::lanczos_tag::num_eigenvalues</a></div><div class="ttdeci">vcl_size_t num_eigenvalues() const </div><div class="ttdoc">Returns the number of eigenvalues. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00073">lanczos.hpp:73</a></div></div>
<div class="ttc" id="namespaceviennacl_html_a98a0afcc513111ffa0bd138f891930df"><div class="ttname"><a href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">viennacl::vcl_size_t</a></div><div class="ttdeci">std::size_t vcl_size_t</div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00075">forwards.h:75</a></div></div>
<div class="ttc" id="classviennacl_1_1matrix__base_html_a4082cd3586bc99deb68733257b30c51f"><div class="ttname"><a href="classviennacl_1_1matrix__base.html#a4082cd3586bc99deb68733257b30c51f">viennacl::matrix_base&lt; NumericT &gt;::handle</a></div><div class="ttdeci">handle_type &amp; handle()</div><div class="ttdoc">Returns the OpenCL handle, non-const-version. </div><div class="ttdef"><b>Definition:</b> <a href="matrix__def_8hpp_source.html#l00244">matrix_def.hpp:244</a></div></div>
<div class="ttc" id="classviennacl_1_1vector_html"><div class="ttname"><a href="classviennacl_1_1vector.html">viennacl::vector&lt; NumericT &gt;</a></div></div>
<div class="ttc" id="structviennacl_1_1result__of_1_1cpu__value__type_html_aa015d93f419985879a7c13b09633c5c6"><div class="ttname"><a href="structviennacl_1_1result__of_1_1cpu__value__type.html#aa015d93f419985879a7c13b09633c5c6">viennacl::result_of::cpu_value_type::type</a></div><div class="ttdeci">T::ERROR_CANNOT_DEDUCE_CPU_SCALAR_TYPE_FOR_T type</div><div class="ttdef"><b>Definition:</b> <a href="result__of_8hpp_source.html#l00271">result_of.hpp:271</a></div></div>
<div class="ttc" id="classviennacl_1_1matrix__base_html_a24e4f5fa27a1af5ad47e52a97c065d68"><div class="ttname"><a href="classviennacl_1_1matrix__base.html#a24e4f5fa27a1af5ad47e52a97c065d68">viennacl::matrix_base&lt; NumericT &gt;::size1</a></div><div class="ttdeci">size_type size1() const</div><div class="ttdoc">Returns the number of rows. </div><div class="ttdef"><b>Definition:</b> <a href="matrix__def_8hpp_source.html#l00224">matrix_def.hpp:224</a></div></div>
<div class="ttc" id="namespaceviennacl_html_a0a574e6cd04ca0e42298b4ab845700e4"><div class="ttname"><a href="namespaceviennacl.html#a0a574e6cd04ca0e42298b4ab845700e4">viennacl::row</a></div><div class="ttdeci">vector_expression&lt; const matrix_base&lt; NumericT, F &gt;, const unsigned int, op_row &gt; row(const matrix_base&lt; NumericT, F &gt; &amp;A, unsigned int i)</div><div class="ttdef"><b>Definition:</b> <a href="matrix_8hpp_source.html#l00910">matrix.hpp:910</a></div></div>
<div class="ttc" id="vector_8hpp_html"><div class="ttname"><a href="vector_8hpp.html">vector.hpp</a></div><div class="ttdoc">The vector type with operator-overloads and proxy classes is defined here. Linear algebra operations ...</div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_html_adfd5b21910a692a78c547b22b9157c2e"><div class="ttname"><a href="namespaceviennacl_1_1linalg.html#adfd5b21910a692a78c547b22b9157c2e">viennacl::linalg::max</a></div><div class="ttdeci">NumericT max(std::vector&lt; NumericT &gt; const &amp;v1)</div><div class="ttdef"><b>Definition:</b> <a href="maxmin_8hpp_source.html#l00047">maxmin.hpp:47</a></div></div>
<div class="ttc" id="namespaceviennacl_html_a10b7f8cf6b8864a7aa196d670481a453"><div class="ttname"><a href="namespaceviennacl.html#a10b7f8cf6b8864a7aa196d670481a453">viennacl::copy</a></div><div class="ttdeci">void copy(std::vector&lt; NumericT &gt; &amp;cpu_vec, circulant_matrix&lt; NumericT, AlignmentV &gt; &amp;gpu_mat)</div><div class="ttdoc">Copies a circulant matrix from the std::vector to the OpenCL device (either GPU or multi-core CPU) ...</div><div class="ttdef"><b>Definition:</b> <a href="circulant__matrix_8hpp_source.html#l00150">circulant_matrix.hpp:150</a></div></div>
<div class="ttc" id="random_8hpp_html"><div class="ttname"><a href="random_8hpp.html">random.hpp</a></div><div class="ttdoc">A small collection of sequential random number generators. </div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_a4e07073e383c1f5ed160d007f05d6eb3"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#a4e07073e383c1f5ed160d007f05d6eb3">viennacl::linalg::lanczos_tag::krylov_size</a></div><div class="ttdeci">void krylov_size(vcl_size_t max)</div><div class="ttdoc">Sets the size of the kylov space. Must be larger than number of eigenvalues to compute. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00082">lanczos.hpp:82</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__base_html_a15c47ae4326098aeaa4ed6b91fc6df9b"><div class="ttname"><a href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">viennacl::vector_base::size</a></div><div class="ttdeci">size_type size() const </div><div class="ttdoc">Returns the length of the vector (cf. std::vector) </div><div class="ttdef"><b>Definition:</b> <a href="vector__def_8hpp_source.html#l00118">vector_def.hpp:118</a></div></div>
<div class="ttc" id="classviennacl_1_1matrix__base_html_a82018b4e169973bdfb9d3be68ceb5be0"><div class="ttname"><a href="classviennacl_1_1matrix__base.html#a82018b4e169973bdfb9d3be68ceb5be0">viennacl::matrix_base&lt; NumericT &gt;::internal_size1</a></div><div class="ttdeci">size_type internal_size1() const</div><div class="ttdoc">Returns the internal number of rows. Usually required for launching OpenCL kernels only...</div><div class="ttdef"><b>Definition:</b> <a href="matrix__def_8hpp_source.html#l00238">matrix_def.hpp:238</a></div></div>
<div class="ttc" id="bisect_8hpp_html"><div class="ttname"><a href="bisect_8hpp.html">bisect.hpp</a></div><div class="ttdoc">Implementation of the algorithm for finding eigenvalues of a tridiagonal matrix. </div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_a47e14babee64097056526536b277dbae"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#a47e14babee64097056526536b277dbae">viennacl::linalg::lanczos_tag::factor</a></div><div class="ttdeci">double factor() const </div><div class="ttdoc">Returns the exponent. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00079">lanczos.hpp:79</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1detail_html_ab967b62c4a6c67c3e37623eac4cc4fc1"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1detail.html#ab967b62c4a6c67c3e37623eac4cc4fc1">viennacl::linalg::detail::inverse_iteration</a></div><div class="ttdeci">void inverse_iteration(std::vector&lt; NumericT &gt; const &amp;alphas, std::vector&lt; NumericT &gt; const &amp;betas, NumericT &amp;eigenvalue, std::vector&lt; NumericT &gt; &amp;eigenvector)</div><div class="ttdoc">Inverse iteration for finding an eigenvector for an eigenvalue. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00109">lanczos.hpp:109</a></div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html_a3ce84b79a3ff77dd91a656232311cd52"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html#a3ce84b79a3ff77dd91a656232311cd52">viennacl::linalg::lanczos_tag::factor</a></div><div class="ttdeci">void factor(double fct)</div><div class="ttdoc">Sets the exponent of epsilon. Values between 0.6 and 0.9 usually give best results. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00076">lanczos.hpp:76</a></div></div>
<div class="ttc" id="classviennacl_1_1linalg_1_1lanczos__tag_html"><div class="ttname"><a href="classviennacl_1_1linalg_1_1lanczos__tag.html">viennacl::linalg::lanczos_tag</a></div><div class="ttdoc">A tag for the lanczos algorithm. </div><div class="ttdef"><b>Definition:</b> <a href="lanczos_8hpp_source.html#l00045">lanczos.hpp:45</a></div></div>
</div><!-- fragment --></div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
  <ul>
    <li class="navelem"><a class="el" href="dir_c82e3d11dd171600f4a6e0cab1ec1e0d.html">viennacl</a></li><li class="navelem"><a class="el" href="dir_63cde087767c4ed65c7901ffc6e293fe.html">linalg</a></li><li class="navelem"><a class="el" href="lanczos_8hpp.html">lanczos.hpp</a></li>
    <li class="footer">Generated on Wed Jan 20 2016 22:32:42 for ViennaCL - The Vienna Computing Library by
    <a href="http://www.doxygen.org/index.html">
    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.6 </li>
  </ul>
</div>
</body>
</html>