1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.6"/>
<title>ViennaCL - The Vienna Computing Library: viennacl/linalg/opencl/vector_operations.hpp Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
$(window).load(resizeHeight);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">ViennaCL - The Vienna Computing Library
 <span id="projectnumber">1.7.1</span>
</div>
<div id="projectbrief">Free open-source GPU-accelerated linear algebra and solver library.</div>
</td>
<td> <div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.6 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
<div id="nav-tree">
<div id="nav-tree-contents">
<div id="nav-sync" class="sync"></div>
</div>
</div>
<div id="splitbar" style="-moz-user-select:none;"
class="ui-resizable-handle">
</div>
</div>
<script type="text/javascript">
$(document).ready(function(){initNavTree('opencl_2vector__operations_8hpp_source.html','');});
</script>
<div id="doc-content">
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark"> </span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark"> </span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark"> </span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark"> </span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark"> </span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark"> </span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark"> </span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark"> </span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark"> </span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(9)"><span class="SelectionMark"> </span>Friends</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(10)"><span class="SelectionMark"> </span>Macros</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(11)"><span class="SelectionMark"> </span>Pages</a></div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div class="header">
<div class="headertitle">
<div class="title">vector_operations.hpp</div> </div>
</div><!--header-->
<div class="contents">
<a href="opencl_2vector__operations_8hpp.html">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span> <span class="preprocessor">#ifndef VIENNACL_LINALG_OPENCL_VECTOR_OPERATIONS_HPP_</span></div>
<div class="line"><a name="l00002"></a><span class="lineno"> 2</span> <span class="preprocessor">#define VIENNACL_LINALG_OPENCL_VECTOR_OPERATIONS_HPP_</span></div>
<div class="line"><a name="l00003"></a><span class="lineno"> 3</span> </div>
<div class="line"><a name="l00004"></a><span class="lineno"> 4</span> <span class="comment">/* =========================================================================</span></div>
<div class="line"><a name="l00005"></a><span class="lineno"> 5</span> <span class="comment"> Copyright (c) 2010-2016, Institute for Microelectronics,</span></div>
<div class="line"><a name="l00006"></a><span class="lineno"> 6</span> <span class="comment"> Institute for Analysis and Scientific Computing,</span></div>
<div class="line"><a name="l00007"></a><span class="lineno"> 7</span> <span class="comment"> TU Wien.</span></div>
<div class="line"><a name="l00008"></a><span class="lineno"> 8</span> <span class="comment"> Portions of this software are copyright by UChicago Argonne, LLC.</span></div>
<div class="line"><a name="l00009"></a><span class="lineno"> 9</span> <span class="comment"></span></div>
<div class="line"><a name="l00010"></a><span class="lineno"> 10</span> <span class="comment"> -----------------</span></div>
<div class="line"><a name="l00011"></a><span class="lineno"> 11</span> <span class="comment"> ViennaCL - The Vienna Computing Library</span></div>
<div class="line"><a name="l00012"></a><span class="lineno"> 12</span> <span class="comment"> -----------------</span></div>
<div class="line"><a name="l00013"></a><span class="lineno"> 13</span> <span class="comment"></span></div>
<div class="line"><a name="l00014"></a><span class="lineno"> 14</span> <span class="comment"> Project Head: Karl Rupp rupp@iue.tuwien.ac.at</span></div>
<div class="line"><a name="l00015"></a><span class="lineno"> 15</span> <span class="comment"></span></div>
<div class="line"><a name="l00016"></a><span class="lineno"> 16</span> <span class="comment"> (A list of authors and contributors can be found in the manual)</span></div>
<div class="line"><a name="l00017"></a><span class="lineno"> 17</span> <span class="comment"></span></div>
<div class="line"><a name="l00018"></a><span class="lineno"> 18</span> <span class="comment"> License: MIT (X11), see file LICENSE in the base directory</span></div>
<div class="line"><a name="l00019"></a><span class="lineno"> 19</span> <span class="comment">============================================================================= */</span></div>
<div class="line"><a name="l00020"></a><span class="lineno"> 20</span> </div>
<div class="line"><a name="l00025"></a><span class="lineno"> 25</span> <span class="preprocessor">#include <cmath></span></div>
<div class="line"><a name="l00026"></a><span class="lineno"> 26</span> </div>
<div class="line"><a name="l00027"></a><span class="lineno"> 27</span> <span class="preprocessor">#include "<a class="code" href="forwards_8h.html">viennacl/forwards.h</a>"</span></div>
<div class="line"><a name="l00028"></a><span class="lineno"> 28</span> <span class="preprocessor">#include "<a class="code" href="vector__def_8hpp.html">viennacl/detail/vector_def.hpp</a>"</span></div>
<div class="line"><a name="l00029"></a><span class="lineno"> 29</span> <span class="preprocessor">#include "<a class="code" href="device_8hpp.html">viennacl/ocl/device.hpp</a>"</span></div>
<div class="line"><a name="l00030"></a><span class="lineno"> 30</span> <span class="preprocessor">#include "<a class="code" href="ocl_2handle_8hpp.html">viennacl/ocl/handle.hpp</a>"</span></div>
<div class="line"><a name="l00031"></a><span class="lineno"> 31</span> <span class="preprocessor">#include "<a class="code" href="kernel_8hpp.html">viennacl/ocl/kernel.hpp</a>"</span></div>
<div class="line"><a name="l00032"></a><span class="lineno"> 32</span> <span class="preprocessor">#include "<a class="code" href="scalar_8hpp.html">viennacl/scalar.hpp</a>"</span></div>
<div class="line"><a name="l00033"></a><span class="lineno"> 33</span> <span class="preprocessor">#include "<a class="code" href="tools_8hpp.html">viennacl/tools/tools.hpp</a>"</span></div>
<div class="line"><a name="l00034"></a><span class="lineno"> 34</span> <span class="preprocessor">#include "<a class="code" href="linalg_2opencl_2common_8hpp.html">viennacl/linalg/opencl/common.hpp</a>"</span></div>
<div class="line"><a name="l00035"></a><span class="lineno"> 35</span> <span class="preprocessor">#include "<a class="code" href="linalg_2opencl_2kernels_2vector_8hpp.html">viennacl/linalg/opencl/kernels/vector.hpp</a>"</span></div>
<div class="line"><a name="l00036"></a><span class="lineno"> 36</span> <span class="preprocessor">#include "<a class="code" href="vector__element_8hpp.html">viennacl/linalg/opencl/kernels/vector_element.hpp</a>"</span></div>
<div class="line"><a name="l00037"></a><span class="lineno"> 37</span> <span class="preprocessor">#include "<a class="code" href="scan_8hpp.html">viennacl/linalg/opencl/kernels/scan.hpp</a>"</span></div>
<div class="line"><a name="l00038"></a><span class="lineno"> 38</span> <span class="preprocessor">#include "<a class="code" href="predicate_8hpp.html">viennacl/meta/predicate.hpp</a>"</span></div>
<div class="line"><a name="l00039"></a><span class="lineno"> 39</span> <span class="preprocessor">#include "<a class="code" href="enable__if_8hpp.html">viennacl/meta/enable_if.hpp</a>"</span></div>
<div class="line"><a name="l00040"></a><span class="lineno"> 40</span> <span class="preprocessor">#include "<a class="code" href="size_8hpp.html">viennacl/traits/size.hpp</a>"</span></div>
<div class="line"><a name="l00041"></a><span class="lineno"> 41</span> <span class="preprocessor">#include "<a class="code" href="start_8hpp.html">viennacl/traits/start.hpp</a>"</span></div>
<div class="line"><a name="l00042"></a><span class="lineno"> 42</span> <span class="preprocessor">#include "<a class="code" href="traits_2handle_8hpp.html">viennacl/traits/handle.hpp</a>"</span></div>
<div class="line"><a name="l00043"></a><span class="lineno"> 43</span> <span class="preprocessor">#include "<a class="code" href="stride_8hpp.html">viennacl/traits/stride.hpp</a>"</span></div>
<div class="line"><a name="l00044"></a><span class="lineno"> 44</span> </div>
<div class="line"><a name="l00045"></a><span class="lineno"> 45</span> <span class="keyword">namespace </span>viennacl</div>
<div class="line"><a name="l00046"></a><span class="lineno"> 46</span> {</div>
<div class="line"><a name="l00047"></a><span class="lineno"> 47</span> <span class="keyword">namespace </span>linalg</div>
<div class="line"><a name="l00048"></a><span class="lineno"> 48</span> {</div>
<div class="line"><a name="l00049"></a><span class="lineno"> 49</span> <span class="keyword">namespace </span>opencl</div>
<div class="line"><a name="l00050"></a><span class="lineno"> 50</span> {</div>
<div class="line"><a name="l00051"></a><span class="lineno"> 51</span> </div>
<div class="line"><a name="l00052"></a><span class="lineno"> 52</span> <span class="comment">//</span></div>
<div class="line"><a name="l00053"></a><span class="lineno"> 53</span> <span class="comment">// Introductory note: By convention, all dimensions are already checked in the dispatcher frontend. No need to double-check again in here!</span></div>
<div class="line"><a name="l00054"></a><span class="lineno"> 54</span> <span class="comment">//</span></div>
<div class="line"><a name="l00055"></a><span class="lineno"> 55</span> <span class="keyword">template</span><<span class="keyword">typename</span> DestNumericT, <span class="keyword">typename</span> SrcNumericT></div>
<div class="line"><a name="l00056"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a541e559b22fd19a7a453af6beca00b2b"> 56</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a4e7dbe07ee5433438da8435cdb1a08ee">convert</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<DestNumericT></a> & dest, <a class="code" href="classviennacl_1_1vector__base.html">vector_base<SrcNumericT></a> <span class="keyword">const</span> & src)</div>
<div class="line"><a name="l00057"></a><span class="lineno"> 57</span> {</div>
<div class="line"><a name="l00058"></a><span class="lineno"> 58</span>  assert(viennacl::traits::opencl_handle(dest).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(src).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00059"></a><span class="lineno"> 59</span> </div>
<div class="line"><a name="l00060"></a><span class="lineno"> 60</span>  std::string kernel_name(<span class="stringliteral">"convert_"</span>);</div>
<div class="line"><a name="l00061"></a><span class="lineno"> 61</span>  kernel_name += <a class="code" href="structviennacl_1_1ocl_1_1type__to__string.html">viennacl::ocl::type_to_string<DestNumericT>::apply</a>();</div>
<div class="line"><a name="l00062"></a><span class="lineno"> 62</span>  kernel_name += <span class="stringliteral">"_"</span>;</div>
<div class="line"><a name="l00063"></a><span class="lineno"> 63</span>  kernel_name += <a class="code" href="structviennacl_1_1ocl_1_1type__to__string.html">viennacl::ocl::type_to_string<SrcNumericT>::apply</a>();</div>
<div class="line"><a name="l00064"></a><span class="lineno"> 64</span> </div>
<div class="line"><a name="l00065"></a><span class="lineno"> 65</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(dest).context());</div>
<div class="line"><a name="l00066"></a><span class="lineno"> 66</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__convert.html#a5b181b269925c10d0a7ed4e258393566">viennacl::linalg::opencl::kernels::vector_convert::init</a>(ctx);</div>
<div class="line"><a name="l00067"></a><span class="lineno"> 67</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a>& k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__convert.html#aa9b325a3e08a54c231d0aaa17f9162f4">viennacl::linalg::opencl::kernels::vector_convert::program_name</a>(), kernel_name);</div>
<div class="line"><a name="l00068"></a><span class="lineno"> 68</span> </div>
<div class="line"><a name="l00069"></a><span class="lineno"> 69</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k( dest, cl_uint(dest.<a class="code" href="classviennacl_1_1vector__base.html#aaabd2cd126b77ee09b80b4c447bcbd3e">start</a>()), cl_uint(dest.<a class="code" href="classviennacl_1_1vector__base.html#af1e0bd20ec7254908f6d49df07785cf4">stride</a>()), cl_uint(dest.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>()),</div>
<div class="line"><a name="l00070"></a><span class="lineno"> 70</span>  src, cl_uint( src.<a class="code" href="classviennacl_1_1vector__base.html#aaabd2cd126b77ee09b80b4c447bcbd3e">start</a>()), cl_uint( src.<a class="code" href="classviennacl_1_1vector__base.html#af1e0bd20ec7254908f6d49df07785cf4">stride</a>())</div>
<div class="line"><a name="l00071"></a><span class="lineno"> 71</span>  ) );</div>
<div class="line"><a name="l00072"></a><span class="lineno"> 72</span> </div>
<div class="line"><a name="l00073"></a><span class="lineno"> 73</span> }</div>
<div class="line"><a name="l00074"></a><span class="lineno"> 74</span> </div>
<div class="line"><a name="l00075"></a><span class="lineno"> 75</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keyword">typename</span> ScalarType1></div>
<div class="line"><a name="l00076"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a0501c423f35eb16759db2c3028ae4857"> 76</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a0501c423f35eb16759db2c3028ae4857">av</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & vec1,</div>
<div class="line"><a name="l00077"></a><span class="lineno"> 77</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec2, ScalarType1 <span class="keyword">const</span> & alpha, <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> len_alpha, <span class="keywordtype">bool</span> reciprocal_alpha, <span class="keywordtype">bool</span> flip_sign_alpha)</div>
<div class="line"><a name="l00078"></a><span class="lineno"> 78</span> {</div>
<div class="line"><a name="l00079"></a><span class="lineno"> 79</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(vec2).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00080"></a><span class="lineno"> 80</span> </div>
<div class="line"><a name="l00081"></a><span class="lineno"> 81</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec1).context());</div>
<div class="line"><a name="l00082"></a><span class="lineno"> 82</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<T>::init</a>(ctx);</div>
<div class="line"><a name="l00083"></a><span class="lineno"> 83</span> </div>
<div class="line"><a name="l00084"></a><span class="lineno"> 84</span>  cl_uint options_alpha = <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a685282399bcfb05ee912c02fed7f922f">detail::make_options</a>(len_alpha, reciprocal_alpha, flip_sign_alpha);</div>
<div class="line"><a name="l00085"></a><span class="lineno"> 85</span> </div>
<div class="line"><a name="l00086"></a><span class="lineno"> 86</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(),</div>
<div class="line"><a name="l00087"></a><span class="lineno"> 87</span>  (<a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType1>::value</a> ? <span class="stringliteral">"av_cpu"</span> : <span class="stringliteral">"av_gpu"</span>));</div>
<div class="line"><a name="l00088"></a><span class="lineno"> 88</span>  k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, std::min<vcl_size_t>(128 * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(),</div>
<div class="line"><a name="l00089"></a><span class="lineno"> 89</span>  viennacl::tools::align_to_multiple<vcl_size_t>(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1), k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()) ) );</div>
<div class="line"><a name="l00090"></a><span class="lineno"> 90</span> </div>
<div class="line"><a name="l00091"></a><span class="lineno"> 91</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec1;</div>
<div class="line"><a name="l00092"></a><span class="lineno"> 92</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec1));</div>
<div class="line"><a name="l00093"></a><span class="lineno"> 93</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec1));</div>
<div class="line"><a name="l00094"></a><span class="lineno"> 94</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1));</div>
<div class="line"><a name="l00095"></a><span class="lineno"> 95</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec1));</div>
<div class="line"><a name="l00096"></a><span class="lineno"> 96</span> </div>
<div class="line"><a name="l00097"></a><span class="lineno"> 97</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec2;</div>
<div class="line"><a name="l00098"></a><span class="lineno"> 98</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec2));</div>
<div class="line"><a name="l00099"></a><span class="lineno"> 99</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec2));</div>
<div class="line"><a name="l00100"></a><span class="lineno"> 100</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec2));</div>
<div class="line"><a name="l00101"></a><span class="lineno"> 101</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec2));</div>
<div class="line"><a name="l00102"></a><span class="lineno"> 102</span> </div>
<div class="line"><a name="l00103"></a><span class="lineno"> 103</span> </div>
<div class="line"><a name="l00104"></a><span class="lineno"> 104</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(vec1),</div>
<div class="line"><a name="l00105"></a><span class="lineno"> 105</span>  size_vec1,</div>
<div class="line"><a name="l00106"></a><span class="lineno"> 106</span> </div>
<div class="line"><a name="l00107"></a><span class="lineno"> 107</span>  viennacl::traits::opencl_handle(viennacl::tools::promote_if_host_scalar<T>(alpha)),</div>
<div class="line"><a name="l00108"></a><span class="lineno"> 108</span>  options_alpha,</div>
<div class="line"><a name="l00109"></a><span class="lineno"> 109</span>  viennacl::traits::opencl_handle(vec2),</div>
<div class="line"><a name="l00110"></a><span class="lineno"> 110</span>  size_vec2 )</div>
<div class="line"><a name="l00111"></a><span class="lineno"> 111</span>  );</div>
<div class="line"><a name="l00112"></a><span class="lineno"> 112</span> }</div>
<div class="line"><a name="l00113"></a><span class="lineno"> 113</span> </div>
<div class="line"><a name="l00114"></a><span class="lineno"> 114</span> </div>
<div class="line"><a name="l00115"></a><span class="lineno"> 115</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keyword">typename</span> ScalarType1, <span class="keyword">typename</span> ScalarType2></div>
<div class="line"><a name="l00116"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#ad22775c47f41c305da21168d1cb92236"> 116</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#ad22775c47f41c305da21168d1cb92236">avbv</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & vec1,</div>
<div class="line"><a name="l00117"></a><span class="lineno"> 117</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec2, ScalarType1 <span class="keyword">const</span> & alpha, <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> len_alpha, <span class="keywordtype">bool</span> reciprocal_alpha, <span class="keywordtype">bool</span> flip_sign_alpha,</div>
<div class="line"><a name="l00118"></a><span class="lineno"> 118</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec3, ScalarType2 <span class="keyword">const</span> & beta, <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> len_beta, <span class="keywordtype">bool</span> reciprocal_beta, <span class="keywordtype">bool</span> flip_sign_beta)</div>
<div class="line"><a name="l00119"></a><span class="lineno"> 119</span> {</div>
<div class="line"><a name="l00120"></a><span class="lineno"> 120</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(vec2).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00121"></a><span class="lineno"> 121</span>  assert(viennacl::traits::opencl_handle(vec2).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(vec3).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00122"></a><span class="lineno"> 122</span> </div>
<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec1).context());</div>
<div class="line"><a name="l00124"></a><span class="lineno"> 124</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<T>::init</a>(ctx);</div>
<div class="line"><a name="l00125"></a><span class="lineno"> 125</span> </div>
<div class="line"><a name="l00126"></a><span class="lineno"> 126</span>  std::string kernel_name;</div>
<div class="line"><a name="l00127"></a><span class="lineno"> 127</span>  <span class="keywordflow">if</span> (<a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType1>::value</a> && <a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType2>::value</a>)</div>
<div class="line"><a name="l00128"></a><span class="lineno"> 128</span>  kernel_name = <span class="stringliteral">"avbv_cpu_cpu"</span>;</div>
<div class="line"><a name="l00129"></a><span class="lineno"> 129</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span> (<a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType1>::value</a> && !<a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType2>::value</a>)</div>
<div class="line"><a name="l00130"></a><span class="lineno"> 130</span>  kernel_name = <span class="stringliteral">"avbv_cpu_gpu"</span>;</div>
<div class="line"><a name="l00131"></a><span class="lineno"> 131</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span> (!<a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType1>::value</a> && <a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType2>::value</a>)</div>
<div class="line"><a name="l00132"></a><span class="lineno"> 132</span>  kernel_name = <span class="stringliteral">"avbv_gpu_cpu"</span>;</div>
<div class="line"><a name="l00133"></a><span class="lineno"> 133</span>  <span class="keywordflow">else</span></div>
<div class="line"><a name="l00134"></a><span class="lineno"> 134</span>  kernel_name = <span class="stringliteral">"avbv_gpu_gpu"</span>;</div>
<div class="line"><a name="l00135"></a><span class="lineno"> 135</span> </div>
<div class="line"><a name="l00136"></a><span class="lineno"> 136</span>  cl_uint options_alpha = <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a685282399bcfb05ee912c02fed7f922f">detail::make_options</a>(len_alpha, reciprocal_alpha, flip_sign_alpha);</div>
<div class="line"><a name="l00137"></a><span class="lineno"> 137</span>  cl_uint options_beta = <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a685282399bcfb05ee912c02fed7f922f">detail::make_options</a>(len_beta, reciprocal_beta, flip_sign_beta);</div>
<div class="line"><a name="l00138"></a><span class="lineno"> 138</span> </div>
<div class="line"><a name="l00139"></a><span class="lineno"> 139</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), kernel_name);</div>
<div class="line"><a name="l00140"></a><span class="lineno"> 140</span>  k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, std::min<vcl_size_t>(128 * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(),</div>
<div class="line"><a name="l00141"></a><span class="lineno"> 141</span>  viennacl::tools::align_to_multiple<vcl_size_t>(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1), k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()) ) );</div>
<div class="line"><a name="l00142"></a><span class="lineno"> 142</span> </div>
<div class="line"><a name="l00143"></a><span class="lineno"> 143</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec1;</div>
<div class="line"><a name="l00144"></a><span class="lineno"> 144</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec1));</div>
<div class="line"><a name="l00145"></a><span class="lineno"> 145</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec1));</div>
<div class="line"><a name="l00146"></a><span class="lineno"> 146</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1));</div>
<div class="line"><a name="l00147"></a><span class="lineno"> 147</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec1));</div>
<div class="line"><a name="l00148"></a><span class="lineno"> 148</span> </div>
<div class="line"><a name="l00149"></a><span class="lineno"> 149</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec2;</div>
<div class="line"><a name="l00150"></a><span class="lineno"> 150</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec2));</div>
<div class="line"><a name="l00151"></a><span class="lineno"> 151</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec2));</div>
<div class="line"><a name="l00152"></a><span class="lineno"> 152</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec2));</div>
<div class="line"><a name="l00153"></a><span class="lineno"> 153</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec2));</div>
<div class="line"><a name="l00154"></a><span class="lineno"> 154</span> </div>
<div class="line"><a name="l00155"></a><span class="lineno"> 155</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec3;</div>
<div class="line"><a name="l00156"></a><span class="lineno"> 156</span>  size_vec3.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec3));</div>
<div class="line"><a name="l00157"></a><span class="lineno"> 157</span>  size_vec3.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec3));</div>
<div class="line"><a name="l00158"></a><span class="lineno"> 158</span>  size_vec3.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec3));</div>
<div class="line"><a name="l00159"></a><span class="lineno"> 159</span>  size_vec3.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec3));</div>
<div class="line"><a name="l00160"></a><span class="lineno"> 160</span> </div>
<div class="line"><a name="l00161"></a><span class="lineno"> 161</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(vec1),</div>
<div class="line"><a name="l00162"></a><span class="lineno"> 162</span>  size_vec1,</div>
<div class="line"><a name="l00163"></a><span class="lineno"> 163</span> </div>
<div class="line"><a name="l00164"></a><span class="lineno"> 164</span>  viennacl::traits::opencl_handle(viennacl::tools::promote_if_host_scalar<T>(alpha)),</div>
<div class="line"><a name="l00165"></a><span class="lineno"> 165</span>  options_alpha,</div>
<div class="line"><a name="l00166"></a><span class="lineno"> 166</span>  viennacl::traits::opencl_handle(vec2),</div>
<div class="line"><a name="l00167"></a><span class="lineno"> 167</span>  size_vec2,</div>
<div class="line"><a name="l00168"></a><span class="lineno"> 168</span> </div>
<div class="line"><a name="l00169"></a><span class="lineno"> 169</span>  viennacl::traits::opencl_handle(viennacl::tools::promote_if_host_scalar<T>(beta)),</div>
<div class="line"><a name="l00170"></a><span class="lineno"> 170</span>  options_beta,</div>
<div class="line"><a name="l00171"></a><span class="lineno"> 171</span>  viennacl::traits::opencl_handle(vec3),</div>
<div class="line"><a name="l00172"></a><span class="lineno"> 172</span>  size_vec3 )</div>
<div class="line"><a name="l00173"></a><span class="lineno"> 173</span>  );</div>
<div class="line"><a name="l00174"></a><span class="lineno"> 174</span> }</div>
<div class="line"><a name="l00175"></a><span class="lineno"> 175</span> </div>
<div class="line"><a name="l00176"></a><span class="lineno"> 176</span> </div>
<div class="line"><a name="l00177"></a><span class="lineno"> 177</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keyword">typename</span> ScalarType1, <span class="keyword">typename</span> ScalarType2></div>
<div class="line"><a name="l00178"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a3acee3fef422c2c2abee2f4e1d67c350"> 178</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a3acee3fef422c2c2abee2f4e1d67c350">avbv_v</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & vec1,</div>
<div class="line"><a name="l00179"></a><span class="lineno"> 179</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec2, ScalarType1 <span class="keyword">const</span> & alpha, <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> len_alpha, <span class="keywordtype">bool</span> reciprocal_alpha, <span class="keywordtype">bool</span> flip_sign_alpha,</div>
<div class="line"><a name="l00180"></a><span class="lineno"> 180</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec3, ScalarType2 <span class="keyword">const</span> & beta, <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> len_beta, <span class="keywordtype">bool</span> reciprocal_beta, <span class="keywordtype">bool</span> flip_sign_beta)</div>
<div class="line"><a name="l00181"></a><span class="lineno"> 181</span> {</div>
<div class="line"><a name="l00182"></a><span class="lineno"> 182</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(vec2).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00183"></a><span class="lineno"> 183</span>  assert(viennacl::traits::opencl_handle(vec2).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(vec3).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00184"></a><span class="lineno"> 184</span> </div>
<div class="line"><a name="l00185"></a><span class="lineno"> 185</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec1).context());</div>
<div class="line"><a name="l00186"></a><span class="lineno"> 186</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<T>::init</a>(ctx);</div>
<div class="line"><a name="l00187"></a><span class="lineno"> 187</span> </div>
<div class="line"><a name="l00188"></a><span class="lineno"> 188</span>  std::string kernel_name;</div>
<div class="line"><a name="l00189"></a><span class="lineno"> 189</span>  <span class="keywordflow">if</span> (<a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType1>::value</a> && <a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType2>::value</a>)</div>
<div class="line"><a name="l00190"></a><span class="lineno"> 190</span>  kernel_name = <span class="stringliteral">"avbv_v_cpu_cpu"</span>;</div>
<div class="line"><a name="l00191"></a><span class="lineno"> 191</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span> (<a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType1>::value</a> && !<a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType2>::value</a>)</div>
<div class="line"><a name="l00192"></a><span class="lineno"> 192</span>  kernel_name = <span class="stringliteral">"avbv_v_cpu_gpu"</span>;</div>
<div class="line"><a name="l00193"></a><span class="lineno"> 193</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span> (!<a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType1>::value</a> && <a class="code" href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar<ScalarType2>::value</a>)</div>
<div class="line"><a name="l00194"></a><span class="lineno"> 194</span>  kernel_name = <span class="stringliteral">"avbv_v_gpu_cpu"</span>;</div>
<div class="line"><a name="l00195"></a><span class="lineno"> 195</span>  <span class="keywordflow">else</span></div>
<div class="line"><a name="l00196"></a><span class="lineno"> 196</span>  kernel_name = <span class="stringliteral">"avbv_v_gpu_gpu"</span>;</div>
<div class="line"><a name="l00197"></a><span class="lineno"> 197</span> </div>
<div class="line"><a name="l00198"></a><span class="lineno"> 198</span>  cl_uint options_alpha = <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a685282399bcfb05ee912c02fed7f922f">detail::make_options</a>(len_alpha, reciprocal_alpha, flip_sign_alpha);</div>
<div class="line"><a name="l00199"></a><span class="lineno"> 199</span>  cl_uint options_beta = <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a685282399bcfb05ee912c02fed7f922f">detail::make_options</a>(len_beta, reciprocal_beta, flip_sign_beta);</div>
<div class="line"><a name="l00200"></a><span class="lineno"> 200</span> </div>
<div class="line"><a name="l00201"></a><span class="lineno"> 201</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), kernel_name);</div>
<div class="line"><a name="l00202"></a><span class="lineno"> 202</span>  k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, std::min<vcl_size_t>(128 * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(),</div>
<div class="line"><a name="l00203"></a><span class="lineno"> 203</span>  viennacl::tools::align_to_multiple<vcl_size_t>(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1), k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()) ) );</div>
<div class="line"><a name="l00204"></a><span class="lineno"> 204</span> </div>
<div class="line"><a name="l00205"></a><span class="lineno"> 205</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec1;</div>
<div class="line"><a name="l00206"></a><span class="lineno"> 206</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec1));</div>
<div class="line"><a name="l00207"></a><span class="lineno"> 207</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec1));</div>
<div class="line"><a name="l00208"></a><span class="lineno"> 208</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1));</div>
<div class="line"><a name="l00209"></a><span class="lineno"> 209</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec1));</div>
<div class="line"><a name="l00210"></a><span class="lineno"> 210</span> </div>
<div class="line"><a name="l00211"></a><span class="lineno"> 211</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec2;</div>
<div class="line"><a name="l00212"></a><span class="lineno"> 212</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec2));</div>
<div class="line"><a name="l00213"></a><span class="lineno"> 213</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec2));</div>
<div class="line"><a name="l00214"></a><span class="lineno"> 214</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec2));</div>
<div class="line"><a name="l00215"></a><span class="lineno"> 215</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec2));</div>
<div class="line"><a name="l00216"></a><span class="lineno"> 216</span> </div>
<div class="line"><a name="l00217"></a><span class="lineno"> 217</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec3;</div>
<div class="line"><a name="l00218"></a><span class="lineno"> 218</span>  size_vec3.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec3));</div>
<div class="line"><a name="l00219"></a><span class="lineno"> 219</span>  size_vec3.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec3));</div>
<div class="line"><a name="l00220"></a><span class="lineno"> 220</span>  size_vec3.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec3));</div>
<div class="line"><a name="l00221"></a><span class="lineno"> 221</span>  size_vec3.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec3));</div>
<div class="line"><a name="l00222"></a><span class="lineno"> 222</span> </div>
<div class="line"><a name="l00223"></a><span class="lineno"> 223</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(vec1),</div>
<div class="line"><a name="l00224"></a><span class="lineno"> 224</span>  size_vec1,</div>
<div class="line"><a name="l00225"></a><span class="lineno"> 225</span> </div>
<div class="line"><a name="l00226"></a><span class="lineno"> 226</span>  viennacl::traits::opencl_handle(viennacl::tools::promote_if_host_scalar<T>(alpha)),</div>
<div class="line"><a name="l00227"></a><span class="lineno"> 227</span>  options_alpha,</div>
<div class="line"><a name="l00228"></a><span class="lineno"> 228</span>  viennacl::traits::opencl_handle(vec2),</div>
<div class="line"><a name="l00229"></a><span class="lineno"> 229</span>  size_vec2,</div>
<div class="line"><a name="l00230"></a><span class="lineno"> 230</span> </div>
<div class="line"><a name="l00231"></a><span class="lineno"> 231</span>  viennacl::traits::opencl_handle(viennacl::tools::promote_if_host_scalar<T>(beta)),</div>
<div class="line"><a name="l00232"></a><span class="lineno"> 232</span>  options_beta,</div>
<div class="line"><a name="l00233"></a><span class="lineno"> 233</span>  viennacl::traits::opencl_handle(vec3),</div>
<div class="line"><a name="l00234"></a><span class="lineno"> 234</span>  size_vec3 )</div>
<div class="line"><a name="l00235"></a><span class="lineno"> 235</span>  );</div>
<div class="line"><a name="l00236"></a><span class="lineno"> 236</span> }</div>
<div class="line"><a name="l00237"></a><span class="lineno"> 237</span> </div>
<div class="line"><a name="l00238"></a><span class="lineno"> 238</span> </div>
<div class="line"><a name="l00245"></a><span class="lineno"> 245</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00246"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a964528bcf7fca1f0e63be4b81d9a1a4b"> 246</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a964528bcf7fca1f0e63be4b81d9a1a4b">vector_assign</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & vec1, <span class="keyword">const</span> T & alpha, <span class="keywordtype">bool</span> up_to_internal_size = <span class="keyword">false</span>)</div>
<div class="line"><a name="l00247"></a><span class="lineno"> 247</span> {</div>
<div class="line"><a name="l00248"></a><span class="lineno"> 248</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec1).context());</div>
<div class="line"><a name="l00249"></a><span class="lineno"> 249</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<T>::init</a>(ctx);</div>
<div class="line"><a name="l00250"></a><span class="lineno"> 250</span> </div>
<div class="line"><a name="l00251"></a><span class="lineno"> 251</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), <span class="stringliteral">"assign_cpu"</span>);</div>
<div class="line"><a name="l00252"></a><span class="lineno"> 252</span>  k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, std::min<vcl_size_t>(128 * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(),</div>
<div class="line"><a name="l00253"></a><span class="lineno"> 253</span>  viennacl::tools::align_to_multiple<vcl_size_t>(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1), k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()) ) );</div>
<div class="line"><a name="l00254"></a><span class="lineno"> 254</span> </div>
<div class="line"><a name="l00255"></a><span class="lineno"> 255</span>  cl_uint <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">size</a> = up_to_internal_size ? cl_uint(vec1.<a class="code" href="classviennacl_1_1vector__base.html#a47350ccdc4b0a24eaea0e8d5f9fe7fec">internal_size</a>()) : cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1));</div>
<div class="line"><a name="l00256"></a><span class="lineno"> 256</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(vec1),</div>
<div class="line"><a name="l00257"></a><span class="lineno"> 257</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec1)),</div>
<div class="line"><a name="l00258"></a><span class="lineno"> 258</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec1)),</div>
<div class="line"><a name="l00259"></a><span class="lineno"> 259</span>  size,</div>
<div class="line"><a name="l00260"></a><span class="lineno"> 260</span>  cl_uint(vec1.<a class="code" href="classviennacl_1_1vector__base.html#a47350ccdc4b0a24eaea0e8d5f9fe7fec">internal_size</a>()), <span class="comment">//Note: Do NOT use traits::internal_size() here, because vector proxies don't require padding.</span></div>
<div class="line"><a name="l00261"></a><span class="lineno"> 261</span>  viennacl::traits::opencl_handle(T(alpha)) )</div>
<div class="line"><a name="l00262"></a><span class="lineno"> 262</span>  );</div>
<div class="line"><a name="l00263"></a><span class="lineno"> 263</span> }</div>
<div class="line"><a name="l00264"></a><span class="lineno"> 264</span> </div>
<div class="line"><a name="l00265"></a><span class="lineno"> 265</span> </div>
<div class="line"><a name="l00271"></a><span class="lineno"> 271</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00272"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a8d0663f2f9916ed1ec639bcd1d240a7d"> 272</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a8d0663f2f9916ed1ec639bcd1d240a7d">vector_swap</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & vec1, <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & vec2)</div>
<div class="line"><a name="l00273"></a><span class="lineno"> 273</span> {</div>
<div class="line"><a name="l00274"></a><span class="lineno"> 274</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(vec2).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00275"></a><span class="lineno"> 275</span> </div>
<div class="line"><a name="l00276"></a><span class="lineno"> 276</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec1).context());</div>
<div class="line"><a name="l00277"></a><span class="lineno"> 277</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<T>::init</a>(ctx);</div>
<div class="line"><a name="l00278"></a><span class="lineno"> 278</span> </div>
<div class="line"><a name="l00279"></a><span class="lineno"> 279</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), <span class="stringliteral">"swap"</span>);</div>
<div class="line"><a name="l00280"></a><span class="lineno"> 280</span> </div>
<div class="line"><a name="l00281"></a><span class="lineno"> 281</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(vec1),</div>
<div class="line"><a name="l00282"></a><span class="lineno"> 282</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec1)),</div>
<div class="line"><a name="l00283"></a><span class="lineno"> 283</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec1)),</div>
<div class="line"><a name="l00284"></a><span class="lineno"> 284</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1)),</div>
<div class="line"><a name="l00285"></a><span class="lineno"> 285</span>  viennacl::traits::opencl_handle(vec2),</div>
<div class="line"><a name="l00286"></a><span class="lineno"> 286</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec2)),</div>
<div class="line"><a name="l00287"></a><span class="lineno"> 287</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec2)),</div>
<div class="line"><a name="l00288"></a><span class="lineno"> 288</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec2)))</div>
<div class="line"><a name="l00289"></a><span class="lineno"> 289</span>  );</div>
<div class="line"><a name="l00290"></a><span class="lineno"> 290</span> }</div>
<div class="line"><a name="l00291"></a><span class="lineno"> 291</span> </div>
<div class="line"><a name="l00293"></a><span class="lineno"> 293</span> </div>
<div class="line"><a name="l00299"></a><span class="lineno"> 299</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keyword">typename</span> OP></div>
<div class="line"><a name="l00300"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a3676fb99f0f09069c00a2d5eebeb9a3e"> 300</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a8dd7386eb70a19d9d818b5ba57512d57">element_op</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & vec1,</div>
<div class="line"><a name="l00301"></a><span class="lineno"> 301</span>  <a class="code" href="classviennacl_1_1vector__expression.html">vector_expression</a><<span class="keyword">const</span> <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a>, <span class="keyword">const</span> <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a>, <a class="code" href="structviennacl_1_1op__element__binary.html">op_element_binary<OP></a> > <span class="keyword">const</span> & proxy)</div>
<div class="line"><a name="l00302"></a><span class="lineno"> 302</span> {</div>
<div class="line"><a name="l00303"></a><span class="lineno"> 303</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(proxy.lhs()).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && bool(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00304"></a><span class="lineno"> 304</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(proxy.rhs()).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && bool(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00305"></a><span class="lineno"> 305</span> </div>
<div class="line"><a name="l00306"></a><span class="lineno"> 306</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec1).context());</div>
<div class="line"><a name="l00307"></a><span class="lineno"> 307</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__element.html#a18d9e0cc1f4e6235008503386f584414">viennacl::linalg::opencl::kernels::vector_element<T>::init</a>(ctx);</div>
<div class="line"><a name="l00308"></a><span class="lineno"> 308</span> </div>
<div class="line"><a name="l00309"></a><span class="lineno"> 309</span>  std::string kernel_name = <span class="stringliteral">"element_pow"</span>;</div>
<div class="line"><a name="l00310"></a><span class="lineno"> 310</span>  cl_uint op_type = 2; <span class="comment">//0: product, 1: division, 2: power</span></div>
<div class="line"><a name="l00311"></a><span class="lineno"> 311</span>  <span class="keywordflow">if</span> (<a class="code" href="structviennacl_1_1is__division.html">viennacl::is_division<OP>::value</a>)</div>
<div class="line"><a name="l00312"></a><span class="lineno"> 312</span>  {</div>
<div class="line"><a name="l00313"></a><span class="lineno"> 313</span>  op_type = 1;</div>
<div class="line"><a name="l00314"></a><span class="lineno"> 314</span>  kernel_name = <span class="stringliteral">"element_div"</span>;</div>
<div class="line"><a name="l00315"></a><span class="lineno"> 315</span>  }</div>
<div class="line"><a name="l00316"></a><span class="lineno"> 316</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span> (<a class="code" href="structviennacl_1_1is__product.html">viennacl::is_product<OP>::value</a>)</div>
<div class="line"><a name="l00317"></a><span class="lineno"> 317</span>  {</div>
<div class="line"><a name="l00318"></a><span class="lineno"> 318</span>  op_type = 0;</div>
<div class="line"><a name="l00319"></a><span class="lineno"> 319</span>  kernel_name = <span class="stringliteral">"element_prod"</span>;</div>
<div class="line"><a name="l00320"></a><span class="lineno"> 320</span>  }</div>
<div class="line"><a name="l00321"></a><span class="lineno"> 321</span> </div>
<div class="line"><a name="l00322"></a><span class="lineno"> 322</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.get_kernel(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__element.html">viennacl::linalg::opencl::kernels::vector_element<T>::program_name</a>(), kernel_name);</div>
<div class="line"><a name="l00323"></a><span class="lineno"> 323</span> </div>
<div class="line"><a name="l00324"></a><span class="lineno"> 324</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(vec1),</div>
<div class="line"><a name="l00325"></a><span class="lineno"> 325</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec1)),</div>
<div class="line"><a name="l00326"></a><span class="lineno"> 326</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec1)),</div>
<div class="line"><a name="l00327"></a><span class="lineno"> 327</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1)),</div>
<div class="line"><a name="l00328"></a><span class="lineno"> 328</span> </div>
<div class="line"><a name="l00329"></a><span class="lineno"> 329</span>  viennacl::traits::opencl_handle(proxy.lhs()),</div>
<div class="line"><a name="l00330"></a><span class="lineno"> 330</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(proxy.lhs())),</div>
<div class="line"><a name="l00331"></a><span class="lineno"> 331</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(proxy.lhs())),</div>
<div class="line"><a name="l00332"></a><span class="lineno"> 332</span> </div>
<div class="line"><a name="l00333"></a><span class="lineno"> 333</span>  viennacl::traits::opencl_handle(proxy.rhs()),</div>
<div class="line"><a name="l00334"></a><span class="lineno"> 334</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(proxy.rhs())),</div>
<div class="line"><a name="l00335"></a><span class="lineno"> 335</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(proxy.rhs())),</div>
<div class="line"><a name="l00336"></a><span class="lineno"> 336</span> </div>
<div class="line"><a name="l00337"></a><span class="lineno"> 337</span>  op_type)</div>
<div class="line"><a name="l00338"></a><span class="lineno"> 338</span>  );</div>
<div class="line"><a name="l00339"></a><span class="lineno"> 339</span> }</div>
<div class="line"><a name="l00340"></a><span class="lineno"> 340</span> </div>
<div class="line"><a name="l00342"></a><span class="lineno"> 342</span> </div>
<div class="line"><a name="l00348"></a><span class="lineno"> 348</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T, <span class="keyword">typename</span> OP></div>
<div class="line"><a name="l00349"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a0a42d79551b9a8a6f294211a655048ce"> 349</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a8dd7386eb70a19d9d818b5ba57512d57">element_op</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & vec1,</div>
<div class="line"><a name="l00350"></a><span class="lineno"> 350</span>  <a class="code" href="classviennacl_1_1vector__expression.html">vector_expression</a><<span class="keyword">const</span> <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a>, <span class="keyword">const</span> <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a>, <a class="code" href="structviennacl_1_1op__element__unary.html">op_element_unary<OP></a> > <span class="keyword">const</span> & proxy)</div>
<div class="line"><a name="l00351"></a><span class="lineno"> 351</span> {</div>
<div class="line"><a name="l00352"></a><span class="lineno"> 352</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(proxy.lhs()).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && bool(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00353"></a><span class="lineno"> 353</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(proxy.rhs()).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && bool(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00354"></a><span class="lineno"> 354</span> </div>
<div class="line"><a name="l00355"></a><span class="lineno"> 355</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec1).context());</div>
<div class="line"><a name="l00356"></a><span class="lineno"> 356</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__element.html#a18d9e0cc1f4e6235008503386f584414">viennacl::linalg::opencl::kernels::vector_element<T>::init</a>(ctx);</div>
<div class="line"><a name="l00357"></a><span class="lineno"> 357</span> </div>
<div class="line"><a name="l00358"></a><span class="lineno"> 358</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.get_kernel(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__element.html">viennacl::linalg::opencl::kernels::vector_element<T>::program_name</a>(), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#aaeb876e922457f997cd0e7f2a51c4e1d">detail::op_to_string</a>(OP()) + <span class="stringliteral">"_assign"</span>);</div>
<div class="line"><a name="l00359"></a><span class="lineno"> 359</span> </div>
<div class="line"><a name="l00360"></a><span class="lineno"> 360</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec1;</div>
<div class="line"><a name="l00361"></a><span class="lineno"> 361</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec1));</div>
<div class="line"><a name="l00362"></a><span class="lineno"> 362</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec1));</div>
<div class="line"><a name="l00363"></a><span class="lineno"> 363</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1));</div>
<div class="line"><a name="l00364"></a><span class="lineno"> 364</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec1));</div>
<div class="line"><a name="l00365"></a><span class="lineno"> 365</span> </div>
<div class="line"><a name="l00366"></a><span class="lineno"> 366</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec2;</div>
<div class="line"><a name="l00367"></a><span class="lineno"> 367</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(proxy.lhs()));</div>
<div class="line"><a name="l00368"></a><span class="lineno"> 368</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(proxy.lhs()));</div>
<div class="line"><a name="l00369"></a><span class="lineno"> 369</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(proxy.lhs()));</div>
<div class="line"><a name="l00370"></a><span class="lineno"> 370</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(proxy.lhs()));</div>
<div class="line"><a name="l00371"></a><span class="lineno"> 371</span> </div>
<div class="line"><a name="l00372"></a><span class="lineno"> 372</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(vec1),</div>
<div class="line"><a name="l00373"></a><span class="lineno"> 373</span>  size_vec1,</div>
<div class="line"><a name="l00374"></a><span class="lineno"> 374</span>  viennacl::traits::opencl_handle(proxy.lhs()),</div>
<div class="line"><a name="l00375"></a><span class="lineno"> 375</span>  size_vec2)</div>
<div class="line"><a name="l00376"></a><span class="lineno"> 376</span>  );</div>
<div class="line"><a name="l00377"></a><span class="lineno"> 377</span> }</div>
<div class="line"><a name="l00378"></a><span class="lineno"> 378</span> </div>
<div class="line"><a name="l00380"></a><span class="lineno"> 380</span> </div>
<div class="line"><a name="l00387"></a><span class="lineno"> 387</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00388"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a1adcbf3b6d428fc941484c35ce7e083a"> 388</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a1adcbf3b6d428fc941484c35ce7e083a">inner_prod_impl</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec1,</div>
<div class="line"><a name="l00389"></a><span class="lineno"> 389</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec2,</div>
<div class="line"><a name="l00390"></a><span class="lineno"> 390</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & partial_result)</div>
<div class="line"><a name="l00391"></a><span class="lineno"> 391</span> {</div>
<div class="line"><a name="l00392"></a><span class="lineno"> 392</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(vec2).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00393"></a><span class="lineno"> 393</span>  assert(viennacl::traits::opencl_handle(vec2).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(partial_result).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00394"></a><span class="lineno"> 394</span> </div>
<div class="line"><a name="l00395"></a><span class="lineno"> 395</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec1).context());</div>
<div class="line"><a name="l00396"></a><span class="lineno"> 396</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<T>::init</a>(ctx);</div>
<div class="line"><a name="l00397"></a><span class="lineno"> 397</span> </div>
<div class="line"><a name="l00398"></a><span class="lineno"> 398</span>  assert( (<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1) == <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec2))</div>
<div class="line"><a name="l00399"></a><span class="lineno"> 399</span>  && <span class="keywordtype">bool</span>(<span class="stringliteral">"Incompatible vector sizes in inner_prod_impl()!"</span>));</div>
<div class="line"><a name="l00400"></a><span class="lineno"> 400</span> </div>
<div class="line"><a name="l00401"></a><span class="lineno"> 401</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), <span class="stringliteral">"inner_prod1"</span>);</div>
<div class="line"><a name="l00402"></a><span class="lineno"> 402</span> </div>
<div class="line"><a name="l00403"></a><span class="lineno"> 403</span>  assert( (k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>() / k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>() <= partial_result.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>()) && <span class="keywordtype">bool</span>(<span class="stringliteral">"Size mismatch for partial reduction in inner_prod_impl()"</span>) );</div>
<div class="line"><a name="l00404"></a><span class="lineno"> 404</span> </div>
<div class="line"><a name="l00405"></a><span class="lineno"> 405</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec1;</div>
<div class="line"><a name="l00406"></a><span class="lineno"> 406</span>  size_vec1.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec1));</div>
<div class="line"><a name="l00407"></a><span class="lineno"> 407</span>  size_vec1.stride = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec1));</div>
<div class="line"><a name="l00408"></a><span class="lineno"> 408</span>  size_vec1.size = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1));</div>
<div class="line"><a name="l00409"></a><span class="lineno"> 409</span>  size_vec1.internal_size = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec1));</div>
<div class="line"><a name="l00410"></a><span class="lineno"> 410</span> </div>
<div class="line"><a name="l00411"></a><span class="lineno"> 411</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> size_vec2;</div>
<div class="line"><a name="l00412"></a><span class="lineno"> 412</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec2));</div>
<div class="line"><a name="l00413"></a><span class="lineno"> 413</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec2));</div>
<div class="line"><a name="l00414"></a><span class="lineno"> 414</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec2));</div>
<div class="line"><a name="l00415"></a><span class="lineno"> 415</span>  size_vec2.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec2));</div>
<div class="line"><a name="l00416"></a><span class="lineno"> 416</span> </div>
<div class="line"><a name="l00417"></a><span class="lineno"> 417</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(vec1),</div>
<div class="line"><a name="l00418"></a><span class="lineno"> 418</span>  size_vec1,</div>
<div class="line"><a name="l00419"></a><span class="lineno"> 419</span>  viennacl::traits::opencl_handle(vec2),</div>
<div class="line"><a name="l00420"></a><span class="lineno"> 420</span>  size_vec2,</div>
<div class="line"><a name="l00421"></a><span class="lineno"> 421</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<T>::type</a>) * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00422"></a><span class="lineno"> 422</span>  viennacl::traits::opencl_handle(partial_result)</div>
<div class="line"><a name="l00423"></a><span class="lineno"> 423</span>  )</div>
<div class="line"><a name="l00424"></a><span class="lineno"> 424</span>  );</div>
<div class="line"><a name="l00425"></a><span class="lineno"> 425</span> }</div>
<div class="line"><a name="l00426"></a><span class="lineno"> 426</span> </div>
<div class="line"><a name="l00427"></a><span class="lineno"> 427</span> </div>
<div class="line"><a name="l00428"></a><span class="lineno"> 428</span> <span class="comment">//implementation of inner product:</span></div>
<div class="line"><a name="l00429"></a><span class="lineno"> 429</span> <span class="comment">//namespace {</span></div>
<div class="line"><a name="l00436"></a><span class="lineno"> 436</span> <span class="comment"></span><span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00437"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a21cf46147faedd5a95037598b93cf694"> 437</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a1adcbf3b6d428fc941484c35ce7e083a">inner_prod_impl</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec1,</div>
<div class="line"><a name="l00438"></a><span class="lineno"> 438</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec2,</div>
<div class="line"><a name="l00439"></a><span class="lineno"> 439</span>  <a class="code" href="classviennacl_1_1scalar.html">scalar<T></a> & result)</div>
<div class="line"><a name="l00440"></a><span class="lineno"> 440</span> {</div>
<div class="line"><a name="l00441"></a><span class="lineno"> 441</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(vec2).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00442"></a><span class="lineno"> 442</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(result).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Operands do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00443"></a><span class="lineno"> 443</span> </div>
<div class="line"><a name="l00444"></a><span class="lineno"> 444</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec1).context());</div>
<div class="line"><a name="l00445"></a><span class="lineno"> 445</span> </div>
<div class="line"><a name="l00446"></a><span class="lineno"> 446</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l00447"></a><span class="lineno"> 447</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<T></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(vec1));</div>
<div class="line"><a name="l00448"></a><span class="lineno"> 448</span>  temp.<a class="code" href="classviennacl_1_1vector.html#a1b73aadf0c7b6c0028fd237ebb30c767">resize</a>(work_groups, ctx); <span class="comment">// bring default-constructed vectors to the correct size:</span></div>
<div class="line"><a name="l00449"></a><span class="lineno"> 449</span> </div>
<div class="line"><a name="l00450"></a><span class="lineno"> 450</span>  <span class="comment">// Step 1: Compute partial inner products for each work group:</span></div>
<div class="line"><a name="l00451"></a><span class="lineno"> 451</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a1adcbf3b6d428fc941484c35ce7e083a">inner_prod_impl</a>(vec1, vec2, temp);</div>
<div class="line"><a name="l00452"></a><span class="lineno"> 452</span> </div>
<div class="line"><a name="l00453"></a><span class="lineno"> 453</span>  <span class="comment">// Step 2: Sum partial results:</span></div>
<div class="line"><a name="l00454"></a><span class="lineno"> 454</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & ksum = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), <span class="stringliteral">"sum"</span>);</div>
<div class="line"><a name="l00455"></a><span class="lineno"> 455</span> </div>
<div class="line"><a name="l00456"></a><span class="lineno"> 456</span>  ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l00457"></a><span class="lineno"> 457</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(ksum(viennacl::traits::opencl_handle(temp),</div>
<div class="line"><a name="l00458"></a><span class="lineno"> 458</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(temp)),</div>
<div class="line"><a name="l00459"></a><span class="lineno"> 459</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(temp)),</div>
<div class="line"><a name="l00460"></a><span class="lineno"> 460</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(temp)),</div>
<div class="line"><a name="l00461"></a><span class="lineno"> 461</span>  cl_uint(1),</div>
<div class="line"><a name="l00462"></a><span class="lineno"> 462</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<T>::type</a>) * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00463"></a><span class="lineno"> 463</span>  viennacl::traits::opencl_handle(result) )</div>
<div class="line"><a name="l00464"></a><span class="lineno"> 464</span>  );</div>
<div class="line"><a name="l00465"></a><span class="lineno"> 465</span> }</div>
<div class="line"><a name="l00466"></a><span class="lineno"> 466</span> </div>
<div class="line"><a name="l00467"></a><span class="lineno"> 467</span> <span class="keyword">namespace </span>detail</div>
<div class="line"><a name="l00468"></a><span class="lineno"> 468</span> {</div>
<div class="line"><a name="l00469"></a><span class="lineno"> 469</span>  <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00470"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37"> 470</a></span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">make_layout</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & vec)</div>
<div class="line"><a name="l00471"></a><span class="lineno"> 471</span>  {</div>
<div class="line"><a name="l00472"></a><span class="lineno"> 472</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> ret;</div>
<div class="line"><a name="l00473"></a><span class="lineno"> 473</span>  ret.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">start</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec));</div>
<div class="line"><a name="l00474"></a><span class="lineno"> 474</span>  ret.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">stride</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec));</div>
<div class="line"><a name="l00475"></a><span class="lineno"> 475</span>  ret.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec));</div>
<div class="line"><a name="l00476"></a><span class="lineno"> 476</span>  ret.<a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">internal_size</a> = cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a>(vec));</div>
<div class="line"><a name="l00477"></a><span class="lineno"> 477</span>  <span class="keywordflow">return</span> ret;</div>
<div class="line"><a name="l00478"></a><span class="lineno"> 478</span>  }</div>
<div class="line"><a name="l00479"></a><span class="lineno"> 479</span> }</div>
<div class="line"><a name="l00480"></a><span class="lineno"> 480</span> </div>
<div class="line"><a name="l00487"></a><span class="lineno"> 487</span> <span class="keyword">template</span> <<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00488"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a5b18ba2b0fe0d7f393d99d6c0d0cc3f0"> 488</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a1adcbf3b6d428fc941484c35ce7e083a">inner_prod_impl</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & x,</div>
<div class="line"><a name="l00489"></a><span class="lineno"> 489</span>  <a class="code" href="classviennacl_1_1vector__tuple.html">vector_tuple<NumericT></a> <span class="keyword">const</span> & vec_tuple,</div>
<div class="line"><a name="l00490"></a><span class="lineno"> 490</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> & result)</div>
<div class="line"><a name="l00491"></a><span class="lineno"> 491</span> {</div>
<div class="line"><a name="l00492"></a><span class="lineno"> 492</span>  assert(viennacl::traits::opencl_handle(x).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(result).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Operands do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00493"></a><span class="lineno"> 493</span> </div>
<div class="line"><a name="l00494"></a><span class="lineno"> 494</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(x).context());</div>
<div class="line"><a name="l00495"></a><span class="lineno"> 495</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<NumericT>::init</a>(ctx);</div>
<div class="line"><a name="l00496"></a><span class="lineno"> 496</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__multi__inner__prod.html#abb6e0bf18d527d2a9d075b28e0b89d93">viennacl::linalg::opencl::kernels::vector_multi_inner_prod<NumericT>::init</a>(ctx);</div>
<div class="line"><a name="l00497"></a><span class="lineno"> 497</span> </div>
<div class="line"><a name="l00498"></a><span class="lineno"> 498</span>  <a class="code" href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a> layout_x = <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(x);</div>
<div class="line"><a name="l00499"></a><span class="lineno"> 499</span> </div>
<div class="line"><a name="l00500"></a><span class="lineno"> 500</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & ksum = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__multi__inner__prod.html">viennacl::linalg::opencl::kernels::vector_multi_inner_prod<NumericT>::program_name</a>(), <span class="stringliteral">"sum_inner_prod"</span>);</div>
<div class="line"><a name="l00501"></a><span class="lineno"> 501</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & inner_prod_kernel_1 = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<NumericT>::program_name</a>(), <span class="stringliteral">"inner_prod1"</span>);</div>
<div class="line"><a name="l00502"></a><span class="lineno"> 502</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & inner_prod_kernel_2 = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__multi__inner__prod.html">viennacl::linalg::opencl::kernels::vector_multi_inner_prod<NumericT>::program_name</a>(), <span class="stringliteral">"inner_prod2"</span>);</div>
<div class="line"><a name="l00503"></a><span class="lineno"> 503</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & inner_prod_kernel_3 = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__multi__inner__prod.html">viennacl::linalg::opencl::kernels::vector_multi_inner_prod<NumericT>::program_name</a>(), <span class="stringliteral">"inner_prod3"</span>);</div>
<div class="line"><a name="l00504"></a><span class="lineno"> 504</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & inner_prod_kernel_4 = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__multi__inner__prod.html">viennacl::linalg::opencl::kernels::vector_multi_inner_prod<NumericT>::program_name</a>(), <span class="stringliteral">"inner_prod4"</span>);</div>
<div class="line"><a name="l00505"></a><span class="lineno"> 505</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & inner_prod_kernel_8 = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__multi__inner__prod.html">viennacl::linalg::opencl::kernels::vector_multi_inner_prod<NumericT>::program_name</a>(), <span class="stringliteral">"inner_prod8"</span>);</div>
<div class="line"><a name="l00506"></a><span class="lineno"> 506</span> </div>
<div class="line"><a name="l00507"></a><span class="lineno"> 507</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = inner_prod_kernel_8.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0) / inner_prod_kernel_8.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0);</div>
<div class="line"><a name="l00508"></a><span class="lineno"> 508</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<NumericT></a> temp(8 * work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(x));</div>
<div class="line"><a name="l00509"></a><span class="lineno"> 509</span> </div>
<div class="line"><a name="l00510"></a><span class="lineno"> 510</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> current_index = 0;</div>
<div class="line"><a name="l00511"></a><span class="lineno"> 511</span>  <span class="keywordflow">while</span> (current_index < vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9f2fc8200f0199e396eaeca310f8e9f4">const_size</a>())</div>
<div class="line"><a name="l00512"></a><span class="lineno"> 512</span>  {</div>
<div class="line"><a name="l00513"></a><span class="lineno"> 513</span>  <span class="keywordflow">switch</span> (vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9f2fc8200f0199e396eaeca310f8e9f4">const_size</a>() - current_index)</div>
<div class="line"><a name="l00514"></a><span class="lineno"> 514</span>  {</div>
<div class="line"><a name="l00515"></a><span class="lineno"> 515</span>  <span class="keywordflow">case</span> 7:</div>
<div class="line"><a name="l00516"></a><span class="lineno"> 516</span>  <span class="keywordflow">case</span> 6:</div>
<div class="line"><a name="l00517"></a><span class="lineno"> 517</span>  <span class="keywordflow">case</span> 5:</div>
<div class="line"><a name="l00518"></a><span class="lineno"> 518</span>  <span class="keywordflow">case</span> 4:</div>
<div class="line"><a name="l00519"></a><span class="lineno"> 519</span>  {</div>
<div class="line"><a name="l00520"></a><span class="lineno"> 520</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y0 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index );</div>
<div class="line"><a name="l00521"></a><span class="lineno"> 521</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y1 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 1);</div>
<div class="line"><a name="l00522"></a><span class="lineno"> 522</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y2 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 2);</div>
<div class="line"><a name="l00523"></a><span class="lineno"> 523</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y3 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 3);</div>
<div class="line"><a name="l00524"></a><span class="lineno"> 524</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(inner_prod_kernel_4( viennacl::traits::opencl_handle(x), layout_x,</div>
<div class="line"><a name="l00525"></a><span class="lineno"> 525</span>  viennacl::traits::opencl_handle(y0), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y0),</div>
<div class="line"><a name="l00526"></a><span class="lineno"> 526</span>  viennacl::traits::opencl_handle(y1), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y1),</div>
<div class="line"><a name="l00527"></a><span class="lineno"> 527</span>  viennacl::traits::opencl_handle(y2), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y2),</div>
<div class="line"><a name="l00528"></a><span class="lineno"> 528</span>  viennacl::traits::opencl_handle(y3), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y3),</div>
<div class="line"><a name="l00529"></a><span class="lineno"> 529</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * 4 * inner_prod_kernel_4.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00530"></a><span class="lineno"> 530</span>  viennacl::traits::opencl_handle(temp)</div>
<div class="line"><a name="l00531"></a><span class="lineno"> 531</span>  ) );</div>
<div class="line"><a name="l00532"></a><span class="lineno"> 532</span> </div>
<div class="line"><a name="l00533"></a><span class="lineno"> 533</span>  ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, 4 * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l00534"></a><span class="lineno"> 534</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(ksum(viennacl::traits::opencl_handle(temp),</div>
<div class="line"><a name="l00535"></a><span class="lineno"> 535</span>  cl_uint(work_groups),</div>
<div class="line"><a name="l00536"></a><span class="lineno"> 536</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * 4 * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00537"></a><span class="lineno"> 537</span>  viennacl::traits::opencl_handle(result),</div>
<div class="line"><a name="l00538"></a><span class="lineno"> 538</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(result) + current_index * <a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(result)),</div>
<div class="line"><a name="l00539"></a><span class="lineno"> 539</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(result))</div>
<div class="line"><a name="l00540"></a><span class="lineno"> 540</span>  )</div>
<div class="line"><a name="l00541"></a><span class="lineno"> 541</span>  );</div>
<div class="line"><a name="l00542"></a><span class="lineno"> 542</span>  }</div>
<div class="line"><a name="l00543"></a><span class="lineno"> 543</span>  current_index += 4;</div>
<div class="line"><a name="l00544"></a><span class="lineno"> 544</span>  <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00545"></a><span class="lineno"> 545</span> </div>
<div class="line"><a name="l00546"></a><span class="lineno"> 546</span>  <span class="keywordflow">case</span> 3:</div>
<div class="line"><a name="l00547"></a><span class="lineno"> 547</span>  {</div>
<div class="line"><a name="l00548"></a><span class="lineno"> 548</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y0 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index );</div>
<div class="line"><a name="l00549"></a><span class="lineno"> 549</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y1 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 1);</div>
<div class="line"><a name="l00550"></a><span class="lineno"> 550</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y2 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 2);</div>
<div class="line"><a name="l00551"></a><span class="lineno"> 551</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(inner_prod_kernel_3( viennacl::traits::opencl_handle(x), layout_x,</div>
<div class="line"><a name="l00552"></a><span class="lineno"> 552</span>  viennacl::traits::opencl_handle(y0), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y0),</div>
<div class="line"><a name="l00553"></a><span class="lineno"> 553</span>  viennacl::traits::opencl_handle(y1), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y1),</div>
<div class="line"><a name="l00554"></a><span class="lineno"> 554</span>  viennacl::traits::opencl_handle(y2), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y2),</div>
<div class="line"><a name="l00555"></a><span class="lineno"> 555</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * 3 * inner_prod_kernel_3.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00556"></a><span class="lineno"> 556</span>  viennacl::traits::opencl_handle(temp)</div>
<div class="line"><a name="l00557"></a><span class="lineno"> 557</span>  ) );</div>
<div class="line"><a name="l00558"></a><span class="lineno"> 558</span> </div>
<div class="line"><a name="l00559"></a><span class="lineno"> 559</span>  ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, 3 * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l00560"></a><span class="lineno"> 560</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(ksum(viennacl::traits::opencl_handle(temp),</div>
<div class="line"><a name="l00561"></a><span class="lineno"> 561</span>  cl_uint(work_groups),</div>
<div class="line"><a name="l00562"></a><span class="lineno"> 562</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * 3 * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00563"></a><span class="lineno"> 563</span>  viennacl::traits::opencl_handle(result),</div>
<div class="line"><a name="l00564"></a><span class="lineno"> 564</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(result) + current_index * <a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(result)),</div>
<div class="line"><a name="l00565"></a><span class="lineno"> 565</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(result))</div>
<div class="line"><a name="l00566"></a><span class="lineno"> 566</span>  )</div>
<div class="line"><a name="l00567"></a><span class="lineno"> 567</span>  );</div>
<div class="line"><a name="l00568"></a><span class="lineno"> 568</span>  }</div>
<div class="line"><a name="l00569"></a><span class="lineno"> 569</span>  current_index += 3;</div>
<div class="line"><a name="l00570"></a><span class="lineno"> 570</span>  <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00571"></a><span class="lineno"> 571</span> </div>
<div class="line"><a name="l00572"></a><span class="lineno"> 572</span>  <span class="keywordflow">case</span> 2:</div>
<div class="line"><a name="l00573"></a><span class="lineno"> 573</span>  {</div>
<div class="line"><a name="l00574"></a><span class="lineno"> 574</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y0 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index );</div>
<div class="line"><a name="l00575"></a><span class="lineno"> 575</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y1 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 1);</div>
<div class="line"><a name="l00576"></a><span class="lineno"> 576</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(inner_prod_kernel_2( viennacl::traits::opencl_handle(x), layout_x,</div>
<div class="line"><a name="l00577"></a><span class="lineno"> 577</span>  viennacl::traits::opencl_handle(y0), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y0),</div>
<div class="line"><a name="l00578"></a><span class="lineno"> 578</span>  viennacl::traits::opencl_handle(y1), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y1),</div>
<div class="line"><a name="l00579"></a><span class="lineno"> 579</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * 2 * inner_prod_kernel_2.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00580"></a><span class="lineno"> 580</span>  viennacl::traits::opencl_handle(temp)</div>
<div class="line"><a name="l00581"></a><span class="lineno"> 581</span>  ) );</div>
<div class="line"><a name="l00582"></a><span class="lineno"> 582</span> </div>
<div class="line"><a name="l00583"></a><span class="lineno"> 583</span>  ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, 2 * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l00584"></a><span class="lineno"> 584</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(ksum(viennacl::traits::opencl_handle(temp),</div>
<div class="line"><a name="l00585"></a><span class="lineno"> 585</span>  cl_uint(work_groups),</div>
<div class="line"><a name="l00586"></a><span class="lineno"> 586</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * 2 * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00587"></a><span class="lineno"> 587</span>  viennacl::traits::opencl_handle(result),</div>
<div class="line"><a name="l00588"></a><span class="lineno"> 588</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(result) + current_index * <a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(result)),</div>
<div class="line"><a name="l00589"></a><span class="lineno"> 589</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(result))</div>
<div class="line"><a name="l00590"></a><span class="lineno"> 590</span>  )</div>
<div class="line"><a name="l00591"></a><span class="lineno"> 591</span>  );</div>
<div class="line"><a name="l00592"></a><span class="lineno"> 592</span>  }</div>
<div class="line"><a name="l00593"></a><span class="lineno"> 593</span>  current_index += 2;</div>
<div class="line"><a name="l00594"></a><span class="lineno"> 594</span>  <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00595"></a><span class="lineno"> 595</span> </div>
<div class="line"><a name="l00596"></a><span class="lineno"> 596</span>  <span class="keywordflow">case</span> 1:</div>
<div class="line"><a name="l00597"></a><span class="lineno"> 597</span>  {</div>
<div class="line"><a name="l00598"></a><span class="lineno"> 598</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y0 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index );</div>
<div class="line"><a name="l00599"></a><span class="lineno"> 599</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(inner_prod_kernel_1( viennacl::traits::opencl_handle(x), layout_x,</div>
<div class="line"><a name="l00600"></a><span class="lineno"> 600</span>  viennacl::traits::opencl_handle(y0), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y0),</div>
<div class="line"><a name="l00601"></a><span class="lineno"> 601</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * 1 * inner_prod_kernel_1.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00602"></a><span class="lineno"> 602</span>  viennacl::traits::opencl_handle(temp)</div>
<div class="line"><a name="l00603"></a><span class="lineno"> 603</span>  ) );</div>
<div class="line"><a name="l00604"></a><span class="lineno"> 604</span> </div>
<div class="line"><a name="l00605"></a><span class="lineno"> 605</span>  ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, 1 * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l00606"></a><span class="lineno"> 606</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(ksum(viennacl::traits::opencl_handle(temp),</div>
<div class="line"><a name="l00607"></a><span class="lineno"> 607</span>  cl_uint(work_groups),</div>
<div class="line"><a name="l00608"></a><span class="lineno"> 608</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * 1 * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00609"></a><span class="lineno"> 609</span>  viennacl::traits::opencl_handle(result),</div>
<div class="line"><a name="l00610"></a><span class="lineno"> 610</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(result) + current_index * <a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(result)),</div>
<div class="line"><a name="l00611"></a><span class="lineno"> 611</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(result))</div>
<div class="line"><a name="l00612"></a><span class="lineno"> 612</span>  )</div>
<div class="line"><a name="l00613"></a><span class="lineno"> 613</span>  );</div>
<div class="line"><a name="l00614"></a><span class="lineno"> 614</span>  }</div>
<div class="line"><a name="l00615"></a><span class="lineno"> 615</span>  current_index += 1;</div>
<div class="line"><a name="l00616"></a><span class="lineno"> 616</span>  <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00617"></a><span class="lineno"> 617</span> </div>
<div class="line"><a name="l00618"></a><span class="lineno"> 618</span>  <span class="keywordflow">default</span>: <span class="comment">//8 or more vectors</span></div>
<div class="line"><a name="l00619"></a><span class="lineno"> 619</span>  {</div>
<div class="line"><a name="l00620"></a><span class="lineno"> 620</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y0 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index );</div>
<div class="line"><a name="l00621"></a><span class="lineno"> 621</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y1 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 1);</div>
<div class="line"><a name="l00622"></a><span class="lineno"> 622</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y2 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 2);</div>
<div class="line"><a name="l00623"></a><span class="lineno"> 623</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y3 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 3);</div>
<div class="line"><a name="l00624"></a><span class="lineno"> 624</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y4 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 4);</div>
<div class="line"><a name="l00625"></a><span class="lineno"> 625</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y5 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 5);</div>
<div class="line"><a name="l00626"></a><span class="lineno"> 626</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y6 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 6);</div>
<div class="line"><a name="l00627"></a><span class="lineno"> 627</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & y7 = vec_tuple.<a class="code" href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">const_at</a>(current_index + 7);</div>
<div class="line"><a name="l00628"></a><span class="lineno"> 628</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(inner_prod_kernel_8( viennacl::traits::opencl_handle(x), layout_x,</div>
<div class="line"><a name="l00629"></a><span class="lineno"> 629</span>  viennacl::traits::opencl_handle(y0), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y0),</div>
<div class="line"><a name="l00630"></a><span class="lineno"> 630</span>  viennacl::traits::opencl_handle(y1), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y1),</div>
<div class="line"><a name="l00631"></a><span class="lineno"> 631</span>  viennacl::traits::opencl_handle(y2), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y2),</div>
<div class="line"><a name="l00632"></a><span class="lineno"> 632</span>  viennacl::traits::opencl_handle(y3), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y3),</div>
<div class="line"><a name="l00633"></a><span class="lineno"> 633</span>  viennacl::traits::opencl_handle(y4), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y4),</div>
<div class="line"><a name="l00634"></a><span class="lineno"> 634</span>  viennacl::traits::opencl_handle(y5), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y5),</div>
<div class="line"><a name="l00635"></a><span class="lineno"> 635</span>  viennacl::traits::opencl_handle(y6), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y6),</div>
<div class="line"><a name="l00636"></a><span class="lineno"> 636</span>  viennacl::traits::opencl_handle(y7), <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">detail::make_layout</a>(y7),</div>
<div class="line"><a name="l00637"></a><span class="lineno"> 637</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * 8 * inner_prod_kernel_8.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00638"></a><span class="lineno"> 638</span>  viennacl::traits::opencl_handle(temp)</div>
<div class="line"><a name="l00639"></a><span class="lineno"> 639</span>  ) );</div>
<div class="line"><a name="l00640"></a><span class="lineno"> 640</span> </div>
<div class="line"><a name="l00641"></a><span class="lineno"> 641</span>  ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, 8 * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l00642"></a><span class="lineno"> 642</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(ksum(viennacl::traits::opencl_handle(temp),</div>
<div class="line"><a name="l00643"></a><span class="lineno"> 643</span>  cl_uint(work_groups),</div>
<div class="line"><a name="l00644"></a><span class="lineno"> 644</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * 8 * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00645"></a><span class="lineno"> 645</span>  viennacl::traits::opencl_handle(result),</div>
<div class="line"><a name="l00646"></a><span class="lineno"> 646</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(result) + current_index * <a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(result)),</div>
<div class="line"><a name="l00647"></a><span class="lineno"> 647</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(result))</div>
<div class="line"><a name="l00648"></a><span class="lineno"> 648</span>  )</div>
<div class="line"><a name="l00649"></a><span class="lineno"> 649</span>  );</div>
<div class="line"><a name="l00650"></a><span class="lineno"> 650</span>  }</div>
<div class="line"><a name="l00651"></a><span class="lineno"> 651</span>  current_index += 8;</div>
<div class="line"><a name="l00652"></a><span class="lineno"> 652</span>  <span class="keywordflow">break</span>;</div>
<div class="line"><a name="l00653"></a><span class="lineno"> 653</span>  }</div>
<div class="line"><a name="l00654"></a><span class="lineno"> 654</span>  }</div>
<div class="line"><a name="l00655"></a><span class="lineno"> 655</span> </div>
<div class="line"><a name="l00656"></a><span class="lineno"> 656</span> }</div>
<div class="line"><a name="l00657"></a><span class="lineno"> 657</span> </div>
<div class="line"><a name="l00658"></a><span class="lineno"> 658</span> </div>
<div class="line"><a name="l00659"></a><span class="lineno"> 659</span> </div>
<div class="line"><a name="l00660"></a><span class="lineno"> 660</span> <span class="comment">//implementation of inner product:</span></div>
<div class="line"><a name="l00661"></a><span class="lineno"> 661</span> <span class="comment">//namespace {</span></div>
<div class="line"><a name="l00668"></a><span class="lineno"> 668</span> <span class="comment"></span><span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00669"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#aa3db821922ad772f03e524d7dabc022d"> 669</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#aa3db821922ad772f03e524d7dabc022d">inner_prod_cpu</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec1,</div>
<div class="line"><a name="l00670"></a><span class="lineno"> 670</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec2,</div>
<div class="line"><a name="l00671"></a><span class="lineno"> 671</span>  T & result)</div>
<div class="line"><a name="l00672"></a><span class="lineno"> 672</span> {</div>
<div class="line"><a name="l00673"></a><span class="lineno"> 673</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(vec2).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Vectors do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00674"></a><span class="lineno"> 674</span> </div>
<div class="line"><a name="l00675"></a><span class="lineno"> 675</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec1).context());</div>
<div class="line"><a name="l00676"></a><span class="lineno"> 676</span> </div>
<div class="line"><a name="l00677"></a><span class="lineno"> 677</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l00678"></a><span class="lineno"> 678</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<T></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(vec1));</div>
<div class="line"><a name="l00679"></a><span class="lineno"> 679</span>  temp.<a class="code" href="classviennacl_1_1vector.html#a1b73aadf0c7b6c0028fd237ebb30c767">resize</a>(work_groups, ctx); <span class="comment">// bring default-constructed vectors to the correct size:</span></div>
<div class="line"><a name="l00680"></a><span class="lineno"> 680</span> </div>
<div class="line"><a name="l00681"></a><span class="lineno"> 681</span>  <span class="comment">// Step 1: Compute partial inner products for each work group:</span></div>
<div class="line"><a name="l00682"></a><span class="lineno"> 682</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a1adcbf3b6d428fc941484c35ce7e083a">inner_prod_impl</a>(vec1, vec2, temp);</div>
<div class="line"><a name="l00683"></a><span class="lineno"> 683</span> </div>
<div class="line"><a name="l00684"></a><span class="lineno"> 684</span>  <span class="comment">// Step 2: Sum partial results:</span></div>
<div class="line"><a name="l00685"></a><span class="lineno"> 685</span> </div>
<div class="line"><a name="l00686"></a><span class="lineno"> 686</span>  <span class="comment">// Now copy partial results from GPU back to CPU and run reduction there:</span></div>
<div class="line"><a name="l00687"></a><span class="lineno"> 687</span>  std::vector<T> temp_cpu(work_groups);</div>
<div class="line"><a name="l00688"></a><span class="lineno"> 688</span>  <a class="code" href="namespaceviennacl.html#aaa5c8726b45bc89a523ca2fa8c42107a">viennacl::fast_copy</a>(temp.<a class="code" href="classviennacl_1_1vector__base.html#a762d98e2f912fc534951f25555b6077f">begin</a>(), temp.<a class="code" href="classviennacl_1_1vector__base.html#aba8a76bd4c96435ba68cf96b9e5132a6">end</a>(), temp_cpu.begin());</div>
<div class="line"><a name="l00689"></a><span class="lineno"> 689</span> </div>
<div class="line"><a name="l00690"></a><span class="lineno"> 690</span>  result = 0;</div>
<div class="line"><a name="l00691"></a><span class="lineno"> 691</span>  <span class="keywordflow">for</span> (<span class="keyword">typename</span> std::vector<T>::const_iterator it = temp_cpu.begin(); it != temp_cpu.end(); ++it)</div>
<div class="line"><a name="l00692"></a><span class="lineno"> 692</span>  result += *it;</div>
<div class="line"><a name="l00693"></a><span class="lineno"> 693</span> }</div>
<div class="line"><a name="l00694"></a><span class="lineno"> 694</span> </div>
<div class="line"><a name="l00695"></a><span class="lineno"> 695</span> </div>
<div class="line"><a name="l00697"></a><span class="lineno"> 697</span> </div>
<div class="line"><a name="l00704"></a><span class="lineno"> 704</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00705"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#ad44f85d3504ba0dc38d734f14ec92de8"> 705</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#ad44f85d3504ba0dc38d734f14ec92de8">norm_reduction_impl</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec,</div>
<div class="line"><a name="l00706"></a><span class="lineno"> 706</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & partial_result,</div>
<div class="line"><a name="l00707"></a><span class="lineno"> 707</span>  cl_uint norm_id)</div>
<div class="line"><a name="l00708"></a><span class="lineno"> 708</span> {</div>
<div class="line"><a name="l00709"></a><span class="lineno"> 709</span>  assert(viennacl::traits::opencl_handle(vec).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(partial_result).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Operands do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00710"></a><span class="lineno"> 710</span> </div>
<div class="line"><a name="l00711"></a><span class="lineno"> 711</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec).context());</div>
<div class="line"><a name="l00712"></a><span class="lineno"> 712</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<T>::init</a>(ctx);</div>
<div class="line"><a name="l00713"></a><span class="lineno"> 713</span> </div>
<div class="line"><a name="l00714"></a><span class="lineno"> 714</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), <span class="stringliteral">"norm"</span>);</div>
<div class="line"><a name="l00715"></a><span class="lineno"> 715</span> </div>
<div class="line"><a name="l00716"></a><span class="lineno"> 716</span>  assert( (k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>() / k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>() <= partial_result.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>()) && <span class="keywordtype">bool</span>(<span class="stringliteral">"Size mismatch for partial reduction in norm_reduction_impl()"</span>) );</div>
<div class="line"><a name="l00717"></a><span class="lineno"> 717</span> </div>
<div class="line"><a name="l00718"></a><span class="lineno"> 718</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(vec),</div>
<div class="line"><a name="l00719"></a><span class="lineno"> 719</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec)),</div>
<div class="line"><a name="l00720"></a><span class="lineno"> 720</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec)),</div>
<div class="line"><a name="l00721"></a><span class="lineno"> 721</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec)),</div>
<div class="line"><a name="l00722"></a><span class="lineno"> 722</span>  cl_uint(norm_id),</div>
<div class="line"><a name="l00723"></a><span class="lineno"> 723</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<T>::type</a>) * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00724"></a><span class="lineno"> 724</span>  viennacl::traits::opencl_handle(partial_result) )</div>
<div class="line"><a name="l00725"></a><span class="lineno"> 725</span>  );</div>
<div class="line"><a name="l00726"></a><span class="lineno"> 726</span> }</div>
<div class="line"><a name="l00727"></a><span class="lineno"> 727</span> </div>
<div class="line"><a name="l00728"></a><span class="lineno"> 728</span> </div>
<div class="line"><a name="l00730"></a><span class="lineno"> 730</span> </div>
<div class="line"><a name="l00736"></a><span class="lineno"> 736</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00737"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a1ec36a29b89412455b3392fbca312a24"> 737</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a1ec36a29b89412455b3392fbca312a24">norm_1_impl</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec,</div>
<div class="line"><a name="l00738"></a><span class="lineno"> 738</span>  <a class="code" href="classviennacl_1_1scalar.html">scalar<T></a> & result)</div>
<div class="line"><a name="l00739"></a><span class="lineno"> 739</span> {</div>
<div class="line"><a name="l00740"></a><span class="lineno"> 740</span>  assert(viennacl::traits::opencl_handle(vec).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(result).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Operands do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00741"></a><span class="lineno"> 741</span> </div>
<div class="line"><a name="l00742"></a><span class="lineno"> 742</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec).context());</div>
<div class="line"><a name="l00743"></a><span class="lineno"> 743</span> </div>
<div class="line"><a name="l00744"></a><span class="lineno"> 744</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l00745"></a><span class="lineno"> 745</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<T></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(vec));</div>
<div class="line"><a name="l00746"></a><span class="lineno"> 746</span> </div>
<div class="line"><a name="l00747"></a><span class="lineno"> 747</span>  <span class="comment">// Step 1: Compute the partial work group results</span></div>
<div class="line"><a name="l00748"></a><span class="lineno"> 748</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#ad44f85d3504ba0dc38d734f14ec92de8">norm_reduction_impl</a>(vec, temp, 1);</div>
<div class="line"><a name="l00749"></a><span class="lineno"> 749</span> </div>
<div class="line"><a name="l00750"></a><span class="lineno"> 750</span>  <span class="comment">// Step 2: Compute the partial reduction using OpenCL</span></div>
<div class="line"><a name="l00751"></a><span class="lineno"> 751</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & ksum = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), <span class="stringliteral">"sum"</span>);</div>
<div class="line"><a name="l00752"></a><span class="lineno"> 752</span> </div>
<div class="line"><a name="l00753"></a><span class="lineno"> 753</span>  ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l00754"></a><span class="lineno"> 754</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(ksum(viennacl::traits::opencl_handle(temp),</div>
<div class="line"><a name="l00755"></a><span class="lineno"> 755</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(temp)),</div>
<div class="line"><a name="l00756"></a><span class="lineno"> 756</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(temp)),</div>
<div class="line"><a name="l00757"></a><span class="lineno"> 757</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(temp)),</div>
<div class="line"><a name="l00758"></a><span class="lineno"> 758</span>  cl_uint(1),</div>
<div class="line"><a name="l00759"></a><span class="lineno"> 759</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<T>::type</a>) * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00760"></a><span class="lineno"> 760</span>  result)</div>
<div class="line"><a name="l00761"></a><span class="lineno"> 761</span>  );</div>
<div class="line"><a name="l00762"></a><span class="lineno"> 762</span> }</div>
<div class="line"><a name="l00763"></a><span class="lineno"> 763</span> </div>
<div class="line"><a name="l00769"></a><span class="lineno"> 769</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00770"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a61ed84aaf76cd26e36ef91598dc2f748"> 770</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a61ed84aaf76cd26e36ef91598dc2f748">norm_1_cpu</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec,</div>
<div class="line"><a name="l00771"></a><span class="lineno"> 771</span>  T & result)</div>
<div class="line"><a name="l00772"></a><span class="lineno"> 772</span> {</div>
<div class="line"><a name="l00773"></a><span class="lineno"> 773</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l00774"></a><span class="lineno"> 774</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<T></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(vec));</div>
<div class="line"><a name="l00775"></a><span class="lineno"> 775</span> </div>
<div class="line"><a name="l00776"></a><span class="lineno"> 776</span>  <span class="comment">// Step 1: Compute the partial work group results</span></div>
<div class="line"><a name="l00777"></a><span class="lineno"> 777</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#ad44f85d3504ba0dc38d734f14ec92de8">norm_reduction_impl</a>(vec, temp, 1);</div>
<div class="line"><a name="l00778"></a><span class="lineno"> 778</span> </div>
<div class="line"><a name="l00779"></a><span class="lineno"> 779</span>  <span class="comment">// Step 2: Now copy partial results from GPU back to CPU and run reduction there:</span></div>
<div class="line"><a name="l00780"></a><span class="lineno"> 780</span>  <span class="keyword">typedef</span> std::vector<typename viennacl::result_of::cl_type<T>::type> CPUVectorType;</div>
<div class="line"><a name="l00781"></a><span class="lineno"> 781</span> </div>
<div class="line"><a name="l00782"></a><span class="lineno"> 782</span>  CPUVectorType temp_cpu(work_groups);</div>
<div class="line"><a name="l00783"></a><span class="lineno"> 783</span>  <a class="code" href="namespaceviennacl.html#aaa5c8726b45bc89a523ca2fa8c42107a">viennacl::fast_copy</a>(temp.<a class="code" href="classviennacl_1_1vector__base.html#a762d98e2f912fc534951f25555b6077f">begin</a>(), temp.<a class="code" href="classviennacl_1_1vector__base.html#aba8a76bd4c96435ba68cf96b9e5132a6">end</a>(), temp_cpu.begin());</div>
<div class="line"><a name="l00784"></a><span class="lineno"> 784</span> </div>
<div class="line"><a name="l00785"></a><span class="lineno"> 785</span>  result = 0;</div>
<div class="line"><a name="l00786"></a><span class="lineno"> 786</span>  <span class="keywordflow">for</span> (<span class="keyword">typename</span> CPUVectorType::const_iterator it = temp_cpu.begin(); it != temp_cpu.end(); ++it)</div>
<div class="line"><a name="l00787"></a><span class="lineno"> 787</span>  result += static_cast<T>(*it);</div>
<div class="line"><a name="l00788"></a><span class="lineno"> 788</span> }</div>
<div class="line"><a name="l00789"></a><span class="lineno"> 789</span> </div>
<div class="line"><a name="l00790"></a><span class="lineno"> 790</span> </div>
<div class="line"><a name="l00791"></a><span class="lineno"> 791</span> </div>
<div class="line"><a name="l00793"></a><span class="lineno"> 793</span> </div>
<div class="line"><a name="l00794"></a><span class="lineno"> 794</span> </div>
<div class="line"><a name="l00800"></a><span class="lineno"> 800</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00801"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a430b9424a974bdacda10b5a323976c0a"> 801</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a430b9424a974bdacda10b5a323976c0a">norm_2_impl</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec,</div>
<div class="line"><a name="l00802"></a><span class="lineno"> 802</span>  <a class="code" href="classviennacl_1_1scalar.html">scalar<T></a> & result)</div>
<div class="line"><a name="l00803"></a><span class="lineno"> 803</span> {</div>
<div class="line"><a name="l00804"></a><span class="lineno"> 804</span>  assert(viennacl::traits::opencl_handle(vec).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(result).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Operands do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00805"></a><span class="lineno"> 805</span> </div>
<div class="line"><a name="l00806"></a><span class="lineno"> 806</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec).context());</div>
<div class="line"><a name="l00807"></a><span class="lineno"> 807</span> </div>
<div class="line"><a name="l00808"></a><span class="lineno"> 808</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l00809"></a><span class="lineno"> 809</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<T></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(vec));</div>
<div class="line"><a name="l00810"></a><span class="lineno"> 810</span> </div>
<div class="line"><a name="l00811"></a><span class="lineno"> 811</span>  <span class="comment">// Step 1: Compute the partial work group results</span></div>
<div class="line"><a name="l00812"></a><span class="lineno"> 812</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#ad44f85d3504ba0dc38d734f14ec92de8">norm_reduction_impl</a>(vec, temp, 2);</div>
<div class="line"><a name="l00813"></a><span class="lineno"> 813</span> </div>
<div class="line"><a name="l00814"></a><span class="lineno"> 814</span>  <span class="comment">// Step 2: Reduction via OpenCL</span></div>
<div class="line"><a name="l00815"></a><span class="lineno"> 815</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & ksum = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), <span class="stringliteral">"sum"</span>);</div>
<div class="line"><a name="l00816"></a><span class="lineno"> 816</span> </div>
<div class="line"><a name="l00817"></a><span class="lineno"> 817</span>  ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l00818"></a><span class="lineno"> 818</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>( ksum(viennacl::traits::opencl_handle(temp),</div>
<div class="line"><a name="l00819"></a><span class="lineno"> 819</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(temp)),</div>
<div class="line"><a name="l00820"></a><span class="lineno"> 820</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(temp)),</div>
<div class="line"><a name="l00821"></a><span class="lineno"> 821</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(temp)),</div>
<div class="line"><a name="l00822"></a><span class="lineno"> 822</span>  cl_uint(2),</div>
<div class="line"><a name="l00823"></a><span class="lineno"> 823</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<T>::type</a>) * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00824"></a><span class="lineno"> 824</span>  result)</div>
<div class="line"><a name="l00825"></a><span class="lineno"> 825</span>  );</div>
<div class="line"><a name="l00826"></a><span class="lineno"> 826</span> }</div>
<div class="line"><a name="l00827"></a><span class="lineno"> 827</span> </div>
<div class="line"><a name="l00833"></a><span class="lineno"> 833</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00834"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a500313611da0259aa03e288bac20eccb"> 834</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a500313611da0259aa03e288bac20eccb">norm_2_cpu</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec,</div>
<div class="line"><a name="l00835"></a><span class="lineno"> 835</span>  T & result)</div>
<div class="line"><a name="l00836"></a><span class="lineno"> 836</span> {</div>
<div class="line"><a name="l00837"></a><span class="lineno"> 837</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l00838"></a><span class="lineno"> 838</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<T></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(vec));</div>
<div class="line"><a name="l00839"></a><span class="lineno"> 839</span> </div>
<div class="line"><a name="l00840"></a><span class="lineno"> 840</span>  <span class="comment">// Step 1: Compute the partial work group results</span></div>
<div class="line"><a name="l00841"></a><span class="lineno"> 841</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#ad44f85d3504ba0dc38d734f14ec92de8">norm_reduction_impl</a>(vec, temp, 2);</div>
<div class="line"><a name="l00842"></a><span class="lineno"> 842</span> </div>
<div class="line"><a name="l00843"></a><span class="lineno"> 843</span>  <span class="comment">// Step 2: Now copy partial results from GPU back to CPU and run reduction there:</span></div>
<div class="line"><a name="l00844"></a><span class="lineno"> 844</span>  <span class="keyword">typedef</span> std::vector<typename viennacl::result_of::cl_type<T>::type> CPUVectorType;</div>
<div class="line"><a name="l00845"></a><span class="lineno"> 845</span> </div>
<div class="line"><a name="l00846"></a><span class="lineno"> 846</span>  CPUVectorType temp_cpu(work_groups);</div>
<div class="line"><a name="l00847"></a><span class="lineno"> 847</span>  <a class="code" href="namespaceviennacl.html#aaa5c8726b45bc89a523ca2fa8c42107a">viennacl::fast_copy</a>(temp.<a class="code" href="classviennacl_1_1vector__base.html#a762d98e2f912fc534951f25555b6077f">begin</a>(), temp.<a class="code" href="classviennacl_1_1vector__base.html#aba8a76bd4c96435ba68cf96b9e5132a6">end</a>(), temp_cpu.begin());</div>
<div class="line"><a name="l00848"></a><span class="lineno"> 848</span> </div>
<div class="line"><a name="l00849"></a><span class="lineno"> 849</span>  result = 0;</div>
<div class="line"><a name="l00850"></a><span class="lineno"> 850</span>  <span class="keywordflow">for</span> (<span class="keyword">typename</span> CPUVectorType::const_iterator it = temp_cpu.begin(); it != temp_cpu.end(); ++it)</div>
<div class="line"><a name="l00851"></a><span class="lineno"> 851</span>  result += static_cast<T>(*it);</div>
<div class="line"><a name="l00852"></a><span class="lineno"> 852</span>  result = std::sqrt(result);</div>
<div class="line"><a name="l00853"></a><span class="lineno"> 853</span> }</div>
<div class="line"><a name="l00854"></a><span class="lineno"> 854</span> </div>
<div class="line"><a name="l00855"></a><span class="lineno"> 855</span> </div>
<div class="line"><a name="l00856"></a><span class="lineno"> 856</span> </div>
<div class="line"><a name="l00858"></a><span class="lineno"> 858</span> </div>
<div class="line"><a name="l00864"></a><span class="lineno"> 864</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00865"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a3448fa94672822135d5c8ca665543ad6"> 865</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a3448fa94672822135d5c8ca665543ad6">norm_inf_impl</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec,</div>
<div class="line"><a name="l00866"></a><span class="lineno"> 866</span>  <a class="code" href="classviennacl_1_1scalar.html">scalar<T></a> & result)</div>
<div class="line"><a name="l00867"></a><span class="lineno"> 867</span> {</div>
<div class="line"><a name="l00868"></a><span class="lineno"> 868</span>  assert(viennacl::traits::opencl_handle(vec).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(result).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Operands do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00869"></a><span class="lineno"> 869</span> </div>
<div class="line"><a name="l00870"></a><span class="lineno"> 870</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec).context());</div>
<div class="line"><a name="l00871"></a><span class="lineno"> 871</span> </div>
<div class="line"><a name="l00872"></a><span class="lineno"> 872</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l00873"></a><span class="lineno"> 873</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<T></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(vec));</div>
<div class="line"><a name="l00874"></a><span class="lineno"> 874</span> </div>
<div class="line"><a name="l00875"></a><span class="lineno"> 875</span>  <span class="comment">// Step 1: Compute the partial work group results</span></div>
<div class="line"><a name="l00876"></a><span class="lineno"> 876</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#ad44f85d3504ba0dc38d734f14ec92de8">norm_reduction_impl</a>(vec, temp, 0);</div>
<div class="line"><a name="l00877"></a><span class="lineno"> 877</span> </div>
<div class="line"><a name="l00878"></a><span class="lineno"> 878</span>  <span class="comment">//part 2: parallel reduction of reduced kernel:</span></div>
<div class="line"><a name="l00879"></a><span class="lineno"> 879</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & ksum = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), <span class="stringliteral">"sum"</span>);</div>
<div class="line"><a name="l00880"></a><span class="lineno"> 880</span> </div>
<div class="line"><a name="l00881"></a><span class="lineno"> 881</span>  ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l00882"></a><span class="lineno"> 882</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>( ksum(viennacl::traits::opencl_handle(temp),</div>
<div class="line"><a name="l00883"></a><span class="lineno"> 883</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(temp)),</div>
<div class="line"><a name="l00884"></a><span class="lineno"> 884</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(temp)),</div>
<div class="line"><a name="l00885"></a><span class="lineno"> 885</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(temp)),</div>
<div class="line"><a name="l00886"></a><span class="lineno"> 886</span>  cl_uint(0),</div>
<div class="line"><a name="l00887"></a><span class="lineno"> 887</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<T>::type</a>) * ksum.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00888"></a><span class="lineno"> 888</span>  result)</div>
<div class="line"><a name="l00889"></a><span class="lineno"> 889</span>  );</div>
<div class="line"><a name="l00890"></a><span class="lineno"> 890</span> }</div>
<div class="line"><a name="l00891"></a><span class="lineno"> 891</span> </div>
<div class="line"><a name="l00897"></a><span class="lineno"> 897</span> <span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00898"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a4fad07ab525d7540817ecd9006a8bcc8"> 898</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a4fad07ab525d7540817ecd9006a8bcc8">norm_inf_cpu</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec,</div>
<div class="line"><a name="l00899"></a><span class="lineno"> 899</span>  T & result)</div>
<div class="line"><a name="l00900"></a><span class="lineno"> 900</span> {</div>
<div class="line"><a name="l00901"></a><span class="lineno"> 901</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l00902"></a><span class="lineno"> 902</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<T></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(vec));</div>
<div class="line"><a name="l00903"></a><span class="lineno"> 903</span> </div>
<div class="line"><a name="l00904"></a><span class="lineno"> 904</span>  <span class="comment">// Step 1: Compute the partial work group results</span></div>
<div class="line"><a name="l00905"></a><span class="lineno"> 905</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#ad44f85d3504ba0dc38d734f14ec92de8">norm_reduction_impl</a>(vec, temp, 0);</div>
<div class="line"><a name="l00906"></a><span class="lineno"> 906</span> </div>
<div class="line"><a name="l00907"></a><span class="lineno"> 907</span>  <span class="comment">// Step 2: Now copy partial results from GPU back to CPU and run reduction there:</span></div>
<div class="line"><a name="l00908"></a><span class="lineno"> 908</span>  <span class="keyword">typedef</span> std::vector<typename viennacl::result_of::cl_type<T>::type> CPUVectorType;</div>
<div class="line"><a name="l00909"></a><span class="lineno"> 909</span> </div>
<div class="line"><a name="l00910"></a><span class="lineno"> 910</span>  CPUVectorType temp_cpu(work_groups);</div>
<div class="line"><a name="l00911"></a><span class="lineno"> 911</span>  <a class="code" href="namespaceviennacl.html#aaa5c8726b45bc89a523ca2fa8c42107a">viennacl::fast_copy</a>(temp.<a class="code" href="classviennacl_1_1vector__base.html#a762d98e2f912fc534951f25555b6077f">begin</a>(), temp.<a class="code" href="classviennacl_1_1vector__base.html#aba8a76bd4c96435ba68cf96b9e5132a6">end</a>(), temp_cpu.begin());</div>
<div class="line"><a name="l00912"></a><span class="lineno"> 912</span> </div>
<div class="line"><a name="l00913"></a><span class="lineno"> 913</span>  result = 0;</div>
<div class="line"><a name="l00914"></a><span class="lineno"> 914</span>  <span class="keywordflow">for</span> (<span class="keyword">typename</span> CPUVectorType::const_iterator it = temp_cpu.begin(); it != temp_cpu.end(); ++it)</div>
<div class="line"><a name="l00915"></a><span class="lineno"> 915</span>  result = <a class="code" href="namespaceviennacl_1_1linalg_1_1detail.html#a5d46fe9558b0e462f10fd44942ad4fc6">std::max</a>(result, static_cast<T>(*it));</div>
<div class="line"><a name="l00916"></a><span class="lineno"> 916</span> }</div>
<div class="line"><a name="l00917"></a><span class="lineno"> 917</span> </div>
<div class="line"><a name="l00918"></a><span class="lineno"> 918</span> </div>
<div class="line"><a name="l00920"></a><span class="lineno"> 920</span> </div>
<div class="line"><a name="l00921"></a><span class="lineno"> 921</span> <span class="comment">//This function should return a CPU scalar, otherwise statements like</span></div>
<div class="line"><a name="l00922"></a><span class="lineno"> 922</span> <span class="comment">// vcl_rhs[index_norm_inf(vcl_rhs)]</span></div>
<div class="line"><a name="l00923"></a><span class="lineno"> 923</span> <span class="comment">// are ambiguous</span></div>
<div class="line"><a name="l00929"></a><span class="lineno"> 929</span> <span class="comment"></span><span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l00930"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#ae19ed387707bd0b8721dd7acb150b2d8"> 930</a></span> cl_uint <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#ae19ed387707bd0b8721dd7acb150b2d8">index_norm_inf</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> <span class="keyword">const</span> & vec)</div>
<div class="line"><a name="l00931"></a><span class="lineno"> 931</span> {</div>
<div class="line"><a name="l00932"></a><span class="lineno"> 932</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec).context());</div>
<div class="line"><a name="l00933"></a><span class="lineno"> 933</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<T>::init</a>(ctx);</div>
<div class="line"><a name="l00934"></a><span class="lineno"> 934</span> </div>
<div class="line"><a name="l00935"></a><span class="lineno"> 935</span>  <a class="code" href="classviennacl_1_1ocl_1_1handle.html">viennacl::ocl::handle<cl_mem></a> h = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#ac70d01bc7f8bd1f36c10eae811672d79">create_memory</a>(CL_MEM_READ_WRITE, <span class="keyword">sizeof</span>(cl_uint));</div>
<div class="line"><a name="l00936"></a><span class="lineno"> 936</span> </div>
<div class="line"><a name="l00937"></a><span class="lineno"> 937</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), <span class="stringliteral">"index_norm_inf"</span>);</div>
<div class="line"><a name="l00938"></a><span class="lineno"> 938</span>  <span class="comment">//cl_uint size = static_cast<cl_uint>(vcl_vec.internal_size());</span></div>
<div class="line"><a name="l00939"></a><span class="lineno"> 939</span> </div>
<div class="line"><a name="l00940"></a><span class="lineno"> 940</span>  <span class="comment">//TODO: Use multi-group kernel for large vector sizes</span></div>
<div class="line"><a name="l00941"></a><span class="lineno"> 941</span> </div>
<div class="line"><a name="l00942"></a><span class="lineno"> 942</span>  k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>());</div>
<div class="line"><a name="l00943"></a><span class="lineno"> 943</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(vec),</div>
<div class="line"><a name="l00944"></a><span class="lineno"> 944</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec)),</div>
<div class="line"><a name="l00945"></a><span class="lineno"> 945</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec)),</div>
<div class="line"><a name="l00946"></a><span class="lineno"> 946</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec)),</div>
<div class="line"><a name="l00947"></a><span class="lineno"> 947</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<T>::type</a>) * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00948"></a><span class="lineno"> 948</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(cl_uint) * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()), h));</div>
<div class="line"><a name="l00949"></a><span class="lineno"> 949</span> </div>
<div class="line"><a name="l00950"></a><span class="lineno"> 950</span>  <span class="comment">//read value:</span></div>
<div class="line"><a name="l00951"></a><span class="lineno"> 951</span>  cl_uint result;</div>
<div class="line"><a name="l00952"></a><span class="lineno"> 952</span>  cl_int err = clEnqueueReadBuffer(ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#af4f7f70a51d069f7796bd9b4bb2a852a">get_queue</a>().<a class="code" href="classviennacl_1_1ocl_1_1command__queue.html#a670f2d080528e50d64d3912567708754">handle</a>().<a class="code" href="classviennacl_1_1ocl_1_1handle.html#a5074caaee700015fc2d3b03540b01673">get</a>(), h.<a class="code" href="classviennacl_1_1ocl_1_1handle.html#a5074caaee700015fc2d3b03540b01673">get</a>(), CL_TRUE, 0, <span class="keyword">sizeof</span>(cl_uint), &result, 0, NULL, NULL);</div>
<div class="line"><a name="l00953"></a><span class="lineno"> 953</span>  <a class="code" href="error_8hpp.html#a44f070f54255e72eb40c75ebd72ea602">VIENNACL_ERR_CHECK</a>(err);</div>
<div class="line"><a name="l00954"></a><span class="lineno"> 954</span>  <span class="keywordflow">return</span> result;</div>
<div class="line"><a name="l00955"></a><span class="lineno"> 955</span> }</div>
<div class="line"><a name="l00956"></a><span class="lineno"> 956</span> </div>
<div class="line"><a name="l00957"></a><span class="lineno"> 957</span> </div>
<div class="line"><a name="l00959"></a><span class="lineno"> 959</span> </div>
<div class="line"><a name="l00965"></a><span class="lineno"> 965</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l00966"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#ac170765011d5fabf045d6adae0916f95"> 966</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#ac170765011d5fabf045d6adae0916f95">max_impl</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & x,</div>
<div class="line"><a name="l00967"></a><span class="lineno"> 967</span>  <a class="code" href="classviennacl_1_1scalar.html">scalar<NumericT></a> & result)</div>
<div class="line"><a name="l00968"></a><span class="lineno"> 968</span> {</div>
<div class="line"><a name="l00969"></a><span class="lineno"> 969</span>  assert(viennacl::traits::opencl_handle(x).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(result).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Operands do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l00970"></a><span class="lineno"> 970</span> </div>
<div class="line"><a name="l00971"></a><span class="lineno"> 971</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(x).context());</div>
<div class="line"><a name="l00972"></a><span class="lineno"> 972</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<NumericT>::init</a>(ctx);</div>
<div class="line"><a name="l00973"></a><span class="lineno"> 973</span> </div>
<div class="line"><a name="l00974"></a><span class="lineno"> 974</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l00975"></a><span class="lineno"> 975</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<NumericT></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(x));</div>
<div class="line"><a name="l00976"></a><span class="lineno"> 976</span> </div>
<div class="line"><a name="l00977"></a><span class="lineno"> 977</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<NumericT>::program_name</a>(), <span class="stringliteral">"max_kernel"</span>);</div>
<div class="line"><a name="l00978"></a><span class="lineno"> 978</span> </div>
<div class="line"><a name="l00979"></a><span class="lineno"> 979</span>  k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, work_groups * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l00980"></a><span class="lineno"> 980</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(x),</div>
<div class="line"><a name="l00981"></a><span class="lineno"> 981</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(x)),</div>
<div class="line"><a name="l00982"></a><span class="lineno"> 982</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(x)),</div>
<div class="line"><a name="l00983"></a><span class="lineno"> 983</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(x)),</div>
<div class="line"><a name="l00984"></a><span class="lineno"> 984</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00985"></a><span class="lineno"> 985</span>  viennacl::traits::opencl_handle(temp)</div>
<div class="line"><a name="l00986"></a><span class="lineno"> 986</span>  ));</div>
<div class="line"><a name="l00987"></a><span class="lineno"> 987</span> </div>
<div class="line"><a name="l00988"></a><span class="lineno"> 988</span>  k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>());</div>
<div class="line"><a name="l00989"></a><span class="lineno"> 989</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(temp),</div>
<div class="line"><a name="l00990"></a><span class="lineno"> 990</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(temp)),</div>
<div class="line"><a name="l00991"></a><span class="lineno"> 991</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(temp)),</div>
<div class="line"><a name="l00992"></a><span class="lineno"> 992</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(temp)),</div>
<div class="line"><a name="l00993"></a><span class="lineno"> 993</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l00994"></a><span class="lineno"> 994</span>  viennacl::traits::opencl_handle(result)</div>
<div class="line"><a name="l00995"></a><span class="lineno"> 995</span>  ));</div>
<div class="line"><a name="l00996"></a><span class="lineno"> 996</span> }</div>
<div class="line"><a name="l00997"></a><span class="lineno"> 997</span> </div>
<div class="line"><a name="l01003"></a><span class="lineno"> 1003</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l01004"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#ac79bc14c508a0830434970c2cee89641"> 1004</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#ac79bc14c508a0830434970c2cee89641">max_cpu</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & x,</div>
<div class="line"><a name="l01005"></a><span class="lineno"> 1005</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> & result)</div>
<div class="line"><a name="l01006"></a><span class="lineno"> 1006</span> {</div>
<div class="line"><a name="l01007"></a><span class="lineno"> 1007</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(x).context());</div>
<div class="line"><a name="l01008"></a><span class="lineno"> 1008</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<NumericT>::init</a>(ctx);</div>
<div class="line"><a name="l01009"></a><span class="lineno"> 1009</span> </div>
<div class="line"><a name="l01010"></a><span class="lineno"> 1010</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l01011"></a><span class="lineno"> 1011</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<NumericT></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(x));</div>
<div class="line"><a name="l01012"></a><span class="lineno"> 1012</span> </div>
<div class="line"><a name="l01013"></a><span class="lineno"> 1013</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<NumericT>::program_name</a>(), <span class="stringliteral">"max_kernel"</span>);</div>
<div class="line"><a name="l01014"></a><span class="lineno"> 1014</span> </div>
<div class="line"><a name="l01015"></a><span class="lineno"> 1015</span>  k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, work_groups * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l01016"></a><span class="lineno"> 1016</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(x),</div>
<div class="line"><a name="l01017"></a><span class="lineno"> 1017</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(x)),</div>
<div class="line"><a name="l01018"></a><span class="lineno"> 1018</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(x)),</div>
<div class="line"><a name="l01019"></a><span class="lineno"> 1019</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(x)),</div>
<div class="line"><a name="l01020"></a><span class="lineno"> 1020</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l01021"></a><span class="lineno"> 1021</span>  viennacl::traits::opencl_handle(temp)</div>
<div class="line"><a name="l01022"></a><span class="lineno"> 1022</span>  ));</div>
<div class="line"><a name="l01023"></a><span class="lineno"> 1023</span> </div>
<div class="line"><a name="l01024"></a><span class="lineno"> 1024</span>  <span class="comment">// Step 2: Now copy partial results from GPU back to CPU and run reduction there:</span></div>
<div class="line"><a name="l01025"></a><span class="lineno"> 1025</span>  <span class="keyword">typedef</span> std::vector<typename viennacl::result_of::cl_type<NumericT>::type> CPUVectorType;</div>
<div class="line"><a name="l01026"></a><span class="lineno"> 1026</span> </div>
<div class="line"><a name="l01027"></a><span class="lineno"> 1027</span>  CPUVectorType temp_cpu(work_groups);</div>
<div class="line"><a name="l01028"></a><span class="lineno"> 1028</span>  <a class="code" href="namespaceviennacl.html#aaa5c8726b45bc89a523ca2fa8c42107a">viennacl::fast_copy</a>(temp.<a class="code" href="classviennacl_1_1vector__base.html#a762d98e2f912fc534951f25555b6077f">begin</a>(), temp.<a class="code" href="classviennacl_1_1vector__base.html#aba8a76bd4c96435ba68cf96b9e5132a6">end</a>(), temp_cpu.begin());</div>
<div class="line"><a name="l01029"></a><span class="lineno"> 1029</span> </div>
<div class="line"><a name="l01030"></a><span class="lineno"> 1030</span>  result = <span class="keyword">static_cast<</span><a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a><span class="keyword">></span>(temp_cpu[0]);</div>
<div class="line"><a name="l01031"></a><span class="lineno"> 1031</span>  <span class="keywordflow">for</span> (<span class="keyword">typename</span> CPUVectorType::const_iterator it = temp_cpu.begin(); it != temp_cpu.end(); ++it)</div>
<div class="line"><a name="l01032"></a><span class="lineno"> 1032</span>  result = <a class="code" href="namespaceviennacl_1_1linalg_1_1detail.html#a5d46fe9558b0e462f10fd44942ad4fc6">std::max</a>(result, static_cast<NumericT>(*it));</div>
<div class="line"><a name="l01033"></a><span class="lineno"> 1033</span> </div>
<div class="line"><a name="l01034"></a><span class="lineno"> 1034</span> }</div>
<div class="line"><a name="l01035"></a><span class="lineno"> 1035</span> </div>
<div class="line"><a name="l01036"></a><span class="lineno"> 1036</span> </div>
<div class="line"><a name="l01038"></a><span class="lineno"> 1038</span> </div>
<div class="line"><a name="l01044"></a><span class="lineno"> 1044</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l01045"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a71a1b9f38905691db366f206dfea4bd5"> 1045</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a71a1b9f38905691db366f206dfea4bd5">min_impl</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & x,</div>
<div class="line"><a name="l01046"></a><span class="lineno"> 1046</span>  <a class="code" href="classviennacl_1_1scalar.html">scalar<NumericT></a> & result)</div>
<div class="line"><a name="l01047"></a><span class="lineno"> 1047</span> {</div>
<div class="line"><a name="l01048"></a><span class="lineno"> 1048</span>  assert(viennacl::traits::opencl_handle(x).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(result).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Operands do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l01049"></a><span class="lineno"> 1049</span> </div>
<div class="line"><a name="l01050"></a><span class="lineno"> 1050</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(x).context());</div>
<div class="line"><a name="l01051"></a><span class="lineno"> 1051</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<NumericT>::init</a>(ctx);</div>
<div class="line"><a name="l01052"></a><span class="lineno"> 1052</span> </div>
<div class="line"><a name="l01053"></a><span class="lineno"> 1053</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l01054"></a><span class="lineno"> 1054</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<NumericT></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(x));</div>
<div class="line"><a name="l01055"></a><span class="lineno"> 1055</span> </div>
<div class="line"><a name="l01056"></a><span class="lineno"> 1056</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<NumericT>::program_name</a>(), <span class="stringliteral">"min_kernel"</span>);</div>
<div class="line"><a name="l01057"></a><span class="lineno"> 1057</span> </div>
<div class="line"><a name="l01058"></a><span class="lineno"> 1058</span>  k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, work_groups * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l01059"></a><span class="lineno"> 1059</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(x),</div>
<div class="line"><a name="l01060"></a><span class="lineno"> 1060</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(x)),</div>
<div class="line"><a name="l01061"></a><span class="lineno"> 1061</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(x)),</div>
<div class="line"><a name="l01062"></a><span class="lineno"> 1062</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(x)),</div>
<div class="line"><a name="l01063"></a><span class="lineno"> 1063</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l01064"></a><span class="lineno"> 1064</span>  viennacl::traits::opencl_handle(temp)</div>
<div class="line"><a name="l01065"></a><span class="lineno"> 1065</span>  ));</div>
<div class="line"><a name="l01066"></a><span class="lineno"> 1066</span> </div>
<div class="line"><a name="l01067"></a><span class="lineno"> 1067</span>  k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>());</div>
<div class="line"><a name="l01068"></a><span class="lineno"> 1068</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(temp),</div>
<div class="line"><a name="l01069"></a><span class="lineno"> 1069</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(temp)),</div>
<div class="line"><a name="l01070"></a><span class="lineno"> 1070</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(temp)),</div>
<div class="line"><a name="l01071"></a><span class="lineno"> 1071</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(temp)),</div>
<div class="line"><a name="l01072"></a><span class="lineno"> 1072</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l01073"></a><span class="lineno"> 1073</span>  viennacl::traits::opencl_handle(result)</div>
<div class="line"><a name="l01074"></a><span class="lineno"> 1074</span>  ));</div>
<div class="line"><a name="l01075"></a><span class="lineno"> 1075</span> }</div>
<div class="line"><a name="l01076"></a><span class="lineno"> 1076</span> </div>
<div class="line"><a name="l01082"></a><span class="lineno"> 1082</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l01083"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a96c7c34e9ab708abe647c5d1eb7f6b07"> 1083</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a96c7c34e9ab708abe647c5d1eb7f6b07">min_cpu</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & x,</div>
<div class="line"><a name="l01084"></a><span class="lineno"> 1084</span>  <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> & result)</div>
<div class="line"><a name="l01085"></a><span class="lineno"> 1085</span> {</div>
<div class="line"><a name="l01086"></a><span class="lineno"> 1086</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(x).context());</div>
<div class="line"><a name="l01087"></a><span class="lineno"> 1087</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<NumericT>::init</a>(ctx);</div>
<div class="line"><a name="l01088"></a><span class="lineno"> 1088</span> </div>
<div class="line"><a name="l01089"></a><span class="lineno"> 1089</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> work_groups = 128;</div>
<div class="line"><a name="l01090"></a><span class="lineno"> 1090</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<NumericT></a> temp(work_groups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(x));</div>
<div class="line"><a name="l01091"></a><span class="lineno"> 1091</span> </div>
<div class="line"><a name="l01092"></a><span class="lineno"> 1092</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<NumericT>::program_name</a>(), <span class="stringliteral">"min_kernel"</span>);</div>
<div class="line"><a name="l01093"></a><span class="lineno"> 1093</span> </div>
<div class="line"><a name="l01094"></a><span class="lineno"> 1094</span>  k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, work_groups * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0));</div>
<div class="line"><a name="l01095"></a><span class="lineno"> 1095</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(x),</div>
<div class="line"><a name="l01096"></a><span class="lineno"> 1096</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(x)),</div>
<div class="line"><a name="l01097"></a><span class="lineno"> 1097</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(x)),</div>
<div class="line"><a name="l01098"></a><span class="lineno"> 1098</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(x)),</div>
<div class="line"><a name="l01099"></a><span class="lineno"> 1099</span>  <a class="code" href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a>(<span class="keyword">sizeof</span>(<span class="keyword">typename</span> <a class="code" href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type<NumericT>::type</a>) * k.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>()),</div>
<div class="line"><a name="l01100"></a><span class="lineno"> 1100</span>  viennacl::traits::opencl_handle(temp)</div>
<div class="line"><a name="l01101"></a><span class="lineno"> 1101</span>  ));</div>
<div class="line"><a name="l01102"></a><span class="lineno"> 1102</span> </div>
<div class="line"><a name="l01103"></a><span class="lineno"> 1103</span>  <span class="comment">// Step 2: Now copy partial results from GPU back to CPU and run reduction there:</span></div>
<div class="line"><a name="l01104"></a><span class="lineno"> 1104</span>  <span class="keyword">typedef</span> std::vector<typename viennacl::result_of::cl_type<NumericT>::type> CPUVectorType;</div>
<div class="line"><a name="l01105"></a><span class="lineno"> 1105</span> </div>
<div class="line"><a name="l01106"></a><span class="lineno"> 1106</span>  CPUVectorType temp_cpu(work_groups);</div>
<div class="line"><a name="l01107"></a><span class="lineno"> 1107</span>  <a class="code" href="namespaceviennacl.html#aaa5c8726b45bc89a523ca2fa8c42107a">viennacl::fast_copy</a>(temp.<a class="code" href="classviennacl_1_1vector__base.html#a762d98e2f912fc534951f25555b6077f">begin</a>(), temp.<a class="code" href="classviennacl_1_1vector__base.html#aba8a76bd4c96435ba68cf96b9e5132a6">end</a>(), temp_cpu.begin());</div>
<div class="line"><a name="l01108"></a><span class="lineno"> 1108</span> </div>
<div class="line"><a name="l01109"></a><span class="lineno"> 1109</span>  result = <span class="keyword">static_cast<</span><a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a><span class="keyword">></span>(temp_cpu[0]);</div>
<div class="line"><a name="l01110"></a><span class="lineno"> 1110</span>  <span class="keywordflow">for</span> (<span class="keyword">typename</span> CPUVectorType::const_iterator it = temp_cpu.begin(); it != temp_cpu.end(); ++it)</div>
<div class="line"><a name="l01111"></a><span class="lineno"> 1111</span>  result = <a class="code" href="namespaceviennacl_1_1linalg_1_1detail.html#aef015779a92be597e546c3491cebf6c1">std::min</a>(result, static_cast<NumericT>(*it));</div>
<div class="line"><a name="l01112"></a><span class="lineno"> 1112</span> }</div>
<div class="line"><a name="l01113"></a><span class="lineno"> 1113</span> </div>
<div class="line"><a name="l01115"></a><span class="lineno"> 1115</span> </div>
<div class="line"><a name="l01121"></a><span class="lineno"> 1121</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l01122"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a73f87509090aaf15968741d501bdc260"> 1122</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a73f87509090aaf15968741d501bdc260">sum_impl</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & x,</div>
<div class="line"><a name="l01123"></a><span class="lineno"> 1123</span>  <a class="code" href="classviennacl_1_1scalar.html">scalar<NumericT></a> & result)</div>
<div class="line"><a name="l01124"></a><span class="lineno"> 1124</span> {</div>
<div class="line"><a name="l01125"></a><span class="lineno"> 1125</span>  assert(viennacl::traits::opencl_handle(x).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(result).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Operands do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l01126"></a><span class="lineno"> 1126</span> </div>
<div class="line"><a name="l01127"></a><span class="lineno"> 1127</span>  <a class="code" href="classviennacl_1_1vector.html">viennacl::vector<NumericT></a> all_ones = <a class="code" href="structviennacl_1_1scalar__vector.html">viennacl::scalar_vector<NumericT></a>(x.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>(), <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a>(1), <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(x));</div>
<div class="line"><a name="l01128"></a><span class="lineno"> 1128</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a1adcbf3b6d428fc941484c35ce7e083a">viennacl::linalg::opencl::inner_prod_impl</a>(x, all_ones, result);</div>
<div class="line"><a name="l01129"></a><span class="lineno"> 1129</span> }</div>
<div class="line"><a name="l01130"></a><span class="lineno"> 1130</span> </div>
<div class="line"><a name="l01136"></a><span class="lineno"> 1136</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l01137"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a07a0a89b0e9f73cd9f2b799e6778679b"> 1137</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a07a0a89b0e9f73cd9f2b799e6778679b">sum_cpu</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & x, <a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a> & result)</div>
<div class="line"><a name="l01138"></a><span class="lineno"> 1138</span> {</div>
<div class="line"><a name="l01139"></a><span class="lineno"> 1139</span>  <a class="code" href="classviennacl_1_1scalar.html">scalar<NumericT></a> tmp(0, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(x));</div>
<div class="line"><a name="l01140"></a><span class="lineno"> 1140</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a73f87509090aaf15968741d501bdc260">sum_impl</a>(x, tmp);</div>
<div class="line"><a name="l01141"></a><span class="lineno"> 1141</span>  result = tmp;</div>
<div class="line"><a name="l01142"></a><span class="lineno"> 1142</span> }</div>
<div class="line"><a name="l01143"></a><span class="lineno"> 1143</span> </div>
<div class="line"><a name="l01144"></a><span class="lineno"> 1144</span> </div>
<div class="line"><a name="l01145"></a><span class="lineno"> 1145</span> <span class="comment">//TODO: Special case vec1 == vec2 allows improvement!!</span></div>
<div class="line"><a name="l01155"></a><span class="lineno"> 1155</span> <span class="comment"></span><span class="keyword">template</span> <<span class="keyword">typename</span> T></div>
<div class="line"><a name="l01156"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a7cf8faf72604a859321348b7fb549420"> 1156</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a7cf8faf72604a859321348b7fb549420">plane_rotation</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & vec1,</div>
<div class="line"><a name="l01157"></a><span class="lineno"> 1157</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<T></a> & vec2,</div>
<div class="line"><a name="l01158"></a><span class="lineno"> 1158</span>  T alpha, T beta)</div>
<div class="line"><a name="l01159"></a><span class="lineno"> 1159</span> {</div>
<div class="line"><a name="l01160"></a><span class="lineno"> 1160</span>  assert(viennacl::traits::opencl_handle(vec1).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() == viennacl::traits::opencl_handle(vec2).<a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">context</a>() && <span class="keywordtype">bool</span>(<span class="stringliteral">"Operands do not reside in the same OpenCL context. Automatic migration not yet supported!"</span>));</div>
<div class="line"><a name="l01161"></a><span class="lineno"> 1161</span> </div>
<div class="line"><a name="l01162"></a><span class="lineno"> 1162</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(vec1).context());</div>
<div class="line"><a name="l01163"></a><span class="lineno"> 1163</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector<T>::init</a>(ctx);</div>
<div class="line"><a name="l01164"></a><span class="lineno"> 1164</span> </div>
<div class="line"><a name="l01165"></a><span class="lineno"> 1165</span>  assert(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1) == <a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec2));</div>
<div class="line"><a name="l01166"></a><span class="lineno"> 1166</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a> & k = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector<T>::program_name</a>(), <span class="stringliteral">"plane_rotation"</span>);</div>
<div class="line"><a name="l01167"></a><span class="lineno"> 1167</span> </div>
<div class="line"><a name="l01168"></a><span class="lineno"> 1168</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k(viennacl::traits::opencl_handle(vec1),</div>
<div class="line"><a name="l01169"></a><span class="lineno"> 1169</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec1)),</div>
<div class="line"><a name="l01170"></a><span class="lineno"> 1170</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec1)),</div>
<div class="line"><a name="l01171"></a><span class="lineno"> 1171</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec1)),</div>
<div class="line"><a name="l01172"></a><span class="lineno"> 1172</span>  viennacl::traits::opencl_handle(vec2),</div>
<div class="line"><a name="l01173"></a><span class="lineno"> 1173</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a>(vec2)),</div>
<div class="line"><a name="l01174"></a><span class="lineno"> 1174</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a>(vec2)),</div>
<div class="line"><a name="l01175"></a><span class="lineno"> 1175</span>  cl_uint(<a class="code" href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a>(vec2)),</div>
<div class="line"><a name="l01176"></a><span class="lineno"> 1176</span>  viennacl::traits::opencl_handle(alpha),</div>
<div class="line"><a name="l01177"></a><span class="lineno"> 1177</span>  viennacl::traits::opencl_handle(beta))</div>
<div class="line"><a name="l01178"></a><span class="lineno"> 1178</span>  );</div>
<div class="line"><a name="l01179"></a><span class="lineno"> 1179</span> }</div>
<div class="line"><a name="l01180"></a><span class="lineno"> 1180</span> </div>
<div class="line"><a name="l01181"></a><span class="lineno"> 1181</span> </div>
<div class="line"><a name="l01183"></a><span class="lineno"> 1183</span> </div>
<div class="line"><a name="l01184"></a><span class="lineno"> 1184</span> </div>
<div class="line"><a name="l01185"></a><span class="lineno"> 1185</span> <span class="keyword">namespace </span>detail</div>
<div class="line"><a name="l01186"></a><span class="lineno"> 1186</span> {</div>
<div class="line"><a name="l01192"></a><span class="lineno"> 1192</span>  <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l01193"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a9900a6b53663c061cac19d0e125fe461"> 1193</a></span>  <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a9900a6b53663c061cac19d0e125fe461">scan_impl</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & input,</div>
<div class="line"><a name="l01194"></a><span class="lineno"> 1194</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> & output,</div>
<div class="line"><a name="l01195"></a><span class="lineno"> 1195</span>  <span class="keywordtype">bool</span> is_inclusive)</div>
<div class="line"><a name="l01196"></a><span class="lineno"> 1196</span>  {</div>
<div class="line"><a name="l01197"></a><span class="lineno"> 1197</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> local_worksize = 128;</div>
<div class="line"><a name="l01198"></a><span class="lineno"> 1198</span>  <a class="code" href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">vcl_size_t</a> workgroups = 128;</div>
<div class="line"><a name="l01199"></a><span class="lineno"> 1199</span> </div>
<div class="line"><a name="l01200"></a><span class="lineno"> 1200</span>  <a class="code" href="classviennacl_1_1backend_1_1mem__handle.html">viennacl::backend::mem_handle</a> opencl_carries;</div>
<div class="line"><a name="l01201"></a><span class="lineno"> 1201</span>  <a class="code" href="namespaceviennacl_1_1backend.html#a1499f19634964e2c7c8aeeefc6206126">viennacl::backend::memory_create</a>(opencl_carries, <span class="keyword">sizeof</span>(<a class="code" href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a>)*workgroups, <a class="code" href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a>(input));</div>
<div class="line"><a name="l01202"></a><span class="lineno"> 1202</span> </div>
<div class="line"><a name="l01203"></a><span class="lineno"> 1203</span>  <a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> & ctx = <span class="keyword">const_cast<</span><a class="code" href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a> &<span class="keyword">></span>(viennacl::traits::opencl_handle(input).context());</div>
<div class="line"><a name="l01204"></a><span class="lineno"> 1204</span>  <a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1scan.html#a6e3e5e19bedf8150c466ba799960d6bb">viennacl::linalg::opencl::kernels::scan<NumericT>::init</a>(ctx);</div>
<div class="line"><a name="l01205"></a><span class="lineno"> 1205</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a>& k1 = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1scan.html">viennacl::linalg::opencl::kernels::scan<NumericT>::program_name</a>(), <span class="stringliteral">"scan_1"</span>);</div>
<div class="line"><a name="l01206"></a><span class="lineno"> 1206</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a>& k2 = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1scan.html">viennacl::linalg::opencl::kernels::scan<NumericT>::program_name</a>(), <span class="stringliteral">"scan_2"</span>);</div>
<div class="line"><a name="l01207"></a><span class="lineno"> 1207</span>  <a class="code" href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a>& k3 = ctx.<a class="code" href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">get_kernel</a>(<a class="code" href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1scan.html">viennacl::linalg::opencl::kernels::scan<NumericT>::program_name</a>(), <span class="stringliteral">"scan_3"</span>);</div>
<div class="line"><a name="l01208"></a><span class="lineno"> 1208</span> </div>
<div class="line"><a name="l01209"></a><span class="lineno"> 1209</span>  <span class="comment">// First step: Scan within each thread group and write carries</span></div>
<div class="line"><a name="l01210"></a><span class="lineno"> 1210</span>  k1.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0, local_worksize);</div>
<div class="line"><a name="l01211"></a><span class="lineno"> 1211</span>  k1.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, workgroups * local_worksize);</div>
<div class="line"><a name="l01212"></a><span class="lineno"> 1212</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k1( input, cl_uint( input.<a class="code" href="classviennacl_1_1vector__base.html#aaabd2cd126b77ee09b80b4c447bcbd3e">start</a>()), cl_uint( input.<a class="code" href="classviennacl_1_1vector__base.html#af1e0bd20ec7254908f6d49df07785cf4">stride</a>()), cl_uint(input.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>()),</div>
<div class="line"><a name="l01213"></a><span class="lineno"> 1213</span>  output, cl_uint(output.<a class="code" href="classviennacl_1_1vector__base.html#aaabd2cd126b77ee09b80b4c447bcbd3e">start</a>()), cl_uint(output.<a class="code" href="classviennacl_1_1vector__base.html#af1e0bd20ec7254908f6d49df07785cf4">stride</a>()),</div>
<div class="line"><a name="l01214"></a><span class="lineno"> 1214</span>  cl_uint(is_inclusive ? 0 : 1), opencl_carries.opencl_handle())</div>
<div class="line"><a name="l01215"></a><span class="lineno"> 1215</span>  );</div>
<div class="line"><a name="l01216"></a><span class="lineno"> 1216</span> </div>
<div class="line"><a name="l01217"></a><span class="lineno"> 1217</span>  <span class="comment">// Second step: Compute offset for each thread group (exclusive scan for each thread group)</span></div>
<div class="line"><a name="l01218"></a><span class="lineno"> 1218</span>  k2.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0, workgroups);</div>
<div class="line"><a name="l01219"></a><span class="lineno"> 1219</span>  k2.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, workgroups);</div>
<div class="line"><a name="l01220"></a><span class="lineno"> 1220</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k2(opencl_carries.opencl_handle()));</div>
<div class="line"><a name="l01221"></a><span class="lineno"> 1221</span> </div>
<div class="line"><a name="l01222"></a><span class="lineno"> 1222</span>  <span class="comment">// Third step: Offset each thread group accordingly</span></div>
<div class="line"><a name="l01223"></a><span class="lineno"> 1223</span>  k3.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">local_work_size</a>(0, local_worksize);</div>
<div class="line"><a name="l01224"></a><span class="lineno"> 1224</span>  k3.<a class="code" href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">global_work_size</a>(0, workgroups * local_worksize);</div>
<div class="line"><a name="l01225"></a><span class="lineno"> 1225</span>  <a class="code" href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a>(k3(output, cl_uint(output.<a class="code" href="classviennacl_1_1vector__base.html#aaabd2cd126b77ee09b80b4c447bcbd3e">start</a>()), cl_uint(output.<a class="code" href="classviennacl_1_1vector__base.html#af1e0bd20ec7254908f6d49df07785cf4">stride</a>()), cl_uint(output.<a class="code" href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">size</a>()),</div>
<div class="line"><a name="l01226"></a><span class="lineno"> 1226</span>  opencl_carries.opencl_handle())</div>
<div class="line"><a name="l01227"></a><span class="lineno"> 1227</span>  );</div>
<div class="line"><a name="l01228"></a><span class="lineno"> 1228</span>  }</div>
<div class="line"><a name="l01229"></a><span class="lineno"> 1229</span> }</div>
<div class="line"><a name="l01230"></a><span class="lineno"> 1230</span> </div>
<div class="line"><a name="l01231"></a><span class="lineno"> 1231</span> </div>
<div class="line"><a name="l01237"></a><span class="lineno"> 1237</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l01238"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a89a844a138804369fef44a01653e85b3"> 1238</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a89a844a138804369fef44a01653e85b3">inclusive_scan</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & input,</div>
<div class="line"><a name="l01239"></a><span class="lineno"> 1239</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> & output)</div>
<div class="line"><a name="l01240"></a><span class="lineno"> 1240</span> {</div>
<div class="line"><a name="l01241"></a><span class="lineno"> 1241</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a9900a6b53663c061cac19d0e125fe461">detail::scan_impl</a>(input, output, <span class="keyword">true</span>);</div>
<div class="line"><a name="l01242"></a><span class="lineno"> 1242</span> }</div>
<div class="line"><a name="l01243"></a><span class="lineno"> 1243</span> </div>
<div class="line"><a name="l01244"></a><span class="lineno"> 1244</span> </div>
<div class="line"><a name="l01250"></a><span class="lineno"> 1250</span> <span class="keyword">template</span><<span class="keyword">typename</span> NumericT></div>
<div class="line"><a name="l01251"></a><span class="lineno"><a class="line" href="namespaceviennacl_1_1linalg_1_1opencl.html#a2ab3c5aa6788fe5dce609753f8c038f7"> 1251</a></span> <span class="keywordtype">void</span> <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl.html#a2ab3c5aa6788fe5dce609753f8c038f7">exclusive_scan</a>(<a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> <span class="keyword">const</span> & input,</div>
<div class="line"><a name="l01252"></a><span class="lineno"> 1252</span>  <a class="code" href="classviennacl_1_1vector__base.html">vector_base<NumericT></a> & output)</div>
<div class="line"><a name="l01253"></a><span class="lineno"> 1253</span> {</div>
<div class="line"><a name="l01254"></a><span class="lineno"> 1254</span>  <a class="code" href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a9900a6b53663c061cac19d0e125fe461">detail::scan_impl</a>(input, output, <span class="keyword">false</span>);</div>
<div class="line"><a name="l01255"></a><span class="lineno"> 1255</span> }</div>
<div class="line"><a name="l01256"></a><span class="lineno"> 1256</span> </div>
<div class="line"><a name="l01257"></a><span class="lineno"> 1257</span> </div>
<div class="line"><a name="l01258"></a><span class="lineno"> 1258</span> } <span class="comment">//namespace opencl</span></div>
<div class="line"><a name="l01259"></a><span class="lineno"> 1259</span> } <span class="comment">//namespace linalg</span></div>
<div class="line"><a name="l01260"></a><span class="lineno"> 1260</span> } <span class="comment">//namespace viennacl</span></div>
<div class="line"><a name="l01261"></a><span class="lineno"> 1261</span> </div>
<div class="line"><a name="l01262"></a><span class="lineno"> 1262</span> </div>
<div class="line"><a name="l01263"></a><span class="lineno"> 1263</span> <span class="preprocessor">#endif</span></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a96c7c34e9ab708abe647c5d1eb7f6b07"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a96c7c34e9ab708abe647c5d1eb7f6b07">viennacl::linalg::opencl::min_cpu</a></div><div class="ttdeci">void min_cpu(vector_base< NumericT > const &x, NumericT &result)</div><div class="ttdoc">Computes the minimum of a vector, where the result is stored on a CPU scalar. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l01083">vector_operations.hpp:1083</a></div></div>
<div class="ttc" id="structviennacl_1_1ocl_1_1packed__cl__uint_html_a457e1f554ae439501613c843b6dad189"><div class="ttname"><a href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a457e1f554ae439501613c843b6dad189">viennacl::ocl::packed_cl_uint::stride</a></div><div class="ttdeci">cl_uint stride</div><div class="ttdoc">Increment between integers. </div><div class="ttdef"><b>Definition:</b> <a href="kernel_8hpp_source.html#l00050">kernel.hpp:50</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__tuple_html_a9f2fc8200f0199e396eaeca310f8e9f4"><div class="ttname"><a href="classviennacl_1_1vector__tuple.html#a9f2fc8200f0199e396eaeca310f8e9f4">viennacl::vector_tuple::const_size</a></div><div class="ttdeci">vcl_size_t const_size() const </div><div class="ttdef"><b>Definition:</b> <a href="vector_8hpp_source.html#l01143">vector.hpp:1143</a></div></div>
<div class="ttc" id="structviennacl_1_1ocl_1_1packed__cl__uint_html"><div class="ttname"><a href="structviennacl_1_1ocl_1_1packed__cl__uint.html">viennacl::ocl::packed_cl_uint</a></div><div class="ttdoc">Helper class for packing four cl_uint numbers into a uint4 type for access inside an OpenCL kernel...</div><div class="ttdef"><b>Definition:</b> <a href="kernel_8hpp_source.html#l00045">kernel.hpp:45</a></div></div>
<div class="ttc" id="classviennacl_1_1scalar_html"><div class="ttname"><a href="classviennacl_1_1scalar.html">viennacl::scalar</a></div><div class="ttdoc">This class represents a single scalar value on the GPU and behaves mostly like a built-in scalar type...</div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00227">forwards.h:227</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_ad22775c47f41c305da21168d1cb92236"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#ad22775c47f41c305da21168d1cb92236">viennacl::linalg::opencl::avbv</a></div><div class="ttdeci">void avbv(vector_base< T > &vec1, vector_base< T > const &vec2, ScalarType1 const &alpha, vcl_size_t len_alpha, bool reciprocal_alpha, bool flip_sign_alpha, vector_base< T > const &vec3, ScalarType2 const &beta, vcl_size_t len_beta, bool reciprocal_beta, bool flip_sign_beta)</div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00116">vector_operations.hpp:116</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a430b9424a974bdacda10b5a323976c0a"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a430b9424a974bdacda10b5a323976c0a">viennacl::linalg::opencl::norm_2_impl</a></div><div class="ttdeci">void norm_2_impl(vector_base< T > const &vec, scalar< T > &result)</div><div class="ttdoc">Computes the l^2-norm of a vector - implementation using OpenCL summation at second step...</div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00801">vector_operations.hpp:801</a></div></div>
<div class="ttc" id="device_8hpp_html"><div class="ttname"><a href="device_8hpp.html">device.hpp</a></div><div class="ttdoc">Represents an OpenCL device within ViennaCL. </div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a61ed84aaf76cd26e36ef91598dc2f748"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a61ed84aaf76cd26e36ef91598dc2f748">viennacl::linalg::opencl::norm_1_cpu</a></div><div class="ttdeci">void norm_1_cpu(vector_base< T > const &vec, T &result)</div><div class="ttdoc">Computes the l^1-norm of a vector with final reduction on CPU. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00770">vector_operations.hpp:770</a></div></div>
<div class="ttc" id="size_8hpp_html"><div class="ttname"><a href="size_8hpp.html">size.hpp</a></div><div class="ttdoc">Generic size and resize functionality for different vector and matrix types. </div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a7cf8faf72604a859321348b7fb549420"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a7cf8faf72604a859321348b7fb549420">viennacl::linalg::opencl::plane_rotation</a></div><div class="ttdeci">void plane_rotation(vector_base< T > &vec1, vector_base< T > &vec2, T alpha, T beta)</div><div class="ttdoc">Computes a plane rotation of two vectors. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l01156">vector_operations.hpp:1156</a></div></div>
<div class="ttc" id="classviennacl_1_1ocl_1_1context_html_af4f7f70a51d069f7796bd9b4bb2a852a"><div class="ttname"><a href="classviennacl_1_1ocl_1_1context.html#af4f7f70a51d069f7796bd9b4bb2a852a">viennacl::ocl::context::get_queue</a></div><div class="ttdeci">viennacl::ocl::command_queue & get_queue()</div><div class="ttdef"><b>Definition:</b> <a href="ocl_2context_8hpp_source.html#l00266">context.hpp:266</a></div></div>
<div class="ttc" id="classviennacl_1_1ocl_1_1kernel_html"><div class="ttname"><a href="classviennacl_1_1ocl_1_1kernel.html">viennacl::ocl::kernel</a></div><div class="ttdoc">Represents an OpenCL kernel within ViennaCL. </div><div class="ttdef"><b>Definition:</b> <a href="kernel_8hpp_source.html#l00058">kernel.hpp:58</a></div></div>
<div class="ttc" id="start_8hpp_html"><div class="ttname"><a href="start_8hpp.html">start.hpp</a></div><div class="ttdoc">Extracts the underlying OpenCL start index handle from a vector, a matrix, an expression etc...</div></div>
<div class="ttc" id="structviennacl_1_1ocl_1_1packed__cl__uint_html_a7991987e7676fabb8d1cbc54eaa0ba01"><div class="ttname"><a href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a7991987e7676fabb8d1cbc54eaa0ba01">viennacl::ocl::packed_cl_uint::start</a></div><div class="ttdeci">cl_uint start</div><div class="ttdoc">Starting value of the integer stride. </div><div class="ttdef"><b>Definition:</b> <a href="kernel_8hpp_source.html#l00048">kernel.hpp:48</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__convert_html_aa9b325a3e08a54c231d0aaa17f9162f4"><div class="ttname"><a href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__convert.html#aa9b325a3e08a54c231d0aaa17f9162f4">viennacl::linalg::opencl::kernels::vector_convert::program_name</a></div><div class="ttdeci">static std::string program_name()</div><div class="ttdef"><b>Definition:</b> <a href="linalg_2opencl_2kernels_2vector_8hpp_source.html#l00784">vector.hpp:784</a></div></div>
<div class="ttc" id="tools_8hpp_html"><div class="ttname"><a href="tools_8hpp.html">tools.hpp</a></div><div class="ttdoc">Various little tools used here and there in ViennaCL. </div></div>
<div class="ttc" id="classviennacl_1_1ocl_1_1kernel_html_ae2b841c487f9ddbfcfb6297d648e2d7f"><div class="ttname"><a href="classviennacl_1_1ocl_1_1kernel.html#ae2b841c487f9ddbfcfb6297d648e2d7f">viennacl::ocl::kernel::local_work_size</a></div><div class="ttdeci">size_type local_work_size(int index=0) const </div><div class="ttdoc">Returns the local work size at the respective dimension. </div><div class="ttdef"><b>Definition:</b> <a href="kernel_8hpp_source.html#l00742">kernel.hpp:742</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_ad44f85d3504ba0dc38d734f14ec92de8"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#ad44f85d3504ba0dc38d734f14ec92de8">viennacl::linalg::opencl::norm_reduction_impl</a></div><div class="ttdeci">void norm_reduction_impl(vector_base< T > const &vec, vector_base< T > &partial_result, cl_uint norm_id)</div><div class="ttdoc">Computes the partial work group results for vector norms. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00705">vector_operations.hpp:705</a></div></div>
<div class="ttc" id="classviennacl_1_1ocl_1_1context_html"><div class="ttname"><a href="classviennacl_1_1ocl_1_1context.html">viennacl::ocl::context</a></div><div class="ttdoc">Manages an OpenCL context and provides the respective convenience functions for creating buffers...</div><div class="ttdef"><b>Definition:</b> <a href="ocl_2context_8hpp_source.html#l00055">context.hpp:55</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__multi__inner__prod_html"><div class="ttname"><a href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__multi__inner__prod.html">viennacl::linalg::opencl::kernels::vector_multi_inner_prod</a></div><div class="ttdoc">Main kernel class for generating OpenCL kernels for multiple inner products on/with viennacl::vector<...</div><div class="ttdef"><b>Definition:</b> <a href="linalg_2opencl_2kernels_2vector_8hpp_source.html#l00727">vector.hpp:727</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a3448fa94672822135d5c8ca665543ad6"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a3448fa94672822135d5c8ca665543ad6">viennacl::linalg::opencl::norm_inf_impl</a></div><div class="ttdeci">void norm_inf_impl(vector_base< T > const &vec, scalar< T > &result)</div><div class="ttdoc">Computes the supremum-norm of a vector. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00865">vector_operations.hpp:865</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_a09997870f4802fa5d4ac2c43cf4020d1"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#a09997870f4802fa5d4ac2c43cf4020d1">viennacl::traits::stride</a></div><div class="ttdeci">result_of::size_type< viennacl::vector_base< T > >::type stride(viennacl::vector_base< T > const &s)</div><div class="ttdef"><b>Definition:</b> <a href="stride_8hpp_source.html#l00045">stride.hpp:45</a></div></div>
<div class="ttc" id="forwards_8h_html"><div class="ttname"><a href="forwards_8h.html">forwards.h</a></div><div class="ttdoc">This file provides the forward declarations for the main types used within ViennaCL. </div></div>
<div class="ttc" id="stride_8hpp_html"><div class="ttname"><a href="stride_8hpp.html">stride.hpp</a></div><div class="ttdoc">Determines row and column increments for matrices and matrix proxies. </div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a71a1b9f38905691db366f206dfea4bd5"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a71a1b9f38905691db366f206dfea4bd5">viennacl::linalg::opencl::min_impl</a></div><div class="ttdeci">void min_impl(vector_base< NumericT > const &x, scalar< NumericT > &result)</div><div class="ttdoc">Computes the minimum of a vector, where the result is stored in an OpenCL buffer. ...</div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l01045">vector_operations.hpp:1045</a></div></div>
<div class="ttc" id="structviennacl_1_1result__of_1_1cl__type_html_a340db346857782e06f4eefb3934f28c9"><div class="ttname"><a href="structviennacl_1_1result__of_1_1cl__type.html#a340db346857782e06f4eefb3934f28c9">viennacl::result_of::cl_type::type</a></div><div class="ttdeci">T type</div><div class="ttdef"><b>Definition:</b> <a href="result__of_8hpp_source.html#l00590">result_of.hpp:590</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_a0cd530f8a76a5fb3d60a9230bea30bca"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#a0cd530f8a76a5fb3d60a9230bea30bca">viennacl::traits::internal_size</a></div><div class="ttdeci">vcl_size_t internal_size(vector_base< NumericT > const &vec)</div><div class="ttdoc">Helper routine for obtaining the buffer length of a ViennaCL vector. </div><div class="ttdef"><b>Definition:</b> <a href="size_8hpp_source.html#l00375">size.hpp:375</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1detail_html_a5d46fe9558b0e462f10fd44942ad4fc6"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1detail.html#a5d46fe9558b0e462f10fd44942ad4fc6">viennacl::linalg::detail::max</a></div><div class="ttdeci">T max(const T &lhs, const T &rhs)</div><div class="ttdoc">Maximum. </div><div class="ttdef"><b>Definition:</b> <a href="linalg_2detail_2bisect_2util_8hpp_source.html#l00059">util.hpp:59</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__expression_html"><div class="ttname"><a href="classviennacl_1_1vector__expression.html">viennacl::vector_expression</a></div><div class="ttdoc">An expression template class that represents a binary operation that yields a vector. </div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00239">forwards.h:239</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1scan_html_a6e3e5e19bedf8150c466ba799960d6bb"><div class="ttname"><a href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1scan.html#a6e3e5e19bedf8150c466ba799960d6bb">viennacl::linalg::opencl::kernels::scan::init</a></div><div class="ttdeci">static void init(viennacl::ocl::context &ctx)</div><div class="ttdef"><b>Definition:</b> <a href="scan_8hpp_source.html#l00162">scan.hpp:162</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a3acee3fef422c2c2abee2f4e1d67c350"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a3acee3fef422c2c2abee2f4e1d67c350">viennacl::linalg::opencl::avbv_v</a></div><div class="ttdeci">void avbv_v(vector_base< T > &vec1, vector_base< T > const &vec2, ScalarType1 const &alpha, vcl_size_t len_alpha, bool reciprocal_alpha, bool flip_sign_alpha, vector_base< T > const &vec3, ScalarType2 const &beta, vcl_size_t len_beta, bool reciprocal_beta, bool flip_sign_beta)</div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00178">vector_operations.hpp:178</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1scan_html"><div class="ttname"><a href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1scan.html">viennacl::linalg::opencl::kernels::scan</a></div><div class="ttdoc">Main kernel class for generating OpenCL kernels for singular value decomposition of dense matrices...</div><div class="ttdef"><b>Definition:</b> <a href="scan_8hpp_source.html#l00155">scan.hpp:155</a></div></div>
<div class="ttc" id="structviennacl_1_1ocl_1_1packed__cl__uint_html_ab4fed39d6fdda2db5bcb5ec29c2537d0"><div class="ttname"><a href="structviennacl_1_1ocl_1_1packed__cl__uint.html#ab4fed39d6fdda2db5bcb5ec29c2537d0">viennacl::ocl::packed_cl_uint::internal_size</a></div><div class="ttdeci">cl_uint internal_size</div><div class="ttdoc">Internal length of the buffer. Might be larger than 'size' due to padding. </div><div class="ttdef"><b>Definition:</b> <a href="kernel_8hpp_source.html#l00054">kernel.hpp:54</a></div></div>
<div class="ttc" id="linalg_2opencl_2common_8hpp_html"><div class="ttname"><a href="linalg_2opencl_2common_8hpp.html">common.hpp</a></div><div class="ttdoc">Common implementations shared by OpenCL-based operations. </div></div>
<div class="ttc" id="classviennacl_1_1ocl_1_1command__queue_html_a670f2d080528e50d64d3912567708754"><div class="ttname"><a href="classviennacl_1_1ocl_1_1command__queue.html#a670f2d080528e50d64d3912567708754">viennacl::ocl::command_queue::handle</a></div><div class="ttdeci">viennacl::ocl::handle< cl_command_queue > const & handle() const </div><div class="ttdef"><b>Definition:</b> <a href="command__queue_8hpp_source.html#l00081">command_queue.hpp:81</a></div></div>
<div class="ttc" id="tests_2src_2bisect_8cpp_html_a52b5d30a2d7b064678644a3bf49b7f6c"><div class="ttname"><a href="tests_2src_2bisect_8cpp.html#a52b5d30a2d7b064678644a3bf49b7f6c">NumericT</a></div><div class="ttdeci">float NumericT</div><div class="ttdef"><b>Definition:</b> <a href="tests_2src_2bisect_8cpp_source.html#l00040">bisect.cpp:40</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__base_html_af1e0bd20ec7254908f6d49df07785cf4"><div class="ttname"><a href="classviennacl_1_1vector__base.html#af1e0bd20ec7254908f6d49df07785cf4">viennacl::vector_base::stride</a></div><div class="ttdeci">size_type stride() const </div><div class="ttdoc">Returns the stride within the buffer (in multiples of sizeof(NumericT)) </div><div class="ttdef"><b>Definition:</b> <a href="vector__def_8hpp_source.html#l00124">vector_def.hpp:124</a></div></div>
<div class="ttc" id="error_8hpp_html_a44f070f54255e72eb40c75ebd72ea602"><div class="ttname"><a href="error_8hpp.html#a44f070f54255e72eb40c75ebd72ea602">VIENNACL_ERR_CHECK</a></div><div class="ttdeci">#define VIENNACL_ERR_CHECK(err)</div><div class="ttdef"><b>Definition:</b> <a href="error_8hpp_source.html#l00681">error.hpp:681</a></div></div>
<div class="ttc" id="classviennacl_1_1ocl_1_1handle_html_a5074caaee700015fc2d3b03540b01673"><div class="ttname"><a href="classviennacl_1_1ocl_1_1handle.html#a5074caaee700015fc2d3b03540b01673">viennacl::ocl::handle::get</a></div><div class="ttdeci">const OCL_TYPE & get() const </div><div class="ttdef"><b>Definition:</b> <a href="ocl_2handle_8hpp_source.html#l00191">handle.hpp:191</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a1adcbf3b6d428fc941484c35ce7e083a"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a1adcbf3b6d428fc941484c35ce7e083a">viennacl::linalg::opencl::inner_prod_impl</a></div><div class="ttdeci">void inner_prod_impl(vector_base< T > const &vec1, vector_base< T > const &vec2, vector_base< T > &partial_result)</div><div class="ttdoc">Computes the partial inner product of two vectors - implementation. Library users should call inner_p...</div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00388">vector_operations.hpp:388</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_aa2344ea20469f55fbc15a8e9526494d0"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#aa2344ea20469f55fbc15a8e9526494d0">viennacl::traits::size</a></div><div class="ttdeci">vcl_size_t size(VectorType const &vec)</div><div class="ttdoc">Generic routine for obtaining the size of a vector (ViennaCL, uBLAS, etc.) </div><div class="ttdef"><b>Definition:</b> <a href="size_8hpp_source.html#l00239">size.hpp:239</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a73f87509090aaf15968741d501bdc260"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a73f87509090aaf15968741d501bdc260">viennacl::linalg::opencl::sum_impl</a></div><div class="ttdeci">void sum_impl(vector_base< NumericT > const &x, scalar< NumericT > &result)</div><div class="ttdoc">Computes the sum over all entries of a vector. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l01122">vector_operations.hpp:1122</a></div></div>
<div class="ttc" id="classviennacl_1_1ocl_1_1local__mem_html"><div class="ttname"><a href="classviennacl_1_1ocl_1_1local__mem.html">viennacl::ocl::local_mem</a></div><div class="ttdoc">A class representing local (shared) OpenCL memory. Typically used as kernel argument. </div><div class="ttdef"><b>Definition:</b> <a href="local__mem_8hpp_source.html#l00033">local_mem.hpp:33</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_ac170765011d5fabf045d6adae0916f95"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#ac170765011d5fabf045d6adae0916f95">viennacl::linalg::opencl::max_impl</a></div><div class="ttdeci">void max_impl(vector_base< NumericT > const &x, scalar< NumericT > &result)</div><div class="ttdoc">Computes the maximum value of a vector, where the result is stored in an OpenCL buffer. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00966">vector_operations.hpp:966</a></div></div>
<div class="ttc" id="structviennacl_1_1is__cpu__scalar_html"><div class="ttname"><a href="structviennacl_1_1is__cpu__scalar.html">viennacl::is_cpu_scalar</a></div><div class="ttdoc">Helper struct for checking whether a type is a host scalar type (e.g. float, double) ...</div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00448">forwards.h:448</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_ac79bc14c508a0830434970c2cee89641"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#ac79bc14c508a0830434970c2cee89641">viennacl::linalg::opencl::max_cpu</a></div><div class="ttdeci">void max_cpu(vector_base< NumericT > const &x, NumericT &result)</div><div class="ttdoc">Computes the maximum value of a vector, where the value is stored in a host value. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l01004">vector_operations.hpp:1004</a></div></div>
<div class="ttc" id="classviennacl_1_1ocl_1_1context_html_afe68ad8c2df449f40f45db6605038946"><div class="ttname"><a href="classviennacl_1_1ocl_1_1context.html#afe68ad8c2df449f40f45db6605038946">viennacl::ocl::context::get_kernel</a></div><div class="ttdeci">viennacl::ocl::kernel & get_kernel(std::string const &program_name, std::string const &kernel_name)</div><div class="ttdoc">Convenience function for retrieving the kernel of a program directly from the context. </div><div class="ttdef"><b>Definition:</b> <a href="ocl_2context_8hpp_source.html#l00605">context.hpp:605</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__base_html_a762d98e2f912fc534951f25555b6077f"><div class="ttname"><a href="classviennacl_1_1vector__base.html#a762d98e2f912fc534951f25555b6077f">viennacl::vector_base< NumericT >::begin</a></div><div class="ttdeci">iterator begin()</div><div class="ttdoc">Returns an iterator pointing to the beginning of the vector (STL like) </div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a500313611da0259aa03e288bac20eccb"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a500313611da0259aa03e288bac20eccb">viennacl::linalg::opencl::norm_2_cpu</a></div><div class="ttdeci">void norm_2_cpu(vector_base< T > const &vec, T &result)</div><div class="ttdoc">Computes the l^1-norm of a vector with final reduction on CPU. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00834">vector_operations.hpp:834</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__tuple_html"><div class="ttname"><a href="classviennacl_1_1vector__tuple.html">viennacl::vector_tuple</a></div><div class="ttdoc">Tuple class holding pointers to multiple vectors. Mainly used as a temporary object returned from vie...</div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00269">forwards.h:269</a></div></div>
<div class="ttc" id="linalg_2opencl_2kernels_2vector_8hpp_html"><div class="ttname"><a href="linalg_2opencl_2kernels_2vector_8hpp.html">vector.hpp</a></div><div class="ttdoc">OpenCL kernel file for vector operations. </div></div>
<div class="ttc" id="ocl_2handle_8hpp_html"><div class="ttname"><a href="ocl_2handle_8hpp.html">handle.hpp</a></div><div class="ttdoc">Implementation of a smart-pointer-like class for handling OpenCL handles. </div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_a68603a1e1ca1bfb6d107831ba5096786"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#a68603a1e1ca1bfb6d107831ba5096786">viennacl::traits::start</a></div><div class="ttdeci">result_of::size_type< T >::type start(T const &obj)</div><div class="ttdef"><b>Definition:</b> <a href="start_8hpp_source.html#l00044">start.hpp:44</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a0501c423f35eb16759db2c3028ae4857"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a0501c423f35eb16759db2c3028ae4857">viennacl::linalg::opencl::av</a></div><div class="ttdeci">void av(vector_base< T > &vec1, vector_base< T > const &vec2, ScalarType1 const &alpha, vcl_size_t len_alpha, bool reciprocal_alpha, bool flip_sign_alpha)</div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00076">vector_operations.hpp:76</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_1_1detail_html_a685282399bcfb05ee912c02fed7f922f"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a685282399bcfb05ee912c02fed7f922f">viennacl::linalg::opencl::detail::make_options</a></div><div class="ttdeci">cl_uint make_options(vcl_size_t length, bool reciprocal, bool flip_sign)</div><div class="ttdef"><b>Definition:</b> <a href="linalg_2opencl_2common_8hpp_source.html#l00042">common.hpp:42</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector_html_a803233f6aed07b9ef954c30257d7a75f"><div class="ttname"><a href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html#a803233f6aed07b9ef954c30257d7a75f">viennacl::linalg::opencl::kernels::vector::init</a></div><div class="ttdeci">static void init(viennacl::ocl::context &ctx)</div><div class="ttdef"><b>Definition:</b> <a href="linalg_2opencl_2kernels_2vector_8hpp_source.html#l00686">vector.hpp:686</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a1ec36a29b89412455b3392fbca312a24"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a1ec36a29b89412455b3392fbca312a24">viennacl::linalg::opencl::norm_1_impl</a></div><div class="ttdeci">void norm_1_impl(vector_base< T > const &vec, scalar< T > &result)</div><div class="ttdoc">Computes the l^1-norm of a vector. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00737">vector_operations.hpp:737</a></div></div>
<div class="ttc" id="classviennacl_1_1vector_html_a1b73aadf0c7b6c0028fd237ebb30c767"><div class="ttname"><a href="classviennacl_1_1vector.html#a1b73aadf0c7b6c0028fd237ebb30c767">viennacl::vector::resize</a></div><div class="ttdeci">void resize(size_type new_size, bool preserve=true)</div><div class="ttdoc">Resizes the allocated memory for the vector. Pads the memory to be a multiple of 'AlignmentV'. </div><div class="ttdef"><b>Definition:</b> <a href="vector_8hpp_source.html#l01046">vector.hpp:1046</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__base_html"><div class="ttname"><a href="classviennacl_1_1vector__base.html">viennacl::vector_base</a></div><div class="ttdoc">Common base class for dense vectors, vector ranges, and vector slices. </div><div class="ttdef"><b>Definition:</b> <a href="vector__def_8hpp_source.html#l00104">vector_def.hpp:104</a></div></div>
<div class="ttc" id="namespaceviennacl_html_a98a0afcc513111ffa0bd138f891930df"><div class="ttname"><a href="namespaceviennacl.html#a98a0afcc513111ffa0bd138f891930df">viennacl::vcl_size_t</a></div><div class="ttdeci">std::size_t vcl_size_t</div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00075">forwards.h:75</a></div></div>
<div class="ttc" id="classviennacl_1_1vector_html"><div class="ttname"><a href="classviennacl_1_1vector.html">viennacl::vector</a></div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00266">forwards.h:266</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a89a844a138804369fef44a01653e85b3"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a89a844a138804369fef44a01653e85b3">viennacl::linalg::opencl::inclusive_scan</a></div><div class="ttdeci">void inclusive_scan(vector_base< NumericT > const &input, vector_base< NumericT > &output)</div><div class="ttdoc">This function implements an inclusive scan using CUDA. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l01238">vector_operations.hpp:1238</a></div></div>
<div class="ttc" id="structviennacl_1_1is__division_html"><div class="ttname"><a href="structviennacl_1_1is__division.html">viennacl::is_division</a></div><div class="ttdoc">Helper metafunction for checking whether the provided type is viennacl::op_div (for division) ...</div><div class="ttdef"><b>Definition:</b> <a href="predicate_8hpp_source.html#l00466">predicate.hpp:466</a></div></div>
<div class="ttc" id="scan_8hpp_html"><div class="ttname"><a href="scan_8hpp.html">scan.hpp</a></div><div class="ttdoc">OpenCL kernel file for scan operations. To be merged back to vector operations. </div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a8dd7386eb70a19d9d818b5ba57512d57"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a8dd7386eb70a19d9d818b5ba57512d57">viennacl::linalg::opencl::element_op</a></div><div class="ttdeci">void element_op(matrix_base< T > &A, matrix_expression< const matrix_base< T >, const matrix_base< T >, op_element_binary< OP > > const &proxy)</div><div class="ttdoc">Implementation of binary element-wise operations A = OP(B,C) </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2matrix__operations_8hpp_source.html#l00540">matrix_operations.hpp:540</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__multi__inner__prod_html_abb6e0bf18d527d2a9d075b28e0b89d93"><div class="ttname"><a href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__multi__inner__prod.html#abb6e0bf18d527d2a9d075b28e0b89d93">viennacl::linalg::opencl::kernels::vector_multi_inner_prod::init</a></div><div class="ttdeci">static void init(viennacl::ocl::context &ctx)</div><div class="ttdef"><b>Definition:</b> <a href="linalg_2opencl_2kernels_2vector_8hpp_source.html#l00734">vector.hpp:734</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__element_html"><div class="ttname"><a href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__element.html">viennacl::linalg::opencl::kernels::vector_element</a></div><div class="ttdoc">Main kernel class for generating OpenCL kernels for elementwise operations other than addition and su...</div><div class="ttdef"><b>Definition:</b> <a href="vector__element_8hpp_source.html#l00097">vector_element.hpp:97</a></div></div>
<div class="ttc" id="predicate_8hpp_html"><div class="ttname"><a href="predicate_8hpp.html">predicate.hpp</a></div><div class="ttdoc">All the predicates used within ViennaCL. Checks for expressions to be vectors, etc. </div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a4e7dbe07ee5433438da8435cdb1a08ee"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a4e7dbe07ee5433438da8435cdb1a08ee">viennacl::linalg::opencl::convert</a></div><div class="ttdeci">void convert(matrix_base< DestNumericT > &dest, matrix_base< SrcNumericT > const &src)</div><div class="ttdef"><b>Definition:</b> <a href="opencl_2matrix__operations_8hpp_source.html#l00134">matrix_operations.hpp:134</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1traits_html_a6707f5dab8f482170d2046a605f46ef8"><div class="ttname"><a href="namespaceviennacl_1_1traits.html#a6707f5dab8f482170d2046a605f46ef8">viennacl::traits::context</a></div><div class="ttdeci">viennacl::context context(T const &t)</div><div class="ttdoc">Returns an ID for the currently active memory domain of an object. </div><div class="ttdef"><b>Definition:</b> <a href="traits_2context_8hpp_source.html#l00040">context.hpp:40</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1ocl_html_a5f2022f653ea1cf364d20e3ff84dcada"><div class="ttname"><a href="namespaceviennacl_1_1ocl.html#a5f2022f653ea1cf364d20e3ff84dcada">viennacl::ocl::enqueue</a></div><div class="ttdeci">void enqueue(KernelType &k, viennacl::ocl::command_queue const &queue)</div><div class="ttdoc">Enqueues a kernel in the provided queue. </div><div class="ttdef"><b>Definition:</b> <a href="enqueue_8hpp_source.html#l00050">enqueue.hpp:50</a></div></div>
<div class="ttc" id="kernel_8hpp_html"><div class="ttname"><a href="kernel_8hpp.html">kernel.hpp</a></div><div class="ttdoc">Representation of an OpenCL kernel in ViennaCL. </div></div>
<div class="ttc" id="structviennacl_1_1scalar__vector_html"><div class="ttname"><a href="structviennacl_1_1scalar__vector.html">viennacl::scalar_vector</a></div><div class="ttdoc">Represents a vector consisting of scalars 's' only, i.e. v[i] = s for all i. To be used as an initial...</div><div class="ttdef"><b>Definition:</b> <a href="vector__def_8hpp_source.html#l00087">vector_def.hpp:87</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a2ab3c5aa6788fe5dce609753f8c038f7"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a2ab3c5aa6788fe5dce609753f8c038f7">viennacl::linalg::opencl::exclusive_scan</a></div><div class="ttdeci">void exclusive_scan(vector_base< NumericT > const &input, vector_base< NumericT > &output)</div><div class="ttdoc">This function implements an exclusive scan using CUDA. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l01251">vector_operations.hpp:1251</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_ae19ed387707bd0b8721dd7acb150b2d8"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#ae19ed387707bd0b8721dd7acb150b2d8">viennacl::linalg::opencl::index_norm_inf</a></div><div class="ttdeci">cl_uint index_norm_inf(vector_base< T > const &vec)</div><div class="ttdoc">Computes the index of the first entry that is equal to the supremum-norm in modulus. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00930">vector_operations.hpp:930</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__base_html_a15c47ae4326098aeaa4ed6b91fc6df9b"><div class="ttname"><a href="classviennacl_1_1vector__base.html#a15c47ae4326098aeaa4ed6b91fc6df9b">viennacl::vector_base::size</a></div><div class="ttdeci">size_type size() const </div><div class="ttdoc">Returns the length of the vector (cf. std::vector) </div><div class="ttdef"><b>Definition:</b> <a href="vector__def_8hpp_source.html#l00118">vector_def.hpp:118</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a4fad07ab525d7540817ecd9006a8bcc8"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a4fad07ab525d7540817ecd9006a8bcc8">viennacl::linalg::opencl::norm_inf_cpu</a></div><div class="ttdeci">void norm_inf_cpu(vector_base< T > const &vec, T &result)</div><div class="ttdoc">Computes the supremum-norm of a vector. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00898">vector_operations.hpp:898</a></div></div>
<div class="ttc" id="classviennacl_1_1ocl_1_1kernel_html_a0144c18ae9f07722e5b5697335b7cff5"><div class="ttname"><a href="classviennacl_1_1ocl_1_1kernel.html#a0144c18ae9f07722e5b5697335b7cff5">viennacl::ocl::kernel::global_work_size</a></div><div class="ttdeci">size_type global_work_size(int index=0) const </div><div class="ttdoc">Returns the global work size at the respective dimension. </div><div class="ttdef"><b>Definition:</b> <a href="kernel_8hpp_source.html#l00751">kernel.hpp:751</a></div></div>
<div class="ttc" id="classviennacl_1_1backend_1_1mem__handle_html"><div class="ttname"><a href="classviennacl_1_1backend_1_1mem__handle.html">viennacl::backend::mem_handle</a></div><div class="ttdoc">Main abstraction class for multiple memory domains. Represents a buffer in either main RAM...</div><div class="ttdef"><b>Definition:</b> <a href="mem__handle_8hpp_source.html#l00089">mem_handle.hpp:89</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__tuple_html_a9e4b9367232f8937dfaddeaeca64e0e0"><div class="ttname"><a href="classviennacl_1_1vector__tuple.html#a9e4b9367232f8937dfaddeaeca64e0e0">viennacl::vector_tuple::const_at</a></div><div class="ttdeci">VectorType const & const_at(vcl_size_t i) const </div><div class="ttdef"><b>Definition:</b> <a href="vector_8hpp_source.html#l01146">vector.hpp:1146</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_1_1detail_html_a66ecf8efa0b41147e85710db81cc9e37"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a66ecf8efa0b41147e85710db81cc9e37">viennacl::linalg::opencl::detail::make_layout</a></div><div class="ttdeci">viennacl::ocl::packed_cl_uint make_layout(vector_base< NumericT > const &vec)</div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00470">vector_operations.hpp:470</a></div></div>
<div class="ttc" id="structviennacl_1_1op__element__binary_html"><div class="ttname"><a href="structviennacl_1_1op__element__binary.html">viennacl::op_element_binary</a></div><div class="ttdoc">A tag class representing element-wise binary operations (like multiplication) on vectors or matrices...</div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00130">forwards.h:130</a></div></div>
<div class="ttc" id="vector__element_8hpp_html"><div class="ttname"><a href="vector__element_8hpp.html">vector_element.hpp</a></div><div class="ttdoc">OpenCL kernel file for element-wise vector operations. </div></div>
<div class="ttc" id="namespaceviennacl_1_1backend_html_a1499f19634964e2c7c8aeeefc6206126"><div class="ttname"><a href="namespaceviennacl_1_1backend.html#a1499f19634964e2c7c8aeeefc6206126">viennacl::backend::memory_create</a></div><div class="ttdeci">void memory_create(mem_handle &handle, vcl_size_t size_in_bytes, viennacl::context const &ctx, const void *host_ptr=NULL)</div><div class="ttdoc">Creates an array of the specified size. If the second argument is provided, the buffer is initialized...</div><div class="ttdef"><b>Definition:</b> <a href="memory_8hpp_source.html#l00087">memory.hpp:87</a></div></div>
<div class="ttc" id="vector__def_8hpp_html"><div class="ttname"><a href="vector__def_8hpp.html">vector_def.hpp</a></div><div class="ttdoc">Forward declarations of the implicit_vector_base, vector_base class. </div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1detail_html_aef015779a92be597e546c3491cebf6c1"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1detail.html#aef015779a92be597e546c3491cebf6c1">viennacl::linalg::detail::min</a></div><div class="ttdeci">T min(const T &lhs, const T &rhs)</div><div class="ttdoc">Minimum. </div><div class="ttdef"><b>Definition:</b> <a href="linalg_2detail_2bisect_2util_8hpp_source.html#l00045">util.hpp:45</a></div></div>
<div class="ttc" id="traits_2handle_8hpp_html"><div class="ttname"><a href="traits_2handle_8hpp.html">handle.hpp</a></div><div class="ttdoc">Extracts the underlying OpenCL handle from a vector, a matrix, an expression etc. ...</div></div>
<div class="ttc" id="classviennacl_1_1vector__base_html_a47350ccdc4b0a24eaea0e8d5f9fe7fec"><div class="ttname"><a href="classviennacl_1_1vector__base.html#a47350ccdc4b0a24eaea0e8d5f9fe7fec">viennacl::vector_base::internal_size</a></div><div class="ttdeci">size_type internal_size() const </div><div class="ttdoc">Returns the internal length of the vector, which is given by size() plus the extra memory due to padd...</div><div class="ttdef"><b>Definition:</b> <a href="vector__def_8hpp_source.html#l00120">vector_def.hpp:120</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a964528bcf7fca1f0e63be4b81d9a1a4b"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a964528bcf7fca1f0e63be4b81d9a1a4b">viennacl::linalg::opencl::vector_assign</a></div><div class="ttdeci">void vector_assign(vector_base< T > &vec1, const T &alpha, bool up_to_internal_size=false)</div><div class="ttdoc">Assign a constant value to a vector (-range/-slice) </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00246">vector_operations.hpp:246</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__base_html_aba8a76bd4c96435ba68cf96b9e5132a6"><div class="ttname"><a href="classviennacl_1_1vector__base.html#aba8a76bd4c96435ba68cf96b9e5132a6">viennacl::vector_base< NumericT >::end</a></div><div class="ttdeci">iterator end()</div><div class="ttdoc">Returns an iterator pointing to the end of the vector (STL like) </div></div>
<div class="ttc" id="structviennacl_1_1is__product_html"><div class="ttname"><a href="structviennacl_1_1is__product.html">viennacl::is_product</a></div><div class="ttdoc">Helper metafunction for checking whether the provided type is viennacl::op_prod (for products/multipl...</div><div class="ttdef"><b>Definition:</b> <a href="predicate_8hpp_source.html#l00436">predicate.hpp:436</a></div></div>
<div class="ttc" id="classviennacl_1_1vector__base_html_aaabd2cd126b77ee09b80b4c447bcbd3e"><div class="ttname"><a href="classviennacl_1_1vector__base.html#aaabd2cd126b77ee09b80b4c447bcbd3e">viennacl::vector_base::start</a></div><div class="ttdeci">size_type start() const </div><div class="ttdoc">Returns the offset within the buffer. </div><div class="ttdef"><b>Definition:</b> <a href="vector__def_8hpp_source.html#l00122">vector_def.hpp:122</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_1_1detail_html_aaeb876e922457f997cd0e7f2a51c4e1d"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#aaeb876e922457f997cd0e7f2a51c4e1d">viennacl::linalg::opencl::detail::op_to_string</a></div><div class="ttdeci">std::string op_to_string(op_abs)</div><div class="ttdef"><b>Definition:</b> <a href="linalg_2opencl_2common_8hpp_source.html#l00078">common.hpp:78</a></div></div>
<div class="ttc" id="structviennacl_1_1ocl_1_1type__to__string_html"><div class="ttname"><a href="structviennacl_1_1ocl_1_1type__to__string.html">viennacl::ocl::type_to_string</a></div><div class="ttdoc">Helper class for converting a type to its string representation. </div><div class="ttdef"><b>Definition:</b> <a href="ocl_2utils_8hpp_source.html#l00057">utils.hpp:57</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_1_1detail_html_a9900a6b53663c061cac19d0e125fe461"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl_1_1detail.html#a9900a6b53663c061cac19d0e125fe461">viennacl::linalg::opencl::detail::scan_impl</a></div><div class="ttdeci">void scan_impl(vector_base< NumericT > const &input, vector_base< NumericT > &output, bool is_inclusive)</div><div class="ttdoc">Worker routine for scan routines using OpenCL. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l01193">vector_operations.hpp:1193</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a8d0663f2f9916ed1ec639bcd1d240a7d"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a8d0663f2f9916ed1ec639bcd1d240a7d">viennacl::linalg::opencl::vector_swap</a></div><div class="ttdeci">void vector_swap(vector_base< T > &vec1, vector_base< T > &vec2)</div><div class="ttdoc">Swaps the contents of two vectors, data is copied. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00272">vector_operations.hpp:272</a></div></div>
<div class="ttc" id="structviennacl_1_1op__element__unary_html"><div class="ttname"><a href="structviennacl_1_1op__element__unary.html">viennacl::op_element_unary</a></div><div class="ttdoc">A tag class representing element-wise unary operations (like sin()) on vectors or matrices...</div><div class="ttdef"><b>Definition:</b> <a href="forwards_8h_source.html#l00134">forwards.h:134</a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_aa3db821922ad772f03e524d7dabc022d"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#aa3db821922ad772f03e524d7dabc022d">viennacl::linalg::opencl::inner_prod_cpu</a></div><div class="ttdeci">void inner_prod_cpu(vector_base< T > const &vec1, vector_base< T > const &vec2, T &result)</div><div class="ttdoc">Computes the inner product of two vectors - implementation. Library users should call inner_prod(vec1...</div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l00669">vector_operations.hpp:669</a></div></div>
<div class="ttc" id="scalar_8hpp_html"><div class="ttname"><a href="scalar_8hpp.html">scalar.hpp</a></div><div class="ttdoc">Implementation of the ViennaCL scalar class. </div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__convert_html_a5b181b269925c10d0a7ed4e258393566"><div class="ttname"><a href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__convert.html#a5b181b269925c10d0a7ed4e258393566">viennacl::linalg::opencl::kernels::vector_convert::init</a></div><div class="ttdeci">static void init(viennacl::ocl::context &ctx)</div><div class="ttdef"><b>Definition:</b> <a href="linalg_2opencl_2kernels_2vector_8hpp_source.html#l00789">vector.hpp:789</a></div></div>
<div class="ttc" id="classviennacl_1_1ocl_1_1handle_html"><div class="ttname"><a href="classviennacl_1_1ocl_1_1handle.html">viennacl::ocl::handle< cl_mem ></a></div></div>
<div class="ttc" id="namespaceviennacl_1_1linalg_1_1opencl_html_a07a0a89b0e9f73cd9f2b799e6778679b"><div class="ttname"><a href="namespaceviennacl_1_1linalg_1_1opencl.html#a07a0a89b0e9f73cd9f2b799e6778679b">viennacl::linalg::opencl::sum_cpu</a></div><div class="ttdeci">void sum_cpu(vector_base< NumericT > const &x, NumericT &result)</div><div class="ttdoc">Computes the sum over all entries of a vector. </div><div class="ttdef"><b>Definition:</b> <a href="opencl_2vector__operations_8hpp_source.html#l01137">vector_operations.hpp:1137</a></div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector_html"><div class="ttname"><a href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector.html">viennacl::linalg::opencl::kernels::vector</a></div><div class="ttdoc">Main kernel class for generating OpenCL kernels for operations on/with viennacl::vector<> without inv...</div><div class="ttdef"><b>Definition:</b> <a href="linalg_2opencl_2kernels_2vector_8hpp_source.html#l00679">vector.hpp:679</a></div></div>
<div class="ttc" id="enable__if_8hpp_html"><div class="ttname"><a href="enable__if_8hpp.html">enable_if.hpp</a></div><div class="ttdoc">Simple enable-if variant that uses the SFINAE pattern. </div></div>
<div class="ttc" id="structviennacl_1_1ocl_1_1packed__cl__uint_html_a5f4dcdfd54664fb7859b27f3dec641c0"><div class="ttname"><a href="structviennacl_1_1ocl_1_1packed__cl__uint.html#a5f4dcdfd54664fb7859b27f3dec641c0">viennacl::ocl::packed_cl_uint::size</a></div><div class="ttdeci">cl_uint size</div><div class="ttdoc">Number of values in the stride. </div><div class="ttdef"><b>Definition:</b> <a href="kernel_8hpp_source.html#l00052">kernel.hpp:52</a></div></div>
<div class="ttc" id="namespaceviennacl_html_aaa5c8726b45bc89a523ca2fa8c42107a"><div class="ttname"><a href="namespaceviennacl.html#aaa5c8726b45bc89a523ca2fa8c42107a">viennacl::fast_copy</a></div><div class="ttdeci">void fast_copy(const const_vector_iterator< SCALARTYPE, ALIGNMENT > &gpu_begin, const const_vector_iterator< SCALARTYPE, ALIGNMENT > &gpu_end, CPU_ITERATOR cpu_begin)</div></div>
<div class="ttc" id="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__element_html_a18d9e0cc1f4e6235008503386f584414"><div class="ttname"><a href="structviennacl_1_1linalg_1_1opencl_1_1kernels_1_1vector__element.html#a18d9e0cc1f4e6235008503386f584414">viennacl::linalg::opencl::kernels::vector_element::init</a></div><div class="ttdeci">static void init(viennacl::ocl::context &ctx)</div><div class="ttdef"><b>Definition:</b> <a href="vector__element_8hpp_source.html#l00104">vector_element.hpp:104</a></div></div>
<div class="ttc" id="classviennacl_1_1ocl_1_1context_html_ac70d01bc7f8bd1f36c10eae811672d79"><div class="ttname"><a href="classviennacl_1_1ocl_1_1context.html#ac70d01bc7f8bd1f36c10eae811672d79">viennacl::ocl::context::create_memory</a></div><div class="ttdeci">viennacl::ocl::handle< cl_mem > create_memory(cl_mem_flags flags, unsigned int size, void *ptr=NULL) const </div><div class="ttdoc">Creates a memory buffer within the context. </div><div class="ttdef"><b>Definition:</b> <a href="ocl_2context_8hpp_source.html#l00216">context.hpp:216</a></div></div>
</div><!-- fragment --></div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
<li class="navelem"><a class="el" href="dir_c82e3d11dd171600f4a6e0cab1ec1e0d.html">viennacl</a></li><li class="navelem"><a class="el" href="dir_63cde087767c4ed65c7901ffc6e293fe.html">linalg</a></li><li class="navelem"><a class="el" href="dir_9df590563da805a074404567c6e27abf.html">opencl</a></li><li class="navelem"><a class="el" href="opencl_2vector__operations_8hpp.html">vector_operations.hpp</a></li>
<li class="footer">Generated on Wed Jan 20 2016 22:32:41 for ViennaCL - The Vienna Computing Library by
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.6 </li>
</ul>
</div>
</body>
</html>
|