1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/*******************************************************************************
* *
* Viewmol *
* *
* R A Y . C *
* *
* Copyright (c) Joerg-R. Hill, December 2000 *
* *
********************************************************************************
*
* $Id: ray.c,v 1.5 2000/12/10 15:14:33 jrh Exp $
* $Log: ray.c,v $
* Revision 1.5 2000/12/10 15:14:33 jrh
* Release 2.3
*
* Revision 1.4 1999/05/24 01:27:03 jrh
* Release 2.2.1
*
* Revision 1.3 1999/02/07 21:55:11 jrh
* Release 2.2
*
* Revision 1.2 1998/01/26 00:49:07 jrh
* Release 2.1
*
* Revision 1.1 1996/12/10 18:43:24 jrh
* Initial revision
*
*/
#include<math.h>
#include<stdio.h>
#include<unistd.h>
#include<GL/glu.h>
#include "viewmol.h"
#include "dialog.h"
extern void transformCoordinates(int, float input[4], float output[4]);
extern void *getmem(size_t, size_t);
extern void fremem(void **);
extern struct WINDOW windows[];
extern struct MOLECULE *molecules;
extern struct ELEMENT *elements;
extern double tmat[4][4];
extern GLfloat light0p[], light1p[];
extern float *transObject;
extern int ne, iwavef, lights, projectionMode;
static struct ELEMENT *material;
static double n[3];
static int printNormal=FALSE;
static FILE *f;
FILE *raytraceInit(char *filename, Dimension width, Dimension height)
{
struct MOLECULE *mol;
struct ELEMENT *element;
FILE *file;
double todeg=45.0/atan(1.0);
GLfloat xview, zview, light[4], lookat[4]={0.0, 0.0, -1.0, 1.0}, up[4]={0.0, 1.0, 0.0, 1.0};
int *done, hbond;
register int i, j;
if ((file=fopen(filename, "w")) == NULL) return(NULL);
fprintf(file, "screen %d %d\n", width, height);
if (2.0*windows[VIEWER].far > transObject[3*VIEWPOINT+2])
zview=2.0*windows[VIEWER].far-transObject[3*VIEWPOINT+2];
else
zview=0.1;
xview=-0.75*windows[VIEWER].near*windows[VIEWER].top*(GLfloat)(width)/(windows[VIEWER].far
*(GLfloat)(height));
fprintf(file, "eyep %12.7f %12.7f %12.7f\n", (-transObject[3*VIEWPOINT]),
(-transObject[3*VIEWPOINT+1]), zview+windows[VIEWER].far);
transformCoordinates(VIEWPOINT, lookat, light);
light[0]*=(float)(10.0*windows[VIEWER].far-transObject[3*VIEWPOINT+2]);
light[1]*=(float)(10.0*windows[VIEWER].far-transObject[3*VIEWPOINT+2]);
light[2]*=(float)(10.0*windows[VIEWER].far-transObject[3*VIEWPOINT+2]);
fprintf(file, "lookp %12.7f %12.7f %12.7f\n", light[0]-transObject[3*VIEWPOINT],
light[1]-transObject[3*VIEWPOINT+1], light[2]-transObject[3*VIEWPOINT+2]);
fprintf(file, "fov %f\n", 2.0*todeg*atan((double)(xview/zview)));
transformCoordinates(VIEWPOINT, up, light);
fprintf(file, "up %12.7f %12.7f %12.7f\n", light[0], light[1], light[2]);
fprintf(file, "background %6.3f %6.3f %6.3f\n", windows[VIEWER].background_rgb[0],
windows[VIEWER].background_rgb[1], windows[VIEWER].background_rgb[2]);
if (lights & 0x1)
{
transformCoordinates(LIGHTNO0, light0p, light);
fprintf(file, "light 1.0 directional %10.5f %10.5f %10.5f noshadow\n",
light[0], light[1], light[2]);
}
if (lights & 0x2)
{
transformCoordinates(LIGHTNO1, light1p, light);
fprintf(file, "light 0.5 directional %10.5f %10.5f %10.5f\n", light[0],
light[1], light[2]);
}
if (windows[VIEWER].set >= 0)
mol=&molecules[windows[VIEWER].set];
else
mol=&molecules[0];
hbond=FALSE;
for (i=0; i<mol->nb; i++)
{
if (mol->bonds[i].order == (-1))
{
hbond=TRUE;
break;
}
}
done=(int *)getmem(mol->na, sizeof(int));
for (i=0; i<mol->na; i++)
{
if (!done[i])
{
element=mol->atoms[i].element;
fprintf(file, "surface %s\n", element->symbol);
fprintf(file, " diffuse %5.3f %5.3f %5.3f\n",
(element->dark[0]+element->light[0])*0.5,
(element->dark[1]+element->light[1])*0.5,
(element->dark[2]+element->light[2])*0.5);
/* Use only 1/10 of the ambient color since rayshade looses contrast
otherwise */
fprintf(file, " ambient %5.3f %5.3f %5.3f\n", 0.1*element->ambient[0],
0.1*element->ambient[1], 0.1*element->ambient[2]);
fprintf(file, " specular %5.3f %5.3f %5.3f\n", element->specular[0],
element->specular[1], element->specular[2]);
fprintf(file, " specpow %7.3f\n", element->shininess);
fprintf(file, " transp %7.3f\n", 1.0-element->alpha);
for (j=i; j<mol->na; j++)
{
if (mol->atoms[j].element == element) done[j]=TRUE;
}
}
}
if (hbond)
{
element=mol->bondStyle;
fprintf(file, "surface %s\n", element->symbol);
fprintf(file, " diffuse %5.3f %5.3f %5.3f\n",
(element->dark[0]+element->light[0])*0.5,
(element->dark[1]+element->light[1])*0.5,
(element->dark[2]+element->light[2])*0.5);
fprintf(file, " ambient %5.3f %5.3f %5.3f\n", 0.1*element->ambient[0],
0.1*element->ambient[1], 0.1*element->ambient[2]);
fprintf(file, " specular %5.3f %5.3f %5.3f\n", element->specular[0],
element->specular[1], element->specular[2]);
fprintf(file, " specpow %7.3f\n", element->shininess);
fprintf(file, " transp %7.3f\n", 1.0-element->alpha);
}
if (iwavef != ALL_OFF)
{
for (i=0; i<ne; i++)
{
if (!strcmp(elements[i].symbol, "Ps") || !strcmp(elements[i].symbol, "Ms"))
{
fprintf(file, "surface %s\n", elements[i].symbol);
fprintf(file, " diffuse %5.3f %5.3f %5.3f\n",
(elements[i].dark[0]+elements[i].light[0])*0.5,
(elements[i].dark[1]+elements[i].light[1])*0.5,
(elements[i].dark[2]+elements[i].light[2])*0.5);
fprintf(file, " ambient %5.3f %5.3f %5.3f\n", 0.1*elements[i].ambient[0],
0.1*elements[i].ambient[1], 0.1*elements[i].ambient[2]);
fprintf(file, " specular %5.3f %5.3f %5.3f\n", elements[i].specular[0],
elements[i].specular[1], elements[i].specular[2]);
fprintf(file, " specpow %7.3f\n", elements[i].shininess);
fprintf(file, " transp %7.3f\n", 1.0-elements[i].alpha);
}
}
}
fremem((void **)&done);
if (projectionMode == PERSPECTIVE)
{
fprintf(file, "surface ground\n");
fprintf(file, " diffuse %5.3f %5.3f %5.3f\n", windows[VIEWER].foreground_rgb[0],
windows[VIEWER].foreground_rgb[1], windows[VIEWER].foreground_rgb[2]);
fprintf(file, " ambient %5.3f %5.3f %5.3f\n", 0.5*windows[VIEWER].foreground_rgb[0],
0.5*windows[VIEWER].foreground_rgb[1], 0.5*windows[VIEWER].foreground_rgb[2]);
fprintf(file, "plane ground 0.0 %10.5f 0.0 0.0 1.0 0.0\n", windows[VIEWER].bottom);
}
fprintf(file, "name molecule list\n");
f=file;
return(file);
}
void raytraceClose(FILE *file)
{
fprintf(file, "end\n");
fprintf(file, "object molecule\n");
fclose(file);
}
void raytracerBegin(GLenum what)
{
fprintf(f, "triangle %s ", material->symbol);
glGetDoublev(GL_MODELVIEW_MATRIX, &tmat[0][0]);
}
void raytracerEnd()
{
fprintf(f, "\n");
}
void raytracerVertex3d(double vx, double vy, double vz)
{
double t[3];
t[0]=vx*tmat[0][0]+vy*tmat[1][0]+vz*tmat[2][0]+tmat[3][0];
t[1]=vx*tmat[0][1]+vy*tmat[1][1]+vz*tmat[2][1]+tmat[3][1];
t[2]=vx*tmat[0][2]+vy*tmat[1][2]+vz*tmat[2][2]+tmat[3][2];
fprintf(f, "%10.6f %10.6f %10.6f ", t[0], t[1], t[2]);
if (printNormal)
{
t[0]=n[0]*tmat[0][0]+n[1]*tmat[1][0]+n[2]*tmat[2][0]+tmat[3][0];
t[1]=n[0]*tmat[0][1]+n[1]*tmat[1][1]+n[2]*tmat[2][1]+tmat[3][1];
t[2]=n[0]*tmat[0][2]+n[1]*tmat[1][2]+n[2]*tmat[2][2]+tmat[3][2];
fprintf(f, "%10.6f %10.6f %10.6f ", t[0], t[1], t[2]);
printNormal=FALSE;
}
}
void raytracerNormal3d(double vx, double vy, double vz)
{
n[0]=vx;
n[1]=vy;
n[2]=vz;
printNormal=TRUE;
}
void raytracerSphere(GLUquadricObj *object, GLdouble radius, GLint dummy1,
GLint dummy2)
{
double matrix[4][4];
glGetDoublev(GL_MODELVIEW_MATRIX, &matrix[0][0]);
fprintf(f, "sphere %s %f %10.6f %10.6f %10.6f\n", material->symbol, radius,
matrix[3][0], matrix[3][1], matrix[3][2]);
}
void raytracerCylinder(GLUquadricObj *object, GLdouble top, GLdouble bottom,
GLdouble height, GLint dummy1, GLint dummy2)
{
double matrix[4][4];
glGetDoublev(GL_MODELVIEW_MATRIX, &matrix[0][0]);
fprintf(f, "cylinder %s %f %10.6f %10.6f %10.6f %10.6f %10.6f %10.6f\n",
material->symbol, bottom, matrix[3][0], matrix[3][1], matrix[3][2],
height*matrix[2][0]+matrix[3][0], height*matrix[2][1]+matrix[3][1],
height*matrix[2][2]+matrix[3][2]);
}
void raytracerColor4fv(const GLfloat *color)
{
}
void raytracerClearColor(GLclampf red, GLclampf green , GLclampf blue, GLclampf alpha)
{
}
void raytracerMaterial(struct ELEMENT *e)
{
material=e;
}
|