File: bondorder.c

package info (click to toggle)
viewmol 2.4.1-13
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 7,212 kB
  • ctags: 2,054
  • sloc: ansic: 30,727; python: 1,849; sh: 921; awk: 433; makefile: 205
file content (239 lines) | stat: -rw-r--r-- 7,141 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*******************************************************************************
*                                                                              *
*                                   Viewmol                                    *
*                                                                              *
*                            B O N D O R D E R . C                             *
*                                                                              *
*                 Copyright (c) Joerg-R. Hill, October 2003                    *
*                                                                              *
********************************************************************************
*
* $Id: bondorder.c,v 1.5 2003/11/07 10:58:19 jrh Exp $
* $Log: bondorder.c,v $
* Revision 1.5  2003/11/07 10:58:19  jrh
* Release 2.4
*
* Revision 1.4  2000/12/10 15:02:22  jrh
* Release 2.3
*
* Revision 1.3  1999/05/24 01:24:49  jrh
* Release 2.2.1
*
* Revision 1.2  1999/02/07 21:44:46  jrh
* Release 2.2
*
* Revision 1.1  1998/01/26 00:34:45  jrh
* Initial revision
*
*/
#include<math.h>
#include<stdlib.h>
#include<string.h>
#include "viewmol.h"

extern struct MOLECULE *molecules;

extern void *getmem(size_t, size_t);

void calculateShift(struct MOLECULE *, struct BOND *, int *, int, int, int);
void findConjugation(struct MOLECULE *, struct BOND *, int *, int, int);
void vectorProduct(double *, double *, double *);
double scalarProduct(double *, double *);

void bondOrder(struct MOLECULE *mol, struct BOND *bond, int *connectivity,
               int maxBondsPerAtom)
{
  int i, j, ni, nj, bo=1;

/* Assign bond orders by counting electrons. If the number of electrons
   for an atom is set to -1 assign only single bonds. */

  i=bond->first;
  if (mol->atoms[i].nelectrons == (-1))
  {
    bond->order=1;
    return;
  }
  j=bond->second;
  if (mol->atoms[j].nelectrons == (-1))
  {
    bond->order=1;
    return;
  }

/* Compare number of electrons with number of atoms atom is bound to
   and deduce bond order */

  do
  {
    if (mol->atoms[i].nelectrons > 4)
      ni=8-mol->atoms[i].nelectrons;
    else
      ni=mol->atoms[i].nelectrons;
    if (mol->atoms[j].nelectrons > 4)
      nj=8-mol->atoms[j].nelectrons;
    else
      nj=mol->atoms[j].nelectrons;
    ni-=mol->atoms[i].nbonds-mol->atoms[i].hbonds;
    nj-=mol->atoms[j].nbonds-mol->atoms[j].hbonds;
    if (ni < 0)
      ni=mol->atoms[i].nelectrons-mol->atoms[i].nbonds+mol->atoms[i].hbonds;
    if (nj < 0)
      nj=mol->atoms[j].nelectrons-mol->atoms[j].nbonds+mol->atoms[j].hbonds;

    if (ni > 0 && nj > 0)
    {
      mol->atoms[i].nbonds++;
      mol->atoms[j].nbonds++;
      bo++;
    }
    else
      break;
  } while (bo <= 4);
  bond->order=bo;

/* Bond order has been found, calculate shift vector to draw multiple bonds. */

  if (bo > 1) calculateShift(mol, bond, connectivity, maxBondsPerAtom, i, j);
}

void calculateShift(struct MOLECULE *mol, struct BOND *bond, int *connectivity,
                    int maxBondsPerAtom, int i, int j)
{
  double v1[3], v2[3], v3[3];
  int ni, nj, bo, kh=(-1);
  register double r1, r2;
  register int k, l;

  /* Rules for multiple bonds: Shall be in the same plane as other bond framework,
                               but do not use hydrogens to determine this plane
                               unless impossible otherwise. */
  bo=abs(bond->order);
  ni=(mol->atoms[i].nbonds >= mol->atoms[j].nbonds ? i : j);
  nj=(ni == i ? j : i);
  l=0;
  do
  {
    k=abs(connectivity[maxBondsPerAtom*ni+l]);
    if (k != nj && strcmp(mol->atoms[k].element->symbol, "H")) break;
    if (k != nj && !strcmp(mol->atoms[k].element->symbol, "H")) kh=k;
    l++;
  } while (l < maxBondsPerAtom);
  /* No non-hydrogen atom found so we have to use a hydrogen atom */
  if (l == maxBondsPerAtom && kh != (-1)) k=kh;
  v1[0]=mol->atoms[k].x-mol->atoms[ni].x;
  v1[1]=mol->atoms[k].y-mol->atoms[ni].y;
  v1[2]=mol->atoms[k].z-mol->atoms[ni].z;
  r1=scalarProduct(v1, v1);
  v2[0]=mol->atoms[nj].x-mol->atoms[ni].x;
  v2[1]=mol->atoms[nj].y-mol->atoms[ni].y;
  v2[2]=mol->atoms[nj].z-mol->atoms[ni].z;
  r2=scalarProduct(v2, v2);
  if (r1 != 0.0 && r2 != 0.0)
    r1=fabs(scalarProduct(v1, v2)/(sqrt(r1*r2))+1.0);
  else
    r1=0.0;
  if (r1 > 1.0e-6)
  {
    vectorProduct(v1, v2, v3);
    vectorProduct(v2, v3, v1);
    r1=mol->bondShift/sqrt(scalarProduct(v1, v1));
    if (bo == 2) r1*=0.5;
    bond->x=v1[0]*r1;
    bond->y=v1[1]*r1;
    bond->z=v1[2]*r1;
  }
  else
  {
    v1[0]=1.0;
    v1[1]=0.0;
    v1[2]=0.0;
    r1=scalarProduct(v1, v2)/sqrt(r2);
    if (bo == 2) r2=0.5;
    else         r2=1.0;
    bond->x=r2*mol->bondShift*sqrt(1.0-r1*r1);
    bond->y=r2*mol->bondShift*r1;
    bond->z=0.0;
  }
/*v3[0]=0.5*(v1[0]-v2[0]);
  v3[1]=0.5*(v1[1]-v2[1]);
  v3[2]=0.5*(v1[2]-v2[2]);
  r1=mol->bondShift/sqrt(scalarProduct(v3, v3));
  if (bo == 2) r1*=0.5;
  bond->x=v3[0]*r1;
  bond->y=v3[1]*r1;
  bond->z=v3[2]*r1; */
}

void findConjugation(struct MOLECULE *mol, struct BOND *bonds, int *connectivity,
                     int maxBondsPerAtom, int nb)
{
  int atom1, atom2, conjugated;
  register int i, j, k, l;

  for (i=0; i<mol->nb; i++)
  {
    if (abs(mol->bonds[i].order) == 2)
    {
      atom1=mol->bonds[i].first;
	while (TRUE)
	{
        for (j=0; j<mol->nb; j++)
        {
          if ((mol->bonds[j].first == atom1
              || mol->bonds[j].second == atom1)
              && mol->bonds[j].order == 1)
          {
            atom2=mol->bonds[j].first == atom1 
                 ? mol->bonds[j].second : mol->bonds[j].first;
            for (k=0; k<mol->nb; k++)
            {
              if ((mol->bonds[k].first == atom2
                  || mol->bonds[k].second == atom2)
                  && abs(mol->bonds[k].order) == 2)
              {
                conjugated=TRUE;
                for (l=0; l<mol->nb; l++)
                {
                  if (l == i || l == j || l == k) continue;
                  if (mol->bonds[l].first != atom1
                      && mol->bonds[l].second != atom1) continue;
                  if (mol->bonds[l].order != 1
                      && mol->bonds[l].order != (-2))
                  {
                    conjugated=FALSE;
                    break;
                  }
                }
                if (conjugated)
                {
                  mol->bonds[i].order=(-2);
                  mol->bonds[j].order=(-2);
                  mol->bonds[k].order=(-2);
                  /* calculate shift vector for bond j */
                  calculateShift(mol, &(mol->bonds[j]), connectivity,
                                 maxBondsPerAtom, atom1, atom2);
                  break;
                }
              }
            }
          }
        }
	  if (atom1 == mol->bonds[i].second) break;
	  atom1=mol->bonds[i].second;
      }
    }
  }
}

void vectorProduct(double *v1, double *v2, double *v3)
{
  v3[0]=v1[1]*v2[2]-v1[2]*v2[1];
  v3[1]=v1[2]*v2[0]-v1[0]*v2[2];
  v3[2]=v1[0]*v2[1]-v1[1]*v2[0];
}

double scalarProduct(double *v1, double *v2)
{
  return(v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2]);
}