1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*******************************************************************************
* *
* Viewmol *
* *
* I N T E R N . C *
* *
* Copyright (c) Joerg-R. Hill, October 2003 *
* *
********************************************************************************
*
* $Id: intern.c,v 1.6 2003/11/07 11:05:17 jrh Exp $
* $Log: intern.c,v $
* Revision 1.6 2003/11/07 11:05:17 jrh
* Release 2.4
*
* Revision 1.5 2000/12/10 15:09:37 jrh
* Release 2.3
*
* Revision 1.4 1999/05/24 01:26:04 jrh
* Release 2.2.1
*
* Revision 1.3 1999/02/07 21:51:39 jrh
* Release 2.2
*
* Revision 1.2 1998/01/26 00:48:12 jrh
* Release 2.1
*
* Revision 1.1 1996/12/10 18:41:35 jrh
* Initial revision
*
*/
#include<math.h>
#include<stdio.h>
#include "viewmol.h"
double bondAverage(struct MOLECULE *, int);
double bondLength(struct ATOM *, int, int);
double bondAngle(struct ATOM *, int, int, int);
double torsionAngle(struct ATOM *, int, int, int, int);
double dist(double, double, double, double, double, double);
double angle(double, double, double, double, double, double, double,
double, double);
double torsion(double, double, double, double, double, double, double,
double, double, double, double, double);
extern struct MOLECULE *molecules;
extern double bndfac;
extern int debug;
int calcInternal(struct MOLECULE *mol, int n)
{
int uc;
register int i, j, k, l;
uc=0;
for (i=0; i<4; i++)
if (mol->internals[n].atoms[i] != -1 && (mol->internals[n].atoms[i] & 0x20000000)) uc++;
switch (mol->internals[n].type)
{
case BONDAVERAGE: if (uc == 0)
{
mol->internals[n].value=bndfac*bondAverage(mol,
mol->internals[n].atoms[0]);
i=mol->internals[n].atoms[0];
mol->internals[n].x=mol->atoms[i].x+0.05;
mol->internals[n].y=mol->atoms[i].y+0.05;
mol->internals[n].z=mol->atoms[i].z+0.05;
}
else
return(FALSE);
break;
case BONDLENGTH: i=mol->internals[n].atoms[0];
j=mol->internals[n].atoms[1];
switch (uc)
{
/* previous use: case 4 ??? */
case 2: i&=0x1fffffff;
j&=0x1fffffff;
mol->internals[n].value=bndfac*bondLength(mol->unitcell->corners, i, j);
mol->internals[n].x=(mol->unitcell->corners[i].x+mol->unitcell->corners[j].x)*0.5+0.05;
mol->internals[n].y=(mol->unitcell->corners[i].y+mol->unitcell->corners[j].y)*0.5+0.05;
mol->internals[n].z=(mol->unitcell->corners[i].z+mol->unitcell->corners[j].z)*0.5+0.05;
break;
case 0: mol->internals[n].value=bndfac*bondLength(mol->atoms, i, j);
mol->internals[n].x=(mol->atoms[i].x+mol->atoms[j].x)*0.5+0.05;
mol->internals[n].y=(mol->atoms[i].y+mol->atoms[j].y)*0.5+0.05;
mol->internals[n].z=(mol->atoms[i].z+mol->atoms[j].z)*0.5+0.05;
break;
default: return(FALSE);
}
break;
case ANGLE: i=mol->internals[n].atoms[0];
j=mol->internals[n].atoms[1];
k=mol->internals[n].atoms[2];
switch (uc)
{
/* previous use: case 4 ??? */
case 3: i&=0x1fffffff;
j&=0x1fffffff;
k&=0x1fffffff;
mol->internals[n].value=bondAngle(mol->unitcell->corners, i, j, k);
mol->internals[n].x=mol->unitcell->corners[j].x+0.05;
mol->internals[n].y=mol->unitcell->corners[j].y+0.05;
mol->internals[n].z=mol->unitcell->corners[j].z+0.05;
break;
case 0:
mol->internals[n].value=bondAngle(mol->atoms, i, j, k);
mol->internals[n].x=mol->atoms[j].x+0.05;
mol->internals[n].y=mol->atoms[j].y+0.05;
mol->internals[n].z=mol->atoms[j].z+0.05;
break;
default: return(FALSE);
}
break;
case TORSION: i=mol->internals[n].atoms[0];
j=mol->internals[n].atoms[1];
k=mol->internals[n].atoms[2];
l=mol->internals[n].atoms[3];
switch (uc)
{
case 4: i&=0x1fffffff;
j&=0x1fffffff;
k&=0x1fffffff;
l&=0x1fffffff;
mol->internals[n].value=torsionAngle(mol->unitcell->corners, i, j, k, l);
mol->internals[n].x=(mol->unitcell->corners[j].x+mol->unitcell->corners[k].x)*0.5+0.05;
mol->internals[n].y=(mol->unitcell->corners[j].y+mol->unitcell->corners[k].y)*0.5+0.05;
mol->internals[n].z=(mol->unitcell->corners[j].z+mol->unitcell->corners[k].z)*0.5+0.05;
break;
case 0:
mol->internals[n].value=torsionAngle(mol->atoms, i, j, k, l);
mol->internals[n].x=(mol->atoms[j].x+mol->atoms[k].x)*0.5+0.05;
mol->internals[n].y=(mol->atoms[j].y+mol->atoms[k].y)*0.5+0.05;
mol->internals[n].z=(mol->atoms[j].z+mol->atoms[k].z)*0.5+0.05;
break;
default: return(FALSE);
}
if (mol->internals[n].value > 360.) return(FALSE);
break;
}
if (debug) printf("Internal coordinate %d: %d-%d-%d-%d, %f\n", n,
mol->internals[n].atoms[0], mol->internals[n].atoms[1],
mol->internals[n].atoms[2], mol->internals[n].atoms[3],
mol->internals[n].value);
return(TRUE);
}
double bondAverage(struct MOLECULE *mol, int i)
{
register double value=0.0;
register int j, k=0;
for (j=0; j<mol->nb; j++)
{
if (mol->bonds[j].first == i ||
mol->bonds[j].second == i)
{
value+=bondLength(mol->atoms, mol->bonds[j].first, mol->bonds[j].second);
k++;
}
}
if (k > 0)
value/=(double)k;
else
value=0.0;
return(value);
}
double bondLength(struct ATOM *atoms, int i, int j)
{
return(dist(atoms[i].x, atoms[i].y, atoms[i].z,
atoms[j].x, atoms[j].y, atoms[j].z));
}
double bondAngle(struct ATOM *atoms, int i, int j, int k)
{
return(angle(atoms[i].x, atoms[i].y, atoms[i].z,
atoms[j].x, atoms[j].y, atoms[j].z,
atoms[k].x, atoms[k].y, atoms[k].z));
}
double torsionAngle(struct ATOM *atoms, int i, int j, int k, int l)
{
return(torsion(atoms[i].x, atoms[i].y, atoms[i].z,
atoms[j].x, atoms[j].y, atoms[j].z,
atoms[k].x, atoms[k].y, atoms[k].z,
atoms[l].x, atoms[l].y, atoms[l].z));
}
double dist(double x1, double y1, double z1, double x2, double y2, double z2)
{
return(sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2)));
}
double angle(double x1, double y1, double z1, double x2, double y2, double z2,
double x3, double y3, double z3)
{
double todeg=45.0/atan(1.0);
double xa, ya, za, xb, yb, zb, r;
xa=x1-x2;
ya=y1-y2;
za=z1-z2;
xb=x3-x2;
yb=y3-y2;
zb=z3-z2;
r=dist(x1, y1, z1, x2, y2, z2)*dist(x3, y3, z3, x2, y2, z2);
r=(xa*xb+ya*yb+za*zb)/r;
r=r > 1.0 ? 1.0 : r < -1.0 ? -1.0 : r;
return(todeg*acos(r));
}
double torsion(double x1, double y1, double z1, double x2, double y2, double z2,
double x3, double y3, double z3, double x4, double y4, double z4)
{
double todeg=45.0/atan(1.0);
double xa, ya, za, xb, yb, zb, xc, yc, zc, xd, yd, zd, xe, ye, ze, xf, yf, zf;
double sgn, r;
xa=x1-x2;
ya=y1-y2;
za=z1-z2;
xb=x3-x2;
yb=y3-y2;
zb=z3-z2;
xc=x4-x3;
yc=y4-y3;
zc=z4-z3;
xd=ya*zb-yb*za;
yd=xb*za-xa*zb;
zd=xa*yb-xb*ya;
xe=yc*zb-yb*zc;
ye=xb*zc-xc*zb;
ze=xc*yb-xb*yc;
xf=yd*ze-ye*zd;
yf=xe*zd-xd*ze;
zf=xd*ye-xe*yd;
sgn=xf*xb+yf*yb+zf*zb;
r=sqrt((xd*xd+yd*yd+zd*zd)*(xe*xe+ye*ye+ze*ze));
/* The torsion angle is undefined (linear arrangement of atoms),
return 400.0 as torsion angle which is outside the expected
range */
if (fabs(r) < 1.0e-6) return((double)400.);
r=(xd*xe+yd*ye+zd*ze)/r;
if (fabs(r) > 1.0) r/=fabs(r);
if (sgn < 0.0)
return(-todeg*acos(r));
else
return(todeg*acos(r));
}
|