1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
|
\documentclass{article}
\usepackage{mathtools}
\usepackage{amsmath}
\usepackage{amssymb}
\begin{document}
\[
1+1
\]
\begin{align}
2+2 = 4\\[1ex]
3+3 = 6
\end{align}
\begin{equation}
\left(
f(x) = 3
\right)
\left.
f(x) = 3
\right.
\end{equation}
Test $[ ... )$ of unmatched brackets in
inline math text.
In R, there is the operator \verb|[<-|...
that ...
\begin{equation*}
\left \{
\begin{aligned}
-\Delta \theta &= u \quad \text{in } \Omega, \\
\theta &=0 \quad \text{on } \Gamma.
\end{aligned}
\right.
\end{equation*}
\begin{equation} \label{eq:state2}
\left\{
\begin{aligned}
-\div [a_M(z)\nabla y + b(\nabla y)] &= u \quad \text{in } \Omega, \\
y &=0 \quad \text{on } \Gamma.
\end{aligned}
\right.
\end{equation}
\begin{equation}
\left\{
\begin{aligned}
\min_{u,y} &J(u,y) \\
\text{s.t.} \quad
&
-\Delta y = u \text{in } \Omega\\
y = 0 \text{on } \partial\Omega.
\\
&\begin{aligned}[t]
-\Delta y &= u && \text{in } \Omega\\
y &= 0 && \text{on } \partial\Omega.
\end{aligned}
\end{aligned}
\right.
\end{equation}
\end{document}
|