1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
/*
oscpack -- Open Sound Control (OSC) packet manipulation library
http://www.rossbencina.com/code/oscpack
Copyright (c) 2004-2013 Ross Bencina <rossb@audiomulch.com>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
The text above constitutes the entire oscpack license; however,
the oscpack developer(s) also make the following non-binding requests:
Any person wishing to distribute modifications to the Software is
requested to send the modifications to the original developer so that
they can be incorporated into the canonical version. It is also
requested that these non-binding requests be included whenever the
above license is reproduced.
*/
#include "ip/UdpSocket.h"
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netinet/in.h> // for sockaddr_in
#include <signal.h>
#include <math.h>
#include <errno.h>
#include <string.h>
#include <algorithm>
#include <cassert>
#include <cstring> // for memset
#include <stdexcept>
#include <vector>
#include "ip/PacketListener.h"
#include "ip/TimerListener.h"
#if defined(__APPLE__) && !defined(_SOCKLEN_T)
// pre system 10.3 didn't have socklen_t
typedef ssize_t socklen_t;
#endif
static void SockaddrFromIpEndpointName( struct sockaddr_in& sockAddr, const IpEndpointName& endpoint )
{
std::memset( (char *)&sockAddr, 0, sizeof(sockAddr ) );
sockAddr.sin_family = AF_INET;
sockAddr.sin_addr.s_addr =
(endpoint.address == IpEndpointName::ANY_ADDRESS)
? INADDR_ANY
: htonl( endpoint.address );
sockAddr.sin_port =
(endpoint.port == IpEndpointName::ANY_PORT)
? 0
: htons( endpoint.port );
}
static IpEndpointName IpEndpointNameFromSockaddr( const struct sockaddr_in& sockAddr )
{
return IpEndpointName(
(sockAddr.sin_addr.s_addr == INADDR_ANY)
? IpEndpointName::ANY_ADDRESS
: ntohl( sockAddr.sin_addr.s_addr ),
(sockAddr.sin_port == 0)
? IpEndpointName::ANY_PORT
: ntohs( sockAddr.sin_port )
);
}
class UdpSocket::Implementation{
bool isBound_;
bool isConnected_;
int socket_;
struct sockaddr_in connectedAddr_;
struct sockaddr_in sendToAddr_;
public:
Implementation()
: isBound_( false )
, isConnected_( false )
, socket_( -1 )
{
if( (socket_ = socket( AF_INET, SOCK_DGRAM, 0 )) == -1 ){
throw std::runtime_error("unable to create udp socket\n");
}
std::memset( &sendToAddr_, 0, sizeof(sendToAddr_) );
sendToAddr_.sin_family = AF_INET;
}
~Implementation()
{
if (socket_ != -1) close(socket_);
}
void SetEnableBroadcast( bool enableBroadcast )
{
int broadcast = (enableBroadcast) ? 1 : 0; // int on posix
setsockopt(socket_, SOL_SOCKET, SO_BROADCAST, &broadcast, sizeof(broadcast));
}
void SetAllowReuse( bool allowReuse )
{
int reuseAddr = (allowReuse) ? 1 : 0; // int on posix
setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR, &reuseAddr, sizeof(reuseAddr));
#ifdef __APPLE__
// needed also for OS X - enable multiple listeners for a single port on same network interface
int reusePort = (allowReuse) ? 1 : 0; // int on posix
setsockopt(socket_, SOL_SOCKET, SO_REUSEPORT, &reusePort, sizeof(reusePort));
#endif
}
IpEndpointName LocalEndpointFor( const IpEndpointName& remoteEndpoint ) const
{
assert( isBound_ );
// first connect the socket to the remote server
struct sockaddr_in connectSockAddr;
SockaddrFromIpEndpointName( connectSockAddr, remoteEndpoint );
if (connect(socket_, (struct sockaddr *)&connectSockAddr, sizeof(connectSockAddr)) < 0) {
throw std::runtime_error("unable to connect udp socket\n");
}
// get the address
struct sockaddr_in sockAddr;
std::memset( (char *)&sockAddr, 0, sizeof(sockAddr ) );
socklen_t length = sizeof(sockAddr);
if (getsockname(socket_, (struct sockaddr *)&sockAddr, &length) < 0) {
throw std::runtime_error("unable to getsockname\n");
}
if( isConnected_ ){
// reconnect to the connected address
if (connect(socket_, (struct sockaddr *)&connectedAddr_, sizeof(connectedAddr_)) < 0) {
throw std::runtime_error("unable to connect udp socket\n");
}
}else{
// unconnect from the remote address
struct sockaddr_in unconnectSockAddr;
std::memset( (char *)&unconnectSockAddr, 0, sizeof(unconnectSockAddr ) );
unconnectSockAddr.sin_family = AF_UNSPEC;
// address fields are zero
int connectResult = connect(socket_, (struct sockaddr *)&unconnectSockAddr, sizeof(unconnectSockAddr));
if ( connectResult < 0 && errno != EAFNOSUPPORT ) {
throw std::runtime_error("unable to un-connect udp socket\n");
}
}
return IpEndpointNameFromSockaddr( sockAddr );
}
void Connect( const IpEndpointName& remoteEndpoint )
{
SockaddrFromIpEndpointName( connectedAddr_, remoteEndpoint );
if (connect(socket_, (struct sockaddr *)&connectedAddr_, sizeof(connectedAddr_)) < 0) {
throw std::runtime_error("unable to connect udp socket\n");
}
isConnected_ = true;
}
void Send( const char *data, std::size_t size )
{
assert( isConnected_ );
send( socket_, data, size, 0 );
}
void SendTo( const IpEndpointName& remoteEndpoint, const char *data, std::size_t size )
{
sendToAddr_.sin_addr.s_addr = htonl( remoteEndpoint.address );
sendToAddr_.sin_port = htons( remoteEndpoint.port );
sendto( socket_, data, size, 0, (sockaddr*)&sendToAddr_, sizeof(sendToAddr_) );
}
void Bind( const IpEndpointName& localEndpoint )
{
struct sockaddr_in bindSockAddr;
SockaddrFromIpEndpointName( bindSockAddr, localEndpoint );
if (bind(socket_, (struct sockaddr *)&bindSockAddr, sizeof(bindSockAddr)) < 0) {
throw std::runtime_error("unable to bind udp socket\n");
}
isBound_ = true;
}
bool IsBound() const { return isBound_; }
std::size_t ReceiveFrom( IpEndpointName& remoteEndpoint, char *data, std::size_t size )
{
assert( isBound_ );
struct sockaddr_in fromAddr;
socklen_t fromAddrLen = sizeof(fromAddr);
ssize_t result = recvfrom(socket_, data, size, 0,
(struct sockaddr *) &fromAddr, (socklen_t*)&fromAddrLen);
if( result < 0 )
return 0;
remoteEndpoint.address = ntohl(fromAddr.sin_addr.s_addr);
remoteEndpoint.port = ntohs(fromAddr.sin_port);
return (std::size_t)result;
}
int Socket() { return socket_; }
};
UdpSocket::UdpSocket()
{
impl_ = new Implementation();
}
UdpSocket::~UdpSocket()
{
delete impl_;
}
void UdpSocket::SetEnableBroadcast( bool enableBroadcast )
{
impl_->SetEnableBroadcast( enableBroadcast );
}
void UdpSocket::SetAllowReuse( bool allowReuse )
{
impl_->SetAllowReuse( allowReuse );
}
IpEndpointName UdpSocket::LocalEndpointFor( const IpEndpointName& remoteEndpoint ) const
{
return impl_->LocalEndpointFor( remoteEndpoint );
}
void UdpSocket::Connect( const IpEndpointName& remoteEndpoint )
{
impl_->Connect( remoteEndpoint );
}
void UdpSocket::Send( const char *data, std::size_t size )
{
impl_->Send( data, size );
}
void UdpSocket::SendTo( const IpEndpointName& remoteEndpoint, const char *data, std::size_t size )
{
impl_->SendTo( remoteEndpoint, data, size );
}
void UdpSocket::Bind( const IpEndpointName& localEndpoint )
{
impl_->Bind( localEndpoint );
}
bool UdpSocket::IsBound() const
{
return impl_->IsBound();
}
std::size_t UdpSocket::ReceiveFrom( IpEndpointName& remoteEndpoint, char *data, std::size_t size )
{
return impl_->ReceiveFrom( remoteEndpoint, data, size );
}
struct AttachedTimerListener{
AttachedTimerListener( int id, int p, TimerListener *tl )
: initialDelayMs( id )
, periodMs( p )
, listener( tl ) {}
int initialDelayMs;
int periodMs;
TimerListener *listener;
};
static bool CompareScheduledTimerCalls(
const std::pair< double, AttachedTimerListener > & lhs, const std::pair< double, AttachedTimerListener > & rhs )
{
return lhs.first < rhs.first;
}
SocketReceiveMultiplexer *multiplexerInstanceToAbortWithSigInt_ = 0;
extern "C" /*static*/ void InterruptSignalHandler( int );
/*static*/ void InterruptSignalHandler( int )
{
multiplexerInstanceToAbortWithSigInt_->AsynchronousBreak();
signal( SIGINT, SIG_DFL );
}
class SocketReceiveMultiplexer::Implementation{
std::vector< std::pair< PacketListener*, UdpSocket* > > socketListeners_;
std::vector< AttachedTimerListener > timerListeners_;
volatile bool break_;
int breakPipe_[2]; // [0] is the reader descriptor and [1] the writer
double GetCurrentTimeMs() const
{
struct timeval t;
gettimeofday( &t, 0 );
return ((double)t.tv_sec*1000.) + ((double)t.tv_usec / 1000.);
}
public:
Implementation(): break_(false)
{
if( pipe(breakPipe_) != 0 )
throw std::runtime_error( "creation of asynchronous break pipes failed\n" );
}
~Implementation()
{
close( breakPipe_[0] );
close( breakPipe_[1] );
}
void AttachSocketListener( UdpSocket *socket, PacketListener *listener )
{
assert( std::find( socketListeners_.begin(), socketListeners_.end(), std::make_pair(listener, socket) ) == socketListeners_.end() );
// we don't check that the same socket has been added multiple times, even though this is an error
socketListeners_.push_back( std::make_pair( listener, socket ) );
}
void DetachSocketListener( UdpSocket *socket, PacketListener *listener )
{
std::vector< std::pair< PacketListener*, UdpSocket* > >::iterator i =
std::find( socketListeners_.begin(), socketListeners_.end(), std::make_pair(listener, socket) );
assert( i != socketListeners_.end() );
socketListeners_.erase( i );
}
void AttachPeriodicTimerListener( int periodMilliseconds, TimerListener *listener )
{
timerListeners_.push_back( AttachedTimerListener( periodMilliseconds, periodMilliseconds, listener ) );
}
void AttachPeriodicTimerListener( int initialDelayMilliseconds, int periodMilliseconds, TimerListener *listener )
{
timerListeners_.push_back( AttachedTimerListener( initialDelayMilliseconds, periodMilliseconds, listener ) );
}
void DetachPeriodicTimerListener( TimerListener *listener )
{
std::vector< AttachedTimerListener >::iterator i = timerListeners_.begin();
while( i != timerListeners_.end() ){
if( i->listener == listener )
break;
++i;
}
assert( i != timerListeners_.end() );
timerListeners_.erase( i );
}
void Run()
{
break_ = false;
char *data = 0;
try{
// configure the master fd_set for select()
fd_set masterfds, tempfds;
FD_ZERO( &masterfds );
FD_ZERO( &tempfds );
// in addition to listening to the inbound sockets we
// also listen to the asynchronous break pipe, so that AsynchronousBreak()
// can break us out of select() from another thread.
FD_SET( breakPipe_[0], &masterfds );
int fdmax = breakPipe_[0];
for( std::vector< std::pair< PacketListener*, UdpSocket* > >::iterator i = socketListeners_.begin();
i != socketListeners_.end(); ++i ){
if( fdmax < i->second->impl_->Socket() )
fdmax = i->second->impl_->Socket();
FD_SET( i->second->impl_->Socket(), &masterfds );
}
// configure the timer queue
double currentTimeMs = GetCurrentTimeMs();
// expiry time ms, listener
std::vector< std::pair< double, AttachedTimerListener > > timerQueue_;
for( std::vector< AttachedTimerListener >::iterator i = timerListeners_.begin();
i != timerListeners_.end(); ++i )
timerQueue_.push_back( std::make_pair( currentTimeMs + i->initialDelayMs, *i ) );
std::sort( timerQueue_.begin(), timerQueue_.end(), CompareScheduledTimerCalls );
const int MAX_BUFFER_SIZE = 4098;
data = new char[ MAX_BUFFER_SIZE ];
IpEndpointName remoteEndpoint;
struct timeval timeout;
while( !break_ ){
tempfds = masterfds;
struct timeval *timeoutPtr = 0;
if( !timerQueue_.empty() ){
double timeoutMs = timerQueue_.front().first - GetCurrentTimeMs();
if( timeoutMs < 0 )
timeoutMs = 0;
long timoutSecondsPart = (long)(timeoutMs * .001);
timeout.tv_sec = (time_t)timoutSecondsPart;
// 1000000 microseconds in a second
timeout.tv_usec = (suseconds_t)((timeoutMs - (timoutSecondsPart * 1000)) * 1000);
timeoutPtr = &timeout;
}
if( select( fdmax + 1, &tempfds, 0, 0, timeoutPtr ) < 0 ){
if( break_ ){
break;
}else if( errno == EINTR ){
// on returning an error, select() doesn't clear tempfds.
// so tempfds would remain all set, which would cause read( breakPipe_[0]...
// below to block indefinitely. therefore if select returns EINTR we restart
// the while() loop instead of continuing on to below.
continue;
}else{
throw std::runtime_error("select failed\n");
}
}
if( FD_ISSET( breakPipe_[0], &tempfds ) ){
// clear pending data from the asynchronous break pipe
char c;
size_t n = read( breakPipe_[0], &c, 1 );
}
if( break_ )
break;
for( std::vector< std::pair< PacketListener*, UdpSocket* > >::iterator i = socketListeners_.begin();
i != socketListeners_.end(); ++i ){
if( FD_ISSET( i->second->impl_->Socket(), &tempfds ) ){
std::size_t size = i->second->ReceiveFrom( remoteEndpoint, data, MAX_BUFFER_SIZE );
if( size > 0 ){
i->first->ProcessPacket( data, (int)size, remoteEndpoint );
if( break_ )
break;
}
}
}
// execute any expired timers
currentTimeMs = GetCurrentTimeMs();
bool resort = false;
for( std::vector< std::pair< double, AttachedTimerListener > >::iterator i = timerQueue_.begin();
i != timerQueue_.end() && i->first <= currentTimeMs; ++i ){
i->second.listener->TimerExpired();
if( break_ )
break;
i->first += i->second.periodMs;
resort = true;
}
if( resort )
std::sort( timerQueue_.begin(), timerQueue_.end(), CompareScheduledTimerCalls );
}
delete [] data;
}catch(...){
if( data )
delete [] data;
throw;
}
}
void Break()
{
break_ = true;
}
void AsynchronousBreak()
{
break_ = true;
// Send a termination message to the asynchronous break pipe, so select() will return
if (write( breakPipe_[1], "!", 1 ) < 1)
throw std::runtime_error("AsynchronousBreak failed\n");
}
};
SocketReceiveMultiplexer::SocketReceiveMultiplexer()
{
impl_ = new Implementation();
}
SocketReceiveMultiplexer::~SocketReceiveMultiplexer()
{
delete impl_;
}
void SocketReceiveMultiplexer::AttachSocketListener( UdpSocket *socket, PacketListener *listener )
{
impl_->AttachSocketListener( socket, listener );
}
void SocketReceiveMultiplexer::DetachSocketListener( UdpSocket *socket, PacketListener *listener )
{
impl_->DetachSocketListener( socket, listener );
}
void SocketReceiveMultiplexer::AttachPeriodicTimerListener( int periodMilliseconds, TimerListener *listener )
{
impl_->AttachPeriodicTimerListener( periodMilliseconds, listener );
}
void SocketReceiveMultiplexer::AttachPeriodicTimerListener( int initialDelayMilliseconds, int periodMilliseconds, TimerListener *listener )
{
impl_->AttachPeriodicTimerListener( initialDelayMilliseconds, periodMilliseconds, listener );
}
void SocketReceiveMultiplexer::DetachPeriodicTimerListener( TimerListener *listener )
{
impl_->DetachPeriodicTimerListener( listener );
}
void SocketReceiveMultiplexer::Run()
{
impl_->Run();
}
void SocketReceiveMultiplexer::RunUntilSigInt()
{
assert( multiplexerInstanceToAbortWithSigInt_ == 0 ); /* at present we support only one multiplexer instance running until sig int */
multiplexerInstanceToAbortWithSigInt_ = this;
signal( SIGINT, InterruptSignalHandler );
impl_->Run();
signal( SIGINT, SIG_DFL );
multiplexerInstanceToAbortWithSigInt_ = 0;
}
void SocketReceiveMultiplexer::Break()
{
impl_->Break();
}
void SocketReceiveMultiplexer::AsynchronousBreak()
{
impl_->AsynchronousBreak();
}
|