1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
|
/* im_aconvsep ... separable approximate convolution
*
* This operation does an approximate, seperable convolution.
*
* Author: John Cupitt & Nicolas Robidoux
* Written on: 31/5/11
* Modified on:
* 31/5/11
* - from im_conv()
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
See:
http://incubator.quasimondo.com/processing/stackblur.pde
This thing is a little like stackblur, but generalised to any separable
mask.
*/
/*
TODO
- are we handling mask offset correctly?
*/
/* Show sample pixels as they are transformed.
#define DEBUG_PIXELS
*/
/*
#define DEBUG
#define VIPS_DEBUG
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <math.h>
#include <vips/vips.h>
#include <vips/vector.h>
#include <vips/debug.h>
/* Maximum number of lines we can break the mask into.
*/
#define MAX_LINES (1000)
/* Euclid's algorithm. Use this to common up mults.
*/
static int
gcd( int a, int b )
{
if( b == 0 )
return( abs( a ) );
else
return( gcd( b, a % b ) );
}
/* A set of lines.
*/
typedef struct _Lines {
/* Copy of our arguments.
*/
IMAGE *in;
IMAGE *out;
DOUBLEMASK *mask;
int n_layers;
int area;
int rounding;
/* Start is the left-most pixel in the line, end is one beyond the
* right-most pixel.
*/
int n_lines;
int start[MAX_LINES];
int end[MAX_LINES];
int factor[MAX_LINES];
} Lines;
static void
lines_start( Lines *lines, int x, int factor )
{
lines->start[lines->n_lines] = x;
lines->factor[lines->n_lines] = factor;
}
static int
lines_end( Lines *lines, int x )
{
lines->end[lines->n_lines] = x;
if( lines->n_lines >= MAX_LINES - 1 ) {
vips_error( "im_aconvsep", "%s", _( "mask too complex" ) );
return( -1 );
}
lines->n_lines += 1;
return( 0 );
}
/* Break a mask into lines.
*/
static Lines *
lines_new( IMAGE *in, IMAGE *out, DOUBLEMASK *mask, int n_layers )
{
const int width = mask->xsize * mask->ysize;
Lines *lines;
double max;
double min;
double depth;
double sum;
int layers_above;
int layers_below;
int z, n, x;
/* Check parameters.
*/
if( im_piocheck( in, out ) ||
im_check_uncoded( "im_aconvsep", in ) ||
vips_check_dmask_1d( "im_aconvsep", mask ) )
return( NULL );
lines = VIPS_NEW( out, Lines );
lines->in = in;
lines->out = out;
if( !(lines->mask = (DOUBLEMASK *) im_local( out,
(im_construct_fn) im_dup_dmask,
(im_callback_fn) im_free_dmask, mask, mask->filename, NULL )) )
return( NULL );
lines->n_layers = n_layers;
lines->n_lines = 0;
VIPS_DEBUG_MSG( "lines_new: breaking into %d layers ...\n", n_layers );
/* Find mask range. We must always include the zero axis in the mask.
*/
max = 0;
min = 0;
for( x = 0; x < width; x++ ) {
if( mask->coeff[x] > max )
max = mask->coeff[x];
if( mask->coeff[x] < min )
min = mask->coeff[x];
}
/* The zero axis must fall on a layer boundary. Estimate the
* depth, find n-lines-above-zero, get exact depth, then calculate a
* fixed n-lines which includes any negative parts.
*/
depth = (max - min) / n_layers;
layers_above = ceil( max / depth );
depth = max / layers_above;
layers_below = floor( min / depth );
n_layers = layers_above - layers_below;
VIPS_DEBUG_MSG( "depth = %g, n_layers = %d\n", depth, n_layers );
/* For each layer, generate a set of lines which are inside the
* perimeter. Work down from the top.
*/
for( z = 0; z < n_layers; z++ ) {
double y = max - (1 + z) * depth;
/* y plus half depth ... ie. the layer midpoint.
*/
double y_ph = y + depth / 2;
/* Odd, but we must avoid rounding errors that make us miss 0
* in the line above.
*/
int y_positive = z < layers_above;
int inside;
/* Start outside the perimeter.
*/
inside = 0;
for( x = 0; x < width; x++ ) {
/* The vertical line from mask[z] to 0 is inside. Is
* our current square (x, y) part of that line?
*/
if( (y_positive && mask->coeff[x] >= y_ph) ||
(!y_positive && mask->coeff[x] <= y_ph) ) {
if( !inside ) {
lines_start( lines, x,
y_positive ? 1 : -1 );
inside = 1;
}
}
else {
if( inside ) {
if( lines_end( lines, x ) )
return( NULL );
inside = 0;
}
}
}
if( inside &&
lines_end( lines, width ) )
return( NULL );
}
/* Can we common up any lines? Search for lines with identical
* start/end.
*/
for( z = 0; z < lines->n_lines; z++ ) {
for( n = z + 1; n < lines->n_lines; n++ ) {
if( lines->start[z] == lines->start[n] &&
lines->end[z] == lines->end[n] ) {
lines->factor[z] += lines->factor[n];
/* n can be deleted. Do this in a separate
* pass below.
*/
lines->factor[n] = 0;
}
}
}
/* Now we can remove all factor 0 lines.
*/
for( z = 0; z < lines->n_lines; z++ ) {
if( lines->factor[z] == 0 ) {
for( x = z; x < lines->n_lines; x++ ) {
lines->start[x] = lines->start[x + 1];
lines->end[x] = lines->end[x + 1];
lines->factor[x] = lines->factor[x + 1];
}
lines->n_lines -= 1;
}
}
/* Find the area of the lines.
*/
lines->area = 0;
for( z = 0; z < lines->n_lines; z++ )
lines->area += lines->factor[z] *
(lines->end[z] - lines->start[z]);
/* Strength reduction: if all lines are divisible by n, we can move
* that n out into the ->area factor. The aim is to produce as many
* factor 1 lines as we can and to reduce the chance of overflow.
*/
x = lines->factor[0];
for( z = 1; z < lines->n_lines; z++ )
x = gcd( x, lines->factor[z] );
for( z = 0; z < lines->n_lines; z++ )
lines->factor[z] /= x;
lines->area *= x;
/* Find the area of the original mask.
*/
sum = 0;
for( z = 0; z < width; z++ )
sum += mask->coeff[z];
lines->area = rint( sum * lines->area / mask->scale );
lines->rounding = (lines->area + 1) / 2 + mask->offset * lines->area;
/* ASCII-art layer drawing.
printf( "lines:\n" );
for( z = 0; z < lines->n_lines; z++ ) {
printf( "%3d - %2d x ", z, lines->factor[z] );
for( x = 0; x < 55; x++ ) {
int rx = x * (width + 1) / 55;
if( rx >= lines->start[z] && rx < lines->end[z] )
printf( "#" );
else
printf( " " );
}
printf( " %3d .. %3d\n", lines->start[z], lines->end[z] );
}
printf( "area = %d\n", lines->area );
printf( "rounding = %d\n", lines->rounding );
*/
return( lines );
}
/* Our sequence value.
*/
typedef struct {
Lines *lines;
REGION *ir; /* Input region */
int *start; /* Offsets for start and stop */
int *end;
/* The sums for each line. int for integer types, double for floating
* point types.
*/
void *sum;
int last_stride; /* Avoid recalcing offsets, if we can */
} AConvSep;
/* Free a sequence value.
*/
static int
aconvsep_stop( void *vseq, void *a, void *b )
{
AConvSep *seq = (AConvSep *) vseq;
IM_FREEF( im_region_free, seq->ir );
return( 0 );
}
/* Convolution start function.
*/
static void *
aconvsep_start( IMAGE *out, void *a, void *b )
{
IMAGE *in = (IMAGE *) a;
Lines *lines = (Lines *) b;
AConvSep *seq;
if( !(seq = IM_NEW( out, AConvSep )) )
return( NULL );
/* Init!
*/
seq->lines = lines;
seq->ir = im_region_create( in );
seq->start = IM_ARRAY( out, lines->n_lines, int );
seq->end = IM_ARRAY( out, lines->n_lines, int );
if( vips_band_format_isint( out->BandFmt ) )
seq->sum = IM_ARRAY( out, lines->n_lines, int );
else
seq->sum = IM_ARRAY( out, lines->n_lines, double );
seq->last_stride = -1;
if( !seq->ir || !seq->start || !seq->end || !seq->sum ) {
aconvsep_stop( seq, in, lines );
return( NULL );
}
return( seq );
}
#define CLIP_UCHAR( V ) \
G_STMT_START { \
if( (V) < 0 ) \
(V) = 0; \
else if( (V) > UCHAR_MAX ) \
(V) = UCHAR_MAX; \
} G_STMT_END
#define CLIP_CHAR( V ) \
G_STMT_START { \
if( (V) < SCHAR_MIN ) \
(V) = SCHAR_MIN; \
else if( (V) > SCHAR_MAX ) \
(V) = SCHAR_MAX; \
} G_STMT_END
#define CLIP_USHORT( V ) \
G_STMT_START { \
if( (V) < 0 ) \
(V) = 0; \
else if( (V) > USHRT_MAX ) \
(V) = USHRT_MAX; \
} G_STMT_END
#define CLIP_SHORT( V ) \
G_STMT_START { \
if( (V) < SHRT_MIN ) \
(V) = SHRT_MIN; \
else if( (V) > SHRT_MAX ) \
(V) = SHRT_MAX; \
} G_STMT_END
#define CLIP_NONE( V ) {}
/* The h and v loops are very similar, but also annoyingly different. Keep
* them separate for easy debugging.
*/
#define HCONV_INT( TYPE, CLIP ) { \
for( i = 0; i < bands; i++ ) { \
int *seq_sum = (int *) seq->sum; \
\
TYPE *q; \
TYPE *p; \
int sum; \
\
p = i + (TYPE *) IM_REGION_ADDR( ir, r->left, r->top + y ); \
q = i + (TYPE *) IM_REGION_ADDR( or, r->left, r->top + y ); \
\
sum = 0; \
for( z = 0; z < n_lines; z++ ) { \
seq_sum[z] = 0; \
for( x = lines->start[z]; x < lines->end[z]; x++ ) \
seq_sum[z] += p[x * istride]; \
sum += lines->factor[z] * seq_sum[z]; \
} \
sum = (sum + lines->rounding) / lines->area; \
CLIP( sum ); \
*q = sum; \
q += ostride; \
\
for( x = 1; x < r->width; x++ ) { \
sum = 0; \
for( z = 0; z < n_lines; z++ ) { \
seq_sum[z] += p[seq->end[z]]; \
seq_sum[z] -= p[seq->start[z]]; \
sum += lines->factor[z] * seq_sum[z]; \
} \
p += istride; \
sum = (sum + lines->rounding) / lines->area; \
CLIP( sum ); \
*q = sum; \
q += ostride; \
} \
} \
}
#define HCONV_FLOAT( TYPE ) { \
for( i = 0; i < bands; i++ ) { \
double *seq_sum = (double *) seq->sum; \
\
TYPE *q; \
TYPE *p; \
double sum; \
\
p = i + (TYPE *) IM_REGION_ADDR( ir, r->left, r->top + y ); \
q = i + (TYPE *) IM_REGION_ADDR( or, r->left, r->top + y ); \
\
sum = 0; \
for( z = 0; z < lines->n_lines; z++ ) { \
seq_sum[z] = 0; \
for( x = lines->start[z]; x < lines->end[z]; x++ ) \
seq_sum[z] += p[x * istride]; \
sum += lines->factor[z] * seq_sum[z]; \
} \
sum = sum / lines->area + mask->offset; \
*q = sum; \
q += ostride; \
\
for( x = 1; x < r->width; x++ ) { \
sum = 0; \
for( z = 0; z < lines->n_lines; z++ ) { \
seq_sum[z] += p[seq->end[z]]; \
seq_sum[z] -= p[seq->start[z]]; \
sum += lines->factor[z] * seq_sum[z]; \
} \
p += istride; \
sum = sum / lines->area + mask->offset; \
*q = sum; \
q += ostride; \
} \
} \
}
/* Do horizontal masks ... we scan the mask along scanlines.
*/
static int
aconvsep_generate_horizontal( REGION *or, void *vseq, void *a, void *b )
{
AConvSep *seq = (AConvSep *) vseq;
IMAGE *in = (IMAGE *) a;
Lines *lines = (Lines *) b;
REGION *ir = seq->ir;
const int n_lines = lines->n_lines;
DOUBLEMASK *mask = lines->mask;
Rect *r = &or->valid;
/* Double the bands (notionally) for complex.
*/
int bands = vips_band_format_iscomplex( in->BandFmt ) ?
2 * in->Bands : in->Bands;
Rect s;
int x, y, z, i;
int istride;
int ostride;
/* Prepare the section of the input image we need. A little larger
* than the section of the output image we are producing.
*/
s = *r;
s.width += mask->xsize - 1;
s.height += mask->ysize - 1;
if( im_prepare( ir, &s ) )
return( -1 );
/* Stride can be different for the vertical case, keep this here for
* ease of direction change.
*/
istride = IM_IMAGE_SIZEOF_PEL( in ) /
IM_IMAGE_SIZEOF_ELEMENT( in );
ostride = IM_IMAGE_SIZEOF_PEL( lines->out ) /
IM_IMAGE_SIZEOF_ELEMENT( lines->out );
/* Init offset array.
*/
if( seq->last_stride != istride ) {
seq->last_stride = istride;
for( z = 0; z < n_lines; z++ ) {
seq->start[z] = lines->start[z] * istride;
seq->end[z] = lines->end[z] * istride;
}
}
for( y = 0; y < r->height; y++ ) {
switch( in->BandFmt ) {
case IM_BANDFMT_UCHAR:
HCONV_INT( unsigned char, CLIP_UCHAR );
break;
case IM_BANDFMT_CHAR:
HCONV_INT( signed char, CLIP_UCHAR );
break;
case IM_BANDFMT_USHORT:
HCONV_INT( unsigned short, CLIP_USHORT );
break;
case IM_BANDFMT_SHORT:
HCONV_INT( signed short, CLIP_SHORT );
break;
case IM_BANDFMT_UINT:
HCONV_INT( unsigned int, CLIP_NONE );
break;
case IM_BANDFMT_INT:
HCONV_INT( signed int, CLIP_NONE );
break;
case IM_BANDFMT_FLOAT:
HCONV_FLOAT( float );
break;
case IM_BANDFMT_DOUBLE:
HCONV_FLOAT( double );
break;
case IM_BANDFMT_COMPLEX:
HCONV_FLOAT( float );
break;
case IM_BANDFMT_DPCOMPLEX:
HCONV_FLOAT( double );
break;
default:
g_assert( 0 );
}
}
return( 0 );
}
#define VCONV_INT( TYPE, CLIP ) { \
for( x = 0; x < sz; x++ ) { \
int *seq_sum = (int *) seq->sum; \
\
TYPE *q; \
TYPE *p; \
int sum; \
\
p = x + (TYPE *) IM_REGION_ADDR( ir, r->left, r->top ); \
q = x + (TYPE *) IM_REGION_ADDR( or, r->left, r->top ); \
\
sum = 0; \
for( z = 0; z < lines->n_lines; z++ ) { \
seq_sum[z] = 0; \
for( y = lines->start[z]; y < lines->end[z]; y++ ) \
seq_sum[z] += p[y * istride]; \
sum += lines->factor[z] * seq_sum[z]; \
} \
sum = (sum + lines->rounding) / lines->area; \
CLIP( sum ); \
*q = sum; \
q += ostride; \
\
for( y = 1; y < r->height; y++ ) { \
sum = 0; \
for( z = 0; z < lines->n_lines; z++ ) { \
seq_sum[z] += p[seq->end[z]]; \
seq_sum[z] -= p[seq->start[z]]; \
sum += lines->factor[z] * seq_sum[z]; \
} \
p += istride; \
sum = (sum + lines->rounding) / lines->area; \
CLIP( sum ); \
*q = sum; \
q += ostride; \
} \
} \
}
#define VCONV_FLOAT( TYPE ) { \
for( x = 0; x < sz; x++ ) { \
double *seq_sum = (double *) seq->sum; \
\
TYPE *q; \
TYPE *p; \
double sum; \
\
p = x + (TYPE *) IM_REGION_ADDR( ir, r->left, r->top ); \
q = x + (TYPE *) IM_REGION_ADDR( or, r->left, r->top ); \
\
sum = 0; \
for( z = 0; z < lines->n_lines; z++ ) { \
seq_sum[z] = 0; \
for( y = lines->start[z]; y < lines->end[z]; y++ ) \
seq_sum[z] += p[y * istride]; \
sum += lines->factor[z] * seq_sum[z]; \
} \
sum = sum / lines->area + mask->offset; \
*q = sum; \
q += ostride; \
\
for( y = 1; y < r->height; y++ ) { \
sum = 0; \
for( z = 0; z < lines->n_lines; z++ ) { \
seq_sum[z] += p[seq->end[z]]; \
seq_sum[z] -= p[seq->start[z]]; \
sum += lines->factor[z] * seq_sum[z]; \
} \
p += istride; \
sum = sum / lines->area + mask->offset; \
*q = sum; \
q += ostride; \
} \
} \
}
/* Do vertical masks ... we scan the mask down columns of pixels. Copy-paste
* from above with small changes.
*/
static int
aconvsep_generate_vertical( REGION *or, void *vseq, void *a, void *b )
{
AConvSep *seq = (AConvSep *) vseq;
IMAGE *in = (IMAGE *) a;
Lines *lines = (Lines *) b;
REGION *ir = seq->ir;
const int n_lines = lines->n_lines;
DOUBLEMASK *mask = lines->mask;
Rect *r = &or->valid;
/* Double the width (notionally) for complex.
*/
int sz = vips_band_format_iscomplex( in->BandFmt ) ?
2 * IM_REGION_N_ELEMENTS( or ) : IM_REGION_N_ELEMENTS( or );
Rect s;
int x, y, z;
int istride;
int ostride;
/* Prepare the section of the input image we need. A little larger
* than the section of the output image we are producing.
*/
s = *r;
s.width += mask->xsize - 1;
s.height += mask->ysize - 1;
if( im_prepare( ir, &s ) )
return( -1 );
/* Stride can be different for the vertical case, keep this here for
* ease of direction change.
*/
istride = IM_REGION_LSKIP( ir ) /
IM_IMAGE_SIZEOF_ELEMENT( lines->in );
ostride = IM_REGION_LSKIP( or ) /
IM_IMAGE_SIZEOF_ELEMENT( lines->out );
/* Init offset array.
*/
if( seq->last_stride != istride ) {
seq->last_stride = istride;
for( z = 0; z < n_lines; z++ ) {
seq->start[z] = lines->start[z] * istride;
seq->end[z] = lines->end[z] * istride;
}
}
switch( in->BandFmt ) {
case IM_BANDFMT_UCHAR:
VCONV_INT( unsigned char, CLIP_UCHAR );
break;
case IM_BANDFMT_CHAR:
VCONV_INT( signed char, CLIP_UCHAR );
break;
case IM_BANDFMT_USHORT:
VCONV_INT( unsigned short, CLIP_USHORT );
break;
case IM_BANDFMT_SHORT:
VCONV_INT( signed short, CLIP_SHORT );
break;
case IM_BANDFMT_UINT:
VCONV_INT( unsigned int, CLIP_NONE );
break;
case IM_BANDFMT_INT:
VCONV_INT( signed int, CLIP_NONE );
break;
case IM_BANDFMT_FLOAT:
VCONV_FLOAT( float );
break;
case IM_BANDFMT_DOUBLE:
VCONV_FLOAT( double );
break;
case IM_BANDFMT_COMPLEX:
VCONV_FLOAT( float );
break;
case IM_BANDFMT_DPCOMPLEX:
VCONV_FLOAT( double );
break;
default:
g_assert( 0 );
}
return( 0 );
}
static int
aconvsep_raw( IMAGE *in, IMAGE *out, DOUBLEMASK *mask, int n_layers )
{
Lines *lines;
im_generate_fn generate;
#ifdef DEBUG
printf( "aconvsep_raw: starting with matrix:\n" );
im_print_dmask( mask );
#endif /*DEBUG*/
if( !(lines = lines_new( in, out, mask, n_layers )) )
return( -1 );
/* Prepare output. Consider a 7x7 mask and a 7x7 image --- the output
* would be 1x1.
*/
if( im_cp_desc( out, in ) )
return( -1 );
out->Xsize -= mask->xsize - 1;
out->Ysize -= mask->ysize - 1;
if( out->Xsize <= 0 || out->Ysize <= 0 ) {
im_error( "im_aconvsep", "%s", _( "image too small for mask" ) );
return( -1 );
}
if( mask->xsize == 1 )
generate = aconvsep_generate_vertical;
else
generate = aconvsep_generate_horizontal;
if( im_demand_hint( out, IM_SMALLTILE, in, NULL ) ||
im_generate( out,
aconvsep_start, generate, aconvsep_stop, in, lines ) )
return( -1 );
out->Xoffset = -mask->xsize / 2;
out->Yoffset = -mask->ysize / 2;
return( 0 );
}
/**
* im_aconvsep:
* @in: input image
* @out: output image
* @mask: convolution mask
* @n_layers: number of layers for approximation
*
* Perform an approximate separable convolution of @in with @mask.
*
* The mask must be 1xn or nx1 elements.
* The output image
* always has the same #VipsBandFmt as the input image.
*
* The image is convolved twice: once with @mask and then again with @mask
* rotated by 90 degrees.
*
* Larger values for @n_layers give more accurate
* results, but are slower. As @n_layers approaches the mask radius, the
* accuracy will become close to exact convolution and the speed will drop to
* match. For many large masks, such as Gaussian, @n_layers need be only 10% of
* this value and accuracy will still be good.
*
* See also: im_convsep_f(), im_create_dmaskv().
*
* Returns: 0 on success, -1 on error
*/
int
im_aconvsep( IMAGE *in, IMAGE *out, DOUBLEMASK *mask, int n_layers )
{
IMAGE *t[2];
const int n_mask = mask->xsize * mask->ysize;
DOUBLEMASK *rmask;
if( im_open_local_array( out, t, 2, "im_aconvsep", "p" ) ||
!(rmask = (DOUBLEMASK *) im_local( out,
(im_construct_fn) im_dup_dmask,
(im_callback_fn) im_free_dmask, mask, mask->filename, NULL )) )
return( -1 );
rmask->xsize = mask->ysize;
rmask->ysize = mask->xsize;
/*
*/
if( im_embed( in, t[0], 1, n_mask / 2, n_mask / 2,
in->Xsize + n_mask - 1, in->Ysize + n_mask - 1 ) ||
aconvsep_raw( t[0], t[1], mask, n_layers ) ||
aconvsep_raw( t[1], out, rmask, n_layers ) )
return( -1 );
/* For testing .. just try one direction.
if( aconvsep_raw( in, out, mask, n_layers ) )
return( -1 );
*/
out->Xoffset = 0;
out->Yoffset = 0;
return( 0 );
}
|