1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
/* im_lintra.c -- linear transform
*
* Copyright: 1990, N. Dessipris, based on im_powtra()
* Author: Nicos Dessipris
* Written on: 02/05/1990
* Modified on:
* 23/4/93 JC
* - adapted to work with partial images
* 1/7/93 JC
* - adapted for partial v2
* 7/10/94 JC
* - new IM_NEW()
* - more typedefs
* 9/2/95 JC
* - adapted for im_wrap...
* - operations on complex images now just transform the real channel
* 29/9/95 JC
* - complex was broken
* 15/4/97 JC
* - return(0) missing from generate, arrgh!
* 1/7/98 JC
* - im_lintra_vec added
* 3/8/02 JC
* - fall back to im_copy() for a == 1, b == 0
* 10/10/02 JC
* - auug, failing to multiply imag for complex! (thanks matt)
* 10/12/02 JC
* - removed im_copy() fallback ... meant that output format could change
* with value :-( very confusing
* 30/6/04
* - added 1 band image * n band vector case
* 8/12/06
* - add liboil support
* 9/9/09
* - gtkdoc comment, minor reformat
* 31/7/10
* - remove liboil
* 31/10/11
* - rework as a class
* - removed the 1-ary constant path, no faster
* 30/11/13
* - 1ary is back, faster with gcc 4.8
* 14/1/14
* - add uchar output option
* 30/9/17
* - squash constants with all elements equal so we use 1ary path more
* often
*/
/*
Copyright (C) 1991-2005 The National Gallery
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
#define DEBUG
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <glib/gi18n-lib.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <vips/vips.h>
#include "unary.h"
typedef struct _VipsLinear {
VipsUnary parent_instance;
/* Our constants: multiply by a, add b.
*/
VipsArea *a;
VipsArea *b;
/* uchar output.
*/
gboolean uchar;
/* Our constants expanded to match arith->ready in size.
*/
int n;
double *a_ready;
double *b_ready;
} VipsLinear;
typedef VipsUnaryClass VipsLinearClass;
G_DEFINE_TYPE( VipsLinear, vips_linear, VIPS_TYPE_UNARY );
static int
vips_linear_build( VipsObject *object )
{
VipsObjectClass *class = VIPS_OBJECT_GET_CLASS( object );
VipsArithmetic *arithmetic = VIPS_ARITHMETIC( object );
VipsUnary *unary = (VipsUnary *) object;
VipsLinear *linear = (VipsLinear *) object;
int i;
/* If we have a three-element vector, we need to bandup the image to
* match.
*/
linear->n = 1;
if( linear->a )
linear->n = VIPS_MAX( linear->n, linear->a->n );
if( linear->b )
linear->n = VIPS_MAX( linear->n, linear->b->n );
if( unary->in ) {
int bands;
vips_image_decode_predict( unary->in, &bands, NULL );
linear->n = VIPS_MAX( linear->n, bands );
}
arithmetic->base_bands = linear->n;
if( unary->in &&
linear->a &&
linear->b ) {
if( vips_check_vector( class->nickname,
linear->a->n, unary->in ) ||
vips_check_vector( class->nickname,
linear->b->n, unary->in ) )
return( -1 );
}
/* If all elements of the constants are equal, we can shrink them down
* to a single element.
*/
if( linear->a ) {
double *ary = (double *) linear->a->data;
gboolean all_equal;
all_equal = TRUE;
for( i = 1; i < linear->a->n; i++ )
if( ary[i] != ary[0] ) {
all_equal = FALSE;
break;
}
if( all_equal )
linear->a->n = 1;
}
if( linear->b ) {
double *ary = (double *) linear->b->data;
gboolean all_equal;
all_equal = TRUE;
for( i = 1; i < linear->b->n; i++ )
if( ary[i] != ary[0] ) {
all_equal = FALSE;
break;
}
if( all_equal )
linear->b->n = 1;
}
/* Make up-banded versions of our constants.
*/
linear->a_ready = VIPS_ARRAY( linear, linear->n, double );
linear->b_ready = VIPS_ARRAY( linear, linear->n, double );
for( i = 0; i < linear->n; i++ ) {
if( linear->a ) {
double *ary = (double *) linear->a->data;
int j = VIPS_MIN( i, linear->a->n - 1 );
linear->a_ready[i] = ary[j];
}
if( linear->b ) {
double *ary = (double *) linear->b->data;
int j = VIPS_MIN( i, linear->b->n - 1 );
linear->b_ready[i] = ary[j];
}
}
if( linear->uchar )
arithmetic->format = VIPS_FORMAT_UCHAR;
if( VIPS_OBJECT_CLASS( vips_linear_parent_class )->build( object ) )
return( -1 );
return( 0 );
}
/* Non-complex input, any output, all bands of the constant equal.
*/
#define LOOP1( IN, OUT ) { \
IN * restrict p = (IN *) in[0]; \
OUT * restrict q = (OUT *) out; \
OUT a1 = a[0]; \
OUT b1 = b[0]; \
int sz = width * nb; \
\
for( x = 0; x < sz; x++ ) \
q[x] = a1 * (OUT) p[x] + b1; \
}
/* Non-complex input, any output.
*/
#define LOOPN( IN, OUT ) { \
IN * restrict p = (IN *) in[0]; \
OUT * restrict q = (OUT *) out; \
\
for( i = 0, x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++, i++ ) \
q[i] = a[k] * (OUT) p[i] + b[k]; \
}
#define LOOP( IN, OUT ) { \
if( linear->a->n == 1 && linear->b->n == 1 ) { \
LOOP1( IN, OUT ); \
} \
else { \
LOOPN( IN, OUT ); \
} \
}
/* Complex input, complex output.
*/
#define LOOPCMPLXN( IN, OUT ) { \
IN * restrict p = (IN *) in[0]; \
OUT * restrict q = (OUT *) out; \
\
for( x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++ ) { \
q[0] = a[k] * p[0] + b[k]; \
q[1] = p[1]; \
q += 2; \
p += 2; \
} \
}
/* Non-complex input, any output, all bands of the constant equal, uchar
* output.
*/
#define LOOP1uc( IN ) { \
IN * restrict p = (IN *) in[0]; \
VipsPel * restrict q = (VipsPel *) out; \
float a1 = a[0]; \
float b1 = b[0]; \
int sz = width * nb; \
\
for( x = 0; x < sz; x++ ) { \
float t = a1 * p[x] + b1; \
\
q[x] = VIPS_FCLIP( 0, t, 255 ); \
} \
}
/* Non-complex input, uchar output.
*/
#define LOOPNuc( IN ) { \
IN * restrict p = (IN *) in[0]; \
VipsPel * restrict q = (VipsPel *) out; \
\
for( i = 0, x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++, i++ ) { \
double t = a[k] * p[i] + b[k]; \
\
q[i] = VIPS_FCLIP( 0, t, 255 ); \
} \
}
#define LOOPuc( IN ) { \
if( linear->a->n == 1 && linear->b->n == 1 ) { \
LOOP1uc( IN ); \
} \
else { \
LOOPNuc( IN ); \
} \
}
/* Complex input, uchar output.
*/
#define LOOPCMPLXNuc( IN ) { \
IN * restrict p = (IN *) in[0]; \
VipsPel * restrict q = (VipsPel *) out; \
\
for( i = 0, x = 0; x < width; x++ ) \
for( k = 0; k < nb; k++, i++ ) { \
double t = a[k] * p[0] + b[k]; \
\
q[i] = VIPS_FCLIP( 0, t, 255 ); \
p += 2; \
} \
}
/* Lintra a buffer, n set of scale/offset.
*/
static void
vips_linear_buffer( VipsArithmetic *arithmetic,
VipsPel *out, VipsPel **in, int width )
{
VipsImage *im = arithmetic->ready[0];
VipsLinear *linear = (VipsLinear *) arithmetic;
double * restrict a = linear->a_ready;
double * restrict b = linear->b_ready;
int nb = im->Bands;
int i, x, k;
if( linear->uchar )
switch( vips_image_get_format( im ) ) {
case VIPS_FORMAT_UCHAR:
LOOPuc( unsigned char ); break;
case VIPS_FORMAT_CHAR:
LOOPuc( signed char ); break;
case VIPS_FORMAT_USHORT:
LOOPuc( unsigned short ); break;
case VIPS_FORMAT_SHORT:
LOOPuc( signed short ); break;
case VIPS_FORMAT_UINT:
LOOPuc( unsigned int ); break;
case VIPS_FORMAT_INT:
LOOPuc( signed int ); break;
case VIPS_FORMAT_FLOAT:
LOOPuc( float ); break;
case VIPS_FORMAT_DOUBLE:
LOOPuc( double ); break;
case VIPS_FORMAT_COMPLEX:
LOOPCMPLXNuc( float ); break;
case VIPS_FORMAT_DPCOMPLEX:
LOOPCMPLXNuc( double ); break;
default:
g_assert_not_reached();
}
else
switch( vips_image_get_format( im ) ) {
case VIPS_FORMAT_UCHAR:
LOOP( unsigned char, float ); break;
case VIPS_FORMAT_CHAR:
LOOP( signed char, float ); break;
case VIPS_FORMAT_USHORT:
LOOP( unsigned short, float ); break;
case VIPS_FORMAT_SHORT:
LOOP( signed short, float ); break;
case VIPS_FORMAT_UINT:
LOOP( unsigned int, float ); break;
case VIPS_FORMAT_INT:
LOOP( signed int, float ); break;
case VIPS_FORMAT_FLOAT:
LOOP( float, float ); break;
case VIPS_FORMAT_DOUBLE:
LOOP( double, double ); break;
case VIPS_FORMAT_COMPLEX:
LOOPCMPLXN( float, float ); break;
case VIPS_FORMAT_DPCOMPLEX:
LOOPCMPLXN( double, double ); break;
default:
g_assert_not_reached();
}
}
/* Save a bit of typing.
*/
#define UC VIPS_FORMAT_UCHAR
#define C VIPS_FORMAT_CHAR
#define US VIPS_FORMAT_USHORT
#define S VIPS_FORMAT_SHORT
#define UI VIPS_FORMAT_UINT
#define I VIPS_FORMAT_INT
#define F VIPS_FORMAT_FLOAT
#define X VIPS_FORMAT_COMPLEX
#define D VIPS_FORMAT_DOUBLE
#define DX VIPS_FORMAT_DPCOMPLEX
/* Format doesn't change with linear.
*/
static const VipsBandFormat vips_linear_format_table[10] = {
/* Band format: UC C US S UI I F X D DX */
/* Promotion: */ F, F, F, F, F, F, F, X, D, DX
};
static void
vips_linear_class_init( VipsLinearClass *class )
{
GObjectClass *gobject_class = G_OBJECT_CLASS( class );
VipsObjectClass *object_class = (VipsObjectClass *) class;
VipsArithmeticClass *aclass = VIPS_ARITHMETIC_CLASS( class );
gobject_class->set_property = vips_object_set_property;
gobject_class->get_property = vips_object_get_property;
object_class->nickname = "linear";
object_class->description = _( "calculate (a * in + b)" );
object_class->build = vips_linear_build;
aclass->process_line = vips_linear_buffer;
vips_arithmetic_set_format_table( aclass, vips_linear_format_table );
VIPS_ARG_BOXED( class, "a", 110,
_( "a" ),
_( "Multiply by this" ),
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsLinear, a ),
VIPS_TYPE_ARRAY_DOUBLE );
VIPS_ARG_BOXED( class, "b", 111,
_( "b" ),
_( "Add this" ),
VIPS_ARGUMENT_REQUIRED_INPUT,
G_STRUCT_OFFSET( VipsLinear, b ),
VIPS_TYPE_ARRAY_DOUBLE );
VIPS_ARG_BOOL( class, "uchar", 112,
_( "uchar" ),
_( "Output should be uchar" ),
VIPS_ARGUMENT_OPTIONAL_INPUT,
G_STRUCT_OFFSET( VipsLinear, uchar ),
FALSE );
}
static void
vips_linear_init( VipsLinear *linear )
{
}
static int
vips_linearv( VipsImage *in, VipsImage **out,
const double *a, const double *b, int n, va_list ap )
{
VipsArea *area_a;
VipsArea *area_b;
int result;
area_a = VIPS_AREA( vips_array_double_new( a, n ) );
area_b = VIPS_AREA( vips_array_double_new( b, n ) );
result = vips_call_split( "linear", ap, in, out, area_a, area_b );
vips_area_unref( area_a );
vips_area_unref( area_b );
return( result );
}
/**
* vips_linear: (method)
* @in: image to transform
* @out: (out): output image
* @a: (array length=n): array of constants for multiplication
* @b: (array length=n): array of constants for addition
* @n: length of constant arrays
* @...: %NULL-terminated list of optional named arguments
*
* Optional arguments:
*
* * @uchar: output uchar pixels
*
* Pass an image through a linear transform, ie. (@out = @in * @a + @b). Output
* is float for integer input, double for double input, complex for
* complex input and double complex for double complex input. Set @uchar to
* output uchar pixels.
*
* If the arrays of constants have just one element, that constant is used for
* all image bands. If the arrays have more than one element and they have
* the same number of elements as there are bands in the image, then
* one array element is used for each band. If the arrays have more than one
* element and the image only has a single band, the result is a many-band
* image where each band corresponds to one array element.
*
* See also: vips_linear1(), vips_add().
*
* Returns: 0 on success, -1 on error
*/
int
vips_linear( VipsImage *in, VipsImage **out,
const double *a, const double *b, int n, ... )
{
va_list ap;
int result;
va_start( ap, n );
result = vips_linearv( in, out, a, b, n, ap );
va_end( ap );
return( result );
}
/**
* vips_linear1: (method)
* @in: image to transform
* @out: (out): output image
* @a: constant for multiplication
* @b: constant for addition
* @...: %NULL-terminated list of optional named arguments
*
* Optional arguments:
*
* * @uchar: output uchar pixels
*
* Run vips_linear() with a single constant.
*
* See also: vips_linear().
*
* Returns: 0 on success, -1 on error
*/
int
vips_linear1( VipsImage *in, VipsImage **out, double a, double b, ... )
{
va_list ap;
int result;
va_start( ap, b );
result = vips_linearv( in, out, &a, &b, 1, ap );
va_end( ap );
return( result );
}
|