File: logmat.c

package info (click to toggle)
vips 8.14.1-3%2Bdeb12u2
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 35,912 kB
  • sloc: ansic: 165,449; cpp: 10,987; python: 4,462; xml: 4,212; sh: 471; perl: 40; makefile: 23
file content (299 lines) | stat: -rw-r--r-- 7,938 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/* laplacian of logmatian
 *
 * Written on: 30/11/1989
 * Updated on: 6/12/1991
 * 7/8/96 JC
 *	- ansified, mem leaks plugged
 * 20/11/98 JC
 *	- mask too large check added
 * 26/3/02 JC
 *	- ahem, was broken since '96, thanks matt
 * 16/7/03 JC
 *	- makes mask out to zero, not out to minimum, thanks again matt
 * 22/10/10
 * 	- gtkdoc
 * 20/10/13
 * 	- redone as a class from logmat.c
 * 16/12/14
 * 	- default to int output to match vips_conv()
 * 	- use @precision, not @integer
 */

/*

    This file is part of VIPS.
    
    VIPS is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
    02110-1301  USA

 */

/*

    These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk

 */

/*
#define VIPS_DEBUG
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <glib/gi18n-lib.h>

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#include <vips/vips.h>

#include "pcreate.h"

typedef struct _VipsLogmat {
	VipsCreate parent_instance;

	double sigma;
	double min_ampl;

	gboolean separable;
	gboolean integer;		/* Deprecated */
	VipsPrecision precision; 

} VipsLogmat;

typedef struct _VipsLogmatClass {
	VipsCreateClass parent_class;

} VipsLogmatClass;

G_DEFINE_TYPE( VipsLogmat, vips_logmat, VIPS_TYPE_CREATE );

static int
vips_logmat_build( VipsObject *object )
{
	VipsObjectClass *class = VIPS_OBJECT_GET_CLASS( object );
	VipsCreate *create = VIPS_CREATE( object );
	VipsLogmat *logmat = (VipsLogmat *) object;
	double sig2 = logmat->sigma * logmat->sigma; 

	double last; 
	int x, y;
	int width, height; 
	double sum; 

	if( VIPS_OBJECT_CLASS( vips_logmat_parent_class )->build( object ) )
		return( -1 );

	/* The old, deprecated @integer property has been deliberately set to
	 * FALSE and they've not used the new @precision property ... switch
	 * to float to help them out.
	 */
	if( vips_object_argument_isset( object, "integer" ) &&
		!vips_object_argument_isset( object, "precision" ) &&
		!logmat->integer ) 
		logmat->precision = VIPS_PRECISION_FLOAT;

	if( vips_check_precision_intfloat( class->nickname, 
		logmat->precision ) )
		return( -1 ); 

	/* Find the size of the mask. We want to eval the mask out to the 
	 * flat zero part, ie. beyond the minimum and to the point where it 
	 * comes back up towards zero.
	 */
	last = 0.0;
	for( x = 0; x < 5000; x++ ) {
		const double distance = x * x;
		double val;

		/* Handbook of Pattern Recognition and image processing
		 * by Young and Fu AP 1986 pp 220-221
		 * temp =  (1.0 / (2.0 * IM_PI * sig4)) *
			(2.0 - (distance / sig2)) * 
			exp( (-1.0) * distance / (2.0 * sig2) )

		   .. use 0.5 to normalise
		 */
		val = 0.5 * 
			(2.0 - (distance / sig2)) * 
			exp( -distance / (2.0 * sig2) );

		/* Stop when change in value (ie. difference from the last
		 * point) is positive (ie. we are going up) and absolute value 
		 * is less than the min.
		 */
		if( val - last >= 0 &&
			VIPS_FABS( val ) < logmat->min_ampl )
			break;

		last = val;
	}
	if( x == 5000 ) {
		vips_error( class->nickname, "%s", _( "mask too large" ) );
		return( -1 );
	}

	width = x * 2 + 1;
	height = logmat->separable ? 1 : width; 

	vips_image_init_fields( create->out,
		width, height, 1, 
		VIPS_FORMAT_DOUBLE, VIPS_CODING_NONE, 
		VIPS_INTERPRETATION_MULTIBAND,
		1.0, 1.0 ); 
	if( vips_image_pipelinev( create->out, VIPS_DEMAND_STYLE_ANY, NULL ) ||
		vips_image_write_prepare( create->out ) )
		return( -1 );

	sum = 0.0;
	for( y = 0; y < height; y++ ) {
		for( x = 0; x < width; x++ ) {
			int xo = x - width / 2;
			int yo = y - height / 2;
			double distance = xo * xo + yo * yo;
			double v = 0.5 *
				(2.0 - (distance / sig2)) *
				exp( -distance / (2.0 * sig2) );

			if( logmat->precision == VIPS_PRECISION_INTEGER )
				v = VIPS_RINT( 20 * v );

			*VIPS_MATRIX( create->out, x, y ) = v;
			sum += v; 
		}
	}

	vips_image_set_double( create->out, "scale", sum ); 
	vips_image_set_double( create->out, "offset", 0.0 ); 

	return( 0 );
}

static void
vips_logmat_class_init( VipsLogmatClass *class )
{
	GObjectClass *gobject_class = G_OBJECT_CLASS( class );
	VipsObjectClass *vobject_class = VIPS_OBJECT_CLASS( class );

	gobject_class->set_property = vips_object_set_property;
	gobject_class->get_property = vips_object_get_property;

	vobject_class->nickname = "logmat";
	vobject_class->description = _( "make a Laplacian of Gaussian image" );
	vobject_class->build = vips_logmat_build;

	VIPS_ARG_DOUBLE( class, "sigma", 2, 
		_( "Radius" ), 
		_( "Radius of Gaussian" ),
		VIPS_ARGUMENT_REQUIRED_INPUT,
		G_STRUCT_OFFSET( VipsLogmat, sigma ),
		0.000001, 10000.0, 1.0 );

	VIPS_ARG_DOUBLE( class, "min_ampl", 3, 
		_( "Width" ), 
		_( "Minimum amplitude of Gaussian" ),
		VIPS_ARGUMENT_REQUIRED_INPUT,
		G_STRUCT_OFFSET( VipsLogmat, min_ampl ),
		0.000001, 10000.0, 0.1 );

	VIPS_ARG_BOOL( class, "separable", 4, 
		_( "Separable" ), 
		_( "Generate separable Gaussian" ),
		VIPS_ARGUMENT_OPTIONAL_INPUT,
		G_STRUCT_OFFSET( VipsLogmat, separable ),
		FALSE );

	VIPS_ARG_BOOL( class, "integer", 5, 
		_( "Integer" ), 
		_( "Generate integer Gaussian" ),
		VIPS_ARGUMENT_OPTIONAL_INPUT | VIPS_ARGUMENT_DEPRECATED,
		G_STRUCT_OFFSET( VipsLogmat, integer ),
		FALSE );

	VIPS_ARG_ENUM( class, "precision", 6, 
		_( "Precision" ), 
		_( "Generate with this precision" ),
		VIPS_ARGUMENT_OPTIONAL_INPUT, 
		G_STRUCT_OFFSET( VipsLogmat, precision ), 
		VIPS_TYPE_PRECISION, VIPS_PRECISION_INTEGER ); 

}

static void
vips_logmat_init( VipsLogmat *logmat )
{
	logmat->sigma = 1;
	logmat->min_ampl = 0.1;
	logmat->precision = VIPS_PRECISION_INTEGER;
}

/**
 * vips_logmat:
 * @out: (out): output image
 * @sigma: standard deviation of mask
 * @min_ampl: minimum amplitude
 * @...: %NULL-terminated list of optional named arguments
 *
 * Optional arguments:
 *
 * * @separable: generate a separable mask
 * * @precision: #VipsPrecision for @out
 *
 * Creates a circularly symmetric Laplacian of Gaussian mask 
 * of radius 
 * @sigma.  The size of the mask is determined by the variable @min_ampl; 
 * if for instance the value .1 is entered this means that the produced mask 
 * is clipped at values within 10 persent of zero, and where the change 
 * between mask elements is less than 10%.
 *
 * The program uses the following equation: (from Handbook of Pattern 
 * Recognition and image processing by Young and Fu, AP 1986 pages 220-221):
 *
 *  H(r) = (1 / (2 * M_PI * s4)) *
 * 	(2 - (r2 / s2)) * 
 * 	exp(-r2 / (2 * s2))
 *
 * where s2 = @sigma * @sigma, s4 = s2 * s2, r2 = r * r.  
 *
 * The generated mask has odd size and its maximum value is normalised to 
 * 1.0, unless @precision is #VIPS_PRECISION_INTEGER.
 *
 * If @separable is set, only the centre horizontal is generated. This is
 * useful for separable convolutions. 
 *
 * If @precision is #VIPS_PRECISION_INTEGER, an integer mask is generated. 
 * This is useful for integer convolutions. 
 *
 * "scale" is set to the sum of all the mask elements.
 *
 * See also: vips_gaussmat(), vips_conv().
 *
 * Returns: 0 on success, -1 on error
 */
int
vips_logmat( VipsImage **out, double sigma, double min_ampl, ... )
{
	va_list ap;
	int result;

	va_start( ap, min_ampl );
	result = vips_call_split( "logmat", ap, out, sigma, min_ampl );
	va_end( ap );

	return( result );
}