1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
/*
* This file is part of NetSurf's LibNSGIF, http://www.netsurf-browser.org/
* Licensed under the MIT License,
* http://www.opensource.org/licenses/mit-license.php
*
* Copyright 2017 Michael Drake <michael.drake@codethink.co.uk>
* Copyright 2021 Michael Drake <tlsa@netsurf-browser.org>
*/
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include "lzw.h"
/**
* \file
* \brief LZW decompression (implementation)
*
* Decoder for GIF LZW data.
*/
/** Maximum number of lzw table entries. */
#define LZW_TABLE_ENTRY_MAX (1u << LZW_CODE_MAX)
/**
* Context for reading LZW data.
*
* LZW data is split over multiple sub-blocks. Each sub-block has a
* byte at the start, which says the sub-block size, and then the data.
* Zero-size sub-blocks have no data, and the biggest sub-block size is
* 255, which means there are 255 bytes of data following the sub-block
* size entry.
*
* Note that an individual LZW code can be split over up to three sub-blocks.
*/
struct lzw_read_ctx {
const uint8_t *restrict data; /**< Pointer to start of input data */
uint32_t data_len; /**< Input data length */
uint32_t data_sb_next; /**< Offset to sub-block size */
const uint8_t *sb_data; /**< Pointer to current sub-block in data */
size_t sb_bit; /**< Current bit offset in sub-block */
uint32_t sb_bit_count; /**< Bit count in sub-block */
};
/**
* LZW table entry.
*
* Records in the table are composed of 1 or more entries.
* Entries refer to the entry they extend which can be followed to compose
* the complete record. To compose the record in reverse order, take
* the `value` from each entry, and move to the entry it extends.
* If the extended entries index is < the current clear_code, then it
* is the last entry in the record.
*/
struct lzw_table_entry {
uint8_t value; /**< Last value for record ending at entry. */
uint8_t first; /**< First value in entry's entire record. */
uint16_t count; /**< Count of values in this entry's record. */
uint16_t extends; /**< Offset in table to previous entry. */
};
/**
* LZW decompression context.
*/
struct lzw_ctx {
struct lzw_read_ctx input; /**< Input reading context */
uint16_t prev_code; /**< Code read from input previously. */
uint16_t prev_code_first; /**< First value of previous code. */
uint16_t prev_code_count; /**< Total values for previous code. */
uint8_t initial_code_size; /**< Starting LZW code size. */
uint8_t code_size; /**< Current LZW code size. */
uint16_t code_max; /**< Max code value for current code size. */
uint16_t clear_code; /**< Special Clear code value */
uint16_t eoi_code; /**< Special End of Information code value */
uint16_t table_size; /**< Next position in table to fill. */
uint16_t output_code; /**< Code that has been partially output. */
uint16_t output_left; /**< Number of values left for output_code. */
bool has_transparency; /**< Whether the image is opaque. */
uint8_t transparency_idx; /**< Index representing transparency. */
const uint32_t *restrict colour_map; /**< Index to colour mapping. */
/** LZW code table. Generated during decode. */
struct lzw_table_entry table[LZW_TABLE_ENTRY_MAX];
/** Output value stack. */
uint8_t stack_base[LZW_TABLE_ENTRY_MAX];
};
/* Exported function, documented in lzw.h */
lzw_result lzw_context_create(struct lzw_ctx **ctx)
{
struct lzw_ctx *c = malloc(sizeof(*c));
if (c == NULL) {
return LZW_NO_MEM;
}
*ctx = c;
return LZW_OK;
}
/* Exported function, documented in lzw.h */
void lzw_context_destroy(struct lzw_ctx *ctx)
{
free(ctx);
}
/**
* Advance the context to the next sub-block in the input data.
*
* \param[in] ctx LZW reading context, updated on success.
* \return LZW_OK or LZW_OK_EOD on success, appropriate error otherwise.
*/
static lzw_result lzw__block_advance(struct lzw_read_ctx *restrict ctx)
{
uint32_t block_size;
uint32_t next_block_pos = ctx->data_sb_next;
const uint8_t *data_next = ctx->data + next_block_pos;
if (next_block_pos >= ctx->data_len) {
return LZW_NO_DATA;
}
block_size = *data_next;
if ((next_block_pos + block_size) >= ctx->data_len) {
return LZW_NO_DATA;
}
ctx->sb_bit = 0;
ctx->sb_bit_count = block_size * 8;
if (block_size == 0) {
ctx->data_sb_next += 1;
return LZW_OK_EOD;
}
ctx->sb_data = data_next + 1;
ctx->data_sb_next += block_size + 1;
return LZW_OK;
}
/**
* Get the next LZW code of given size from the raw input data.
*
* Reads codes from the input data stream coping with GIF data sub-blocks.
*
* \param[in] ctx LZW reading context, updated.
* \param[in] code_size Size of LZW code to get from data.
* \param[out] code_out Returns an LZW code on success.
* \return LZW_OK or LZW_OK_EOD on success, appropriate error otherwise.
*/
static inline lzw_result lzw__read_code(
struct lzw_read_ctx *restrict ctx,
uint16_t code_size,
uint16_t *restrict code_out)
{
uint32_t code = 0;
uint32_t current_bit = ctx->sb_bit & 0x7;
if (ctx->sb_bit + 24 <= ctx->sb_bit_count) {
/* Fast path: read three bytes from this sub-block */
const uint8_t *data = ctx->sb_data + (ctx->sb_bit >> 3);
code |= *data++ << 0;
code |= *data++ << 8;
code |= *data << 16;
ctx->sb_bit += code_size;
} else {
/* Slow path: code spans sub-blocks */
uint8_t byte_advance = (current_bit + code_size) >> 3;
uint8_t byte = 0;
uint8_t bits_remaining_0 = (code_size < (8u - current_bit)) ?
code_size : (8u - current_bit);
uint8_t bits_remaining_1 = code_size - bits_remaining_0;
uint8_t bits_used[3] = {
[0] = bits_remaining_0,
[1] = bits_remaining_1 < 8 ? bits_remaining_1 : 8,
[2] = bits_remaining_1 - 8,
};
assert(byte_advance <= 2);
while (true) {
const uint8_t *data = ctx->sb_data;
lzw_result res;
/* Get any data from end of this sub-block */
while (byte <= byte_advance &&
ctx->sb_bit < ctx->sb_bit_count) {
code |= data[ctx->sb_bit >> 3] << (byte << 3);
ctx->sb_bit += bits_used[byte];
byte++;
}
/* Check if we have all we need */
if (byte > byte_advance) {
break;
}
/* Move to next sub-block */
res = lzw__block_advance(ctx);
if (res != LZW_OK) {
return res;
}
}
}
*code_out = (code >> current_bit) & ((1 << code_size) - 1);
return LZW_OK;
}
/**
* Handle clear code.
*
* \param[in] ctx LZW reading context, updated.
* \param[out] code_out Returns next code after a clear code.
* \return LZW_OK or error code.
*/
static inline lzw_result lzw__handle_clear(
struct lzw_ctx *ctx,
uint16_t *code_out)
{
uint16_t code;
/* Reset table building context */
ctx->code_size = ctx->initial_code_size;
ctx->code_max = (1 << ctx->initial_code_size) - 1;
ctx->table_size = ctx->eoi_code + 1;
/* There might be a sequence of clear codes, so process them all */
do {
lzw_result res = lzw__read_code(&ctx->input,
ctx->code_size, &code);
if (res != LZW_OK) {
return res;
}
} while (code == ctx->clear_code);
/* The initial code must be from the initial table. */
if (code > ctx->clear_code) {
return LZW_BAD_ICODE;
}
*code_out = code;
return LZW_OK;
}
/* Exported function, documented in lzw.h */
lzw_result lzw_decode_init(
struct lzw_ctx *ctx,
uint8_t minimum_code_size,
const uint8_t *input_data,
uint32_t input_length,
uint32_t input_pos)
{
struct lzw_table_entry *table = ctx->table;
lzw_result res;
uint16_t code;
if (minimum_code_size >= LZW_CODE_MAX) {
return LZW_BAD_ICODE;
}
/* Initialise the input reading context */
ctx->input.data = input_data;
ctx->input.data_len = input_length;
ctx->input.data_sb_next = input_pos;
ctx->input.sb_bit = 0;
ctx->input.sb_bit_count = 0;
/* Initialise the table building context */
ctx->initial_code_size = minimum_code_size + 1;
ctx->clear_code = (1 << minimum_code_size) + 0;
ctx->eoi_code = (1 << minimum_code_size) + 1;
ctx->output_left = 0;
/* Initialise the standard table entries */
for (uint16_t i = 0; i < ctx->clear_code; i++) {
table[i].first = i;
table[i].value = i;
table[i].count = 1;
}
res = lzw__handle_clear(ctx, &code);
if (res != LZW_OK) {
return res;
}
/* Store details of this code as "previous code" to the context. */
ctx->prev_code_first = ctx->table[code].first;
ctx->prev_code_count = ctx->table[code].count;
ctx->prev_code = code;
/* Add code to context for immediate output. */
ctx->output_code = code;
ctx->output_left = 1;
ctx->has_transparency = false;
ctx->transparency_idx = 0;
ctx->colour_map = NULL;
return LZW_OK;
}
/* Exported function, documented in lzw.h */
lzw_result lzw_decode_init_map(
struct lzw_ctx *ctx,
uint8_t minimum_code_size,
uint32_t transparency_idx,
const uint32_t *colour_table,
const uint8_t *input_data,
uint32_t input_length,
uint32_t input_pos)
{
lzw_result res;
if (colour_table == NULL) {
return LZW_BAD_PARAM;
}
res = lzw_decode_init(ctx, minimum_code_size,
input_data, input_length, input_pos);
if (res != LZW_OK) {
return res;
}
ctx->has_transparency = (transparency_idx <= 0xFF);
ctx->transparency_idx = transparency_idx;
ctx->colour_map = colour_table;
return LZW_OK;
}
/**
* Create new table entry.
*
* \param[in] ctx LZW reading context, updated.
* \param[in] code Last value code for new table entry.
*/
static inline void lzw__table_add_entry(
struct lzw_ctx *ctx,
uint16_t code)
{
struct lzw_table_entry *entry = &ctx->table[ctx->table_size];
entry->value = code;
entry->first = ctx->prev_code_first;
entry->count = ctx->prev_code_count + 1;
entry->extends = ctx->prev_code;
ctx->table_size++;
}
typedef uint32_t (*lzw_writer_fn)(
struct lzw_ctx *ctx,
void *restrict output_data,
uint32_t output_length,
uint32_t output_pos,
uint16_t code,
uint16_t left);
/**
* Get the next LZW code and write its value(s) to output buffer.
*
* \param[in] ctx LZW reading context, updated.
* \param[in] write_fn Function for writing pixels to output.
* \param[in] output_data Array to write output values into.
* \param[in] output_length Size of output array.
* \param[in,out] output_written Number of values written. Updated on exit.
* \return LZW_OK on success, or appropriate error code otherwise.
*/
static inline lzw_result lzw__decode(
struct lzw_ctx *ctx,
lzw_writer_fn write_fn,
void *restrict output_data,
uint32_t output_length,
uint32_t *restrict output_written)
{
lzw_result res;
uint16_t code;
/* Get a new code from the input */
res = lzw__read_code(&ctx->input, ctx->code_size, &code);
if (res != LZW_OK) {
return res;
}
/* Handle the new code */
if (code == ctx->eoi_code) {
/* Got End of Information code */
return LZW_EOI_CODE;
} else if (code > ctx->table_size) {
/* Code is invalid */
return LZW_BAD_CODE;
} else if (code == ctx->clear_code) {
res = lzw__handle_clear(ctx, &code);
if (res != LZW_OK) {
return res;
}
} else if (ctx->table_size < LZW_TABLE_ENTRY_MAX) {
uint16_t size = ctx->table_size;
lzw__table_add_entry(ctx, (code < size) ?
ctx->table[code].first :
ctx->prev_code_first);
/* Ensure code size is increased, if needed. */
if (size == ctx->code_max && ctx->code_size < LZW_CODE_MAX) {
ctx->code_size++;
ctx->code_max = (1 << ctx->code_size) - 1;
}
}
*output_written += write_fn(ctx,
output_data, output_length, *output_written,
code, ctx->table[code].count);
/* Store details of this code as "previous code" to the context. */
ctx->prev_code_first = ctx->table[code].first;
ctx->prev_code_count = ctx->table[code].count;
ctx->prev_code = code;
return LZW_OK;
}
/**
* Write values for this code to the output stack.
*
* If there isn't enough space in the output stack, this function will write
* the as many as it can into the output. If `ctx->output_left > 0` after
* this call, then there is more data for this code left to output. The code
* is stored to the context as `ctx->output_code`.
*
* \param[in] ctx LZW reading context, updated.
* \param[in] output_data Array to write output values into.
* \param[in] output_length length Size of output array.
* \param[in] output_used Current position in output array.
* \param[in] code LZW code to output values for.
* \param[in] left Number of values remaining to output for this code.
* \return Number of pixel values written.
*/
static inline uint32_t lzw__write_fn(struct lzw_ctx *ctx,
void *restrict output_data,
uint32_t output_length,
uint32_t output_used,
uint16_t code,
uint16_t left)
{
uint8_t *restrict output_pos = (uint8_t *)output_data + output_used;
const struct lzw_table_entry * const table = ctx->table;
uint32_t space = output_length - output_used;
uint16_t count = left;
if (count > space) {
left = count - space;
count = space;
} else {
left = 0;
}
ctx->output_code = code;
ctx->output_left = left;
/* Skip over any values we don't have space for. */
for (unsigned i = left; i != 0; i--) {
const struct lzw_table_entry *entry = table + code;
code = entry->extends;
}
output_pos += count;
for (unsigned i = count; i != 0; i--) {
const struct lzw_table_entry *entry = table + code;
*--output_pos = entry->value;
code = entry->extends;
}
return count;
}
/* Exported function, documented in lzw.h */
lzw_result lzw_decode(struct lzw_ctx *ctx,
const uint8_t *restrict *const restrict output_data,
uint32_t *restrict output_written)
{
const uint32_t output_length = sizeof(ctx->stack_base);
*output_written = 0;
*output_data = ctx->stack_base;
if (ctx->output_left != 0) {
*output_written += lzw__write_fn(ctx,
ctx->stack_base, output_length, *output_written,
ctx->output_code, ctx->output_left);
}
while (*output_written != output_length) {
lzw_result res = lzw__decode(ctx, lzw__write_fn,
ctx->stack_base, output_length, output_written);
if (res != LZW_OK) {
return res;
}
}
return LZW_OK;
}
/**
* Write colour mapped values for this code to the output.
*
* If there isn't enough space in the output stack, this function will write
* the as many as it can into the output. If `ctx->output_left > 0` after
* this call, then there is more data for this code left to output. The code
* is stored to the context as `ctx->output_code`.
*
* \param[in] ctx LZW reading context, updated.
* \param[in] output_data Array to write output values into.
* \param[in] output_length Size of output array.
* \param[in] output_used Current position in output array.
* \param[in] code LZW code to output values for.
* \param[in] left Number of values remaining to output for code.
* \return Number of pixel values written.
*/
static inline uint32_t lzw__map_write_fn(struct lzw_ctx *ctx,
void *restrict output_data,
uint32_t output_length,
uint32_t output_used,
uint16_t code,
uint16_t left)
{
uint32_t *restrict output_pos = (uint32_t *)output_data + output_used;
const struct lzw_table_entry * const table = ctx->table;
uint32_t space = output_length - output_used;
uint16_t count = left;
if (count > space) {
left = count - space;
count = space;
} else {
left = 0;
}
ctx->output_code = code;
ctx->output_left = left;
for (unsigned i = left; i != 0; i--) {
const struct lzw_table_entry *entry = table + code;
code = entry->extends;
}
output_pos += count;
if (ctx->has_transparency) {
for (unsigned i = count; i != 0; i--) {
const struct lzw_table_entry *entry = table + code;
--output_pos;
if (entry->value != ctx->transparency_idx) {
*output_pos = ctx->colour_map[entry->value];
}
code = entry->extends;
}
} else {
for (unsigned i = count; i != 0; i--) {
const struct lzw_table_entry *entry = table + code;
*--output_pos = ctx->colour_map[entry->value];
code = entry->extends;
}
}
return count;
}
/* Exported function, documented in lzw.h */
lzw_result lzw_decode_map(struct lzw_ctx *ctx,
uint32_t *restrict output_data,
uint32_t output_length,
uint32_t *restrict output_written)
{
*output_written = 0;
if (ctx->colour_map == NULL) {
return LZW_NO_COLOUR;
}
if (ctx->output_left != 0) {
*output_written += lzw__map_write_fn(ctx,
output_data, output_length, *output_written,
ctx->output_code, ctx->output_left);
}
while (*output_written != output_length) {
lzw_result res = lzw__decode(ctx, lzw__map_write_fn,
output_data, output_length, output_written);
if (res != LZW_OK) {
return res;
}
}
return LZW_OK;
}
|