1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
|
/* nohalo subdivision followed by lbb (locally bounded bicubic)
* interpolation resampler
*
* Nohalo level 1 with bilinear finishing scheme hacked for VIPS by
* J. Cupitt based on code by N. Robidoux, 20/1/09
*
* N. Robidoux and J. Cupitt, 4-17/3/09
*
* N. Robidoux, 1/4-29/5/2009
*
* Nohalo level 2 with bilinear finishing scheme by N. Robidoux based
* on code by N. Robidoux, A. Turcotte and J. Cupitt, 27/1/2010
*
* Nohalo level 1 with LBB finishing scheme by N. Robidoux and
* C. Racette, 11-18/5/2010
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
* 2009-2010 (c) Nicolas Robidoux, Chantal Racette, John Cupitt and
* Adam Turcotte
*
* N. Robidoux thanks Geert Jordaens, Ralf Meyer, Øyvind Kolås,
* Minglun Gong, Eric Daoust and Sven Neumann for useful comments and
* code.
*
* N. Robidoux's early research on Nohalo funded in part by an NSERC
* (National Science and Engineering Research Council of Canada)
* Discovery Grant awarded to him (298424--2004).
*
* C. Racette's image resampling research and programming funded in
* part by an NSERC (National Science and Engineering Research Council
* of Canada) Alexander Graham Bell Canada Graduate Scholarship, by an
* NSERC Discovery Grant awarded to Julien Dompierre (grant number
* 20-61098) and by N. Robidoux's Laurentian University professional
* allowance.
*
* A. Turcotte's image resampling research on reduced halo funded in
* part by an NSERC Alexander Graham Bell Canada Graduate Scholarhip
* awarded to him and by a Google Summer of Code 2010 award awarded to
* GIMP (Gnu Image Manipulation Program).
*
* Nohalo with LBB finishing scheme was developed by N. Robidoux and
* C. Racette at the Department of Mathematics and Computer Science of
* Laurentian University in the course of C. Racette's Masters thesis
* in Computational Sciences. Preliminary work on Nohalo and monotone
* interpolation was performed by C. Racette and N. Robidoux in the
* course of her honours thesis, by N. Robidoux, A. Turcotte and
* E. Daoust during Google Summer of Code 2009 (through two awards
* made to GIMP to improve GEGL), and, earlier, by N. Robidoux,
* A. Turcotte, J. Cupitt, M. Gong and K. Martinez.
*/
/*
* Nohalo with LBB as finishing scheme has two versions, which are
* only different in the way LBB is implemented:
*
* A "soft" version, which shows a little less staircasing and a
* little more haloing, and which is a little more expensive to
* compute. We recommend this as the default.
*
* A "sharp" version, which shows a little more staircasing and a
* little less haloing, and which is a little cheaper (it uses 6
* less comparisons and 12 less "? :").
*
* The only difference between the two is that the "soft" versions
* uses local minima and maxima computed over 3x3 square blocks, and
* the "sharp" version uses local minima and maxima computed over 3x3
* crosses.
*
* The "sharp" version is (a little) faster. We don't know yet for
* sure, but it appears that the "soft" version gives marginally
* better results.
*
* If you want to use the "sharp" (cheaper) version, uncomment the
* following three pre-processor code lines:
*/
/*
#ifndef __NOHALO_CHEAP_H__
#define __NOHALO_CHEAP_H__
#endif
*/
/*
* ================
* NOHALO RESAMPLER
* ================
*
* "Nohalo" is a resampler with a mission: smoothly straightening
* oblique lines without undesirable side-effects. In particular,
* without much blurring and with no added haloing.
*
* In this code, one Nohalo subdivision is performed. The
* interpolation is finished with LBB (Locally Bounded Bicubic).
*
* Key properties:
*
* =======================
* Nohalo is interpolatory
* =======================
*
* That is, Nohalo preserves point values: If asked for the value at
* the center of an input pixel, the sampler returns the corresponding
* value, unchanged. In addition, because Nohalo is continuous, if
* asked for a value at a location "very close" to the center of an
* input pixel, then the sampler returns a value "very close" to
* it. (Nohalo is not smoothing like, say, B-Spline
* pseudo-interpolation.)
*
* ====================================================================
* Nohalo subdivision is co-monotone (this is why it's called "no-halo")
* ====================================================================
*
* One consequence of monotonicity is that additional subdivided
* values are in the range of the four closest input values, which is
* a form of local boundedness. (Note: plain vanilla bilinear and
* nearest neighbour are also co-monotone.) LBB is also locally
* bounded. Consequently, Nohalo subdivision followed by LBB is
* locally bounded. When used as a finishing scheme for Nohalo, the
* standard LBB bounds imply that the final interpolated value is in
* the range of the nine closest input values. This property is why
* there is very little added haloing, even when a finishing scheme
* which is not strictly monotone. Another consequence of local
* boundedness is that clamping is unnecessary (provided abyss values
* are within the range of acceptable values, which is "always" the
* case).
*
* Note: If the abyss policy is an extrapolating one---for example,
* linear or bilinear extrapolation---clamping is still unnecessary
* UNLESS one attempts to resample outside of the convex hull of the
* input pixel positions. Consequence: the "corner" image size
* convention does not require clamping when using linear
* extrapolation abyss policy when performing image resizing, but the
* "center" one does, when upscaling, at locations very close to the
* boundary. If computing values at locations outside of the convex
* hull of the pixel locations of the input image, nearest neighbour
* abyss policy is most likely better anyway, because linear
* extrapolation produces "streaks" if positions far outside the
* original image boundary are resampled.
*
* ========================
* Nohalo is a local method
* ========================
*
* The interpolated pixel value when using Nohalo subdivision followed
* by LBB only depends on the 21 (5x5 minus the four corners) closest
* input values.
*
* ===============================
* Nohalo is second order accurate
* ===============================
*
* (Except possibly near the boundary: it is easy to make this
* property carry over everywhere but this requires a tuned abyss
* policy---linear extrapolation, say---or building the boundary
* conditions inside the sampler.) Nohalo+LBB is exact on linear
* intensity profiles, meaning that if the input pixel values (in the
* stencil) are obtained from a function of the form f(x,y) = a + b*x
* + c*y (a, b, c constants), then the computed pixel value is exactly
* the value of f(x,y) at the asked-for sampling location. The
* boundary condition which is emulated by VIPS through the "extend"
* extension of the input image---this corresponds to the nearest
* neighbour abyss policy---does NOT make this resampler exact on
* linears near the boundary. It does, however, guarantee that no
* clamping is required even when resampled values are computed at
* positions outside of the extent of the input image (when
* extrapolation is required).
*
* ===================
* Nohalo is nonlinear
* ===================
*
* Both Nohalo and LBB are nonlinear, consequently their composition
* is nonlinear. In particular, resampling a sum of images may not be
* the same as summing the resamples. (This occurs even without taking
* into account over and underflow issues: images can only take values
* within a banded range, and consequently no sampler is truly
* linear.)
*
* ====================
* Weaknesses of Nohalo
* ====================
*
* In some cases, the initial subdivision computation is wasted:
*
* If a region is bi-chromatic, the nonlinear component of Nohalo
* subdivision is zero in the interior of the region, and consequently
* Nohalo subdivision boils down to bilinear. For such images, LBB is
* probably a better choice.
*
* =========================
* Bibliographical reference
* =========================
*
* For more information about Nohalo (a prototype version with
* bilinear finish instead of LBB), see
*
* CPU, SMP and GPU implementations of Nohalo level 1, a fast
* co-convex antialiasing image resampler by Nicolas Robidoux, Minglun
* Gong, John Cupitt, Adam Turcotte, and Kirk Martinez, in C3S2E '09:
* Proceedings of the 2nd Canadian Conference on Computer Science and
* Software Engineering, p. 185--195, ACM, New York, NY, USA, 2009.
* http://doi.acm.org/10.1145/1557626.1557657.
*/
/* Uncomment to enable bounds checking for VIPS_REGION_ADDR().
*/
#define DEBUG
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <glib/gi18n-lib.h>
#include <stdio.h>
#include <stdlib.h>
#include <vips/vips.h>
#include <vips/internal.h>
#include "templates.h"
#define VIPS_TYPE_INTERPOLATE_NOHALO \
(vips_interpolate_nohalo_get_type())
#define VIPS_INTERPOLATE_NOHALO( obj ) \
(G_TYPE_CHECK_INSTANCE_CAST( (obj), \
VIPS_TYPE_INTERPOLATE_NOHALO, VipsInterpolateNohalo ))
#define VIPS_INTERPOLATE_NOHALO_CLASS( klass ) \
(G_TYPE_CHECK_CLASS_CAST( (klass), \
VIPS_TYPE_INTERPOLATE_NOHALO, VipsInterpolateNohaloClass))
#define VIPS_IS_INTERPOLATE_NOHALO( obj ) \
(G_TYPE_CHECK_INSTANCE_TYPE( (obj), VIPS_TYPE_INTERPOLATE_NOHALO ))
#define VIPS_IS_INTERPOLATE_NOHALO_CLASS( klass ) \
(G_TYPE_CHECK_CLASS_TYPE( (klass), VIPS_TYPE_INTERPOLATE_NOHALO ))
#define VIPS_INTERPOLATE_NOHALO_GET_CLASS( obj ) \
(G_TYPE_INSTANCE_GET_CLASS( (obj), \
VIPS_TYPE_INTERPOLATE_NOHALO, VipsInterpolateNohaloClass ))
typedef struct _VipsInterpolateNohalo {
VipsInterpolate parent_object;
} VipsInterpolateNohalo;
typedef struct _VipsInterpolateNohaloClass {
VipsInterpolateClass parent_class;
} VipsInterpolateNohaloClass;
/*
* NOHALO_MINMOD is an implementation of the minmod function which
* only needs two "conditional moves."
* NOHALO_MINMOD(a,b,a_times_a,a_times_b) "returns"
* minmod(a,b). The macro parameter ("input") a_times_a is assumed to
* contain the square of a; a_times_b, the product of a and b.
*
* For uncompressed natural images in high bit depth (images for which
* the slopes a and b are unlikely to be equal to zero or be equal to
* each other), or chips with good branch prediction, the following
* version of the minmod function may work well:
*
* ( (a_times_b)>=0. ? ( (a_times_b)<(a_times_a) ? (b) : (a) ) : 0. )
*
* In this version, the forward branch of the second conditional move
* is taken when |b|>|a| and when a*b<0. However, the "else" branch is
* taken when a=0 (or when a=b), which is why the above version is not
* as effective for images with regions with constant pixel values (or
* regions with pixel values which vary linearly or bilinearly) since
* we apply minmod to pairs of differences.
*
* The following version is more suitable for images with flat
* (constant) colour areas, since a, which is a pixel difference, will
* often be 0, in which case both forward branches are likely. This
* may be preferable if "branch flag look ahead" does not work so
* well.
*
* ( (a_times_b)>=0. ? ( (a_times_a)<=(a_times_b) ? (a) : (b) ) : 0. )
*
* This last version appears to be slightly better than the former in
* speed tests performed on a recent multicore Intel chip, especially
* when enlarging a sharp image by a large factor, hence the choice.
*/
#define NOHALO_MINMOD(a,b,a_times_a,a_times_b) \
( ( (a_times_b)>=0. ) ? ( (a_times_a)<=(a_times_b) ? (a) : (b) ) : 0. )
/*
* Absolute value and sign macros:
*/
#define NOHALO_ABS(x) ( ((x)>=0.) ? (x) : -(x) )
#define NOHALO_SIGN(x) ( ((x)>=0.) ? 1. : -1. )
/*
* MIN and MAX macros set up so that I can put the likely winner in
* the first argument (forward branch likely blah blah blah):
*/
#define NOHALO_MIN(x,y) ( ((x)<=(y)) ? (x) : (y) )
#define NOHALO_MAX(x,y) ( ((x)>=(y)) ? (x) : (y) )
static void inline
nohalo_subdivision (const double uno_two,
const double uno_thr,
const double uno_fou,
const double dos_one,
const double dos_two,
const double dos_thr,
const double dos_fou,
const double dos_fiv,
const double tre_one,
const double tre_two,
const double tre_thr,
const double tre_fou,
const double tre_fiv,
const double qua_one,
const double qua_two,
const double qua_thr,
const double qua_fou,
const double qua_fiv,
const double cin_two,
const double cin_thr,
const double cin_fou,
double* restrict uno_one_1,
double* restrict uno_two_1,
double* restrict uno_thr_1,
double* restrict uno_fou_1,
double* restrict dos_one_1,
double* restrict dos_two_1,
double* restrict dos_thr_1,
double* restrict dos_fou_1,
double* restrict tre_one_1,
double* restrict tre_two_1,
double* restrict tre_thr_1,
double* restrict tre_fou_1,
double* restrict qua_one_1,
double* restrict qua_two_1,
double* restrict qua_thr_1,
double* restrict qua_fou_1)
{
/*
* nohalo_subdivision calculates the missing twelve double density
* pixel values, and also returns the "already known" four, so that
* the sixteen values which make up the stencil of LBB are
* available.
*/
/*
* THE STENCIL OF INPUT VALUES:
*
* Pointer arithmetic is used to implicitly reflect the input
* stencil about tre_thr---assumed closer to the sampling location
* than other pixels (ties are OK)---in such a way that after
* reflection the sampling point is to the bottom right of tre_thr.
*
* The following code and picture assumes that the stencil reflexion
* has already been performed.
*
* (ix-1,iy-2) (ix,iy-2) (ix+1,iy-2)
* =uno_two = uno_thr = uno_fou
*
*
*
* (ix-2,iy-1) (ix-1,iy-1) (ix,iy-1) (ix+1,iy-1) (ix+2,iy-1)
* = dos_one = dos_two = dos_thr = dos_fou = dos_fiv
*
*
*
* (ix-2,iy) (ix-1,iy) (ix,iy) (ix+1,iy) (ix+2,iy)
* = tre_one = tre_two = tre_thr = tre_fou = tre_fiv
* X
*
*
* (ix-2,iy+1) (ix-1,iy+1) (ix,iy+1) (ix+1,iy+1) (ix+2,iy+1)
* = qua_one = qua_two = qua_thr = qua_fou = qua_fiv
*
*
*
* (ix-1,iy+2) (ix,iy+2) (ix+1,iy+2)
* = cin_two = cin_thr = cin_fou
*
*
* The above input pixel values are the ones needed in order to make
* available the following values, needed by LBB:
*
* uno_one_1 = uno_two_1 = uno_thr_1 = uno_fou_1 =
* (ix-1/2,iy-1/2) (ix,iy-1/2) (ix+1/2,iy-1/2) (ix+1,iy-1/2)
*
*
*
*
* dos_one_1 = dos_two_1 = dos_thr_1 = dos_fou_1 =
* (ix-1/2,iy) (ix,iy) (ix+1/2,iy) (ix+1,iy)
*
* X
*
*
* tre_one_1 = tre_two_1 = tre_thr_1 = tre_fou_1 =
* (ix-1/2,iy+1/2) (ix,iy+1/2) (ix+1/2,iy+1/2) (ix+1,iy+1/2)
*
*
*
*
* qua_one_1 = qua_two_1 = qua_thr_1 = qua_fou_1 =
* (ix-1/2,iy+1) (ix,iy+1) (ix+1/2,iy+1) (ix+1,iy+1)
*
*/
/*
* Computation of the nonlinear slopes: If two consecutive pixel
* value differences have the same sign, the smallest one (in
* absolute value) is taken to be the corresponding slope; if the
* two consecutive pixel value differences don't have the same sign,
* the corresponding slope is set to 0.
*
* In other words: Apply minmod to consecutive differences.
*/
/*
* Two vertical simple differences:
*/
const double d_unodos_two = dos_two - uno_two;
const double d_dostre_two = tre_two - dos_two;
const double d_trequa_two = qua_two - tre_two;
const double d_quacin_two = cin_two - qua_two;
/*
* Thr(ee) vertical differences:
*/
const double d_unodos_thr = dos_thr - uno_thr;
const double d_dostre_thr = tre_thr - dos_thr;
const double d_trequa_thr = qua_thr - tre_thr;
const double d_quacin_thr = cin_thr - qua_thr;
/*
* Fou(r) vertical differences:
*/
const double d_unodos_fou = dos_fou - uno_fou;
const double d_dostre_fou = tre_fou - dos_fou;
const double d_trequa_fou = qua_fou - tre_fou;
const double d_quacin_fou = cin_fou - qua_fou;
/*
* Dos horizontal differences:
*/
const double d_dos_onetwo = dos_two - dos_one;
const double d_dos_twothr = dos_thr - dos_two;
const double d_dos_thrfou = dos_fou - dos_thr;
const double d_dos_foufiv = dos_fiv - dos_fou;
/*
* Tre(s) horizontal differences:
*/
const double d_tre_onetwo = tre_two - tre_one;
const double d_tre_twothr = tre_thr - tre_two;
const double d_tre_thrfou = tre_fou - tre_thr;
const double d_tre_foufiv = tre_fiv - tre_fou;
/*
* Qua(ttro) horizontal differences:
*/
const double d_qua_onetwo = qua_two - qua_one;
const double d_qua_twothr = qua_thr - qua_two;
const double d_qua_thrfou = qua_fou - qua_thr;
const double d_qua_foufiv = qua_fiv - qua_fou;
/*
* Recyclable vertical products and squares:
*/
const double d_unodos_times_dostre_two = d_unodos_two * d_dostre_two;
const double d_dostre_two_sq = d_dostre_two * d_dostre_two;
const double d_dostre_times_trequa_two = d_dostre_two * d_trequa_two;
const double d_trequa_times_quacin_two = d_quacin_two * d_trequa_two;
const double d_quacin_two_sq = d_quacin_two * d_quacin_two;
const double d_unodos_times_dostre_thr = d_unodos_thr * d_dostre_thr;
const double d_dostre_thr_sq = d_dostre_thr * d_dostre_thr;
const double d_dostre_times_trequa_thr = d_trequa_thr * d_dostre_thr;
const double d_trequa_times_quacin_thr = d_trequa_thr * d_quacin_thr;
const double d_quacin_thr_sq = d_quacin_thr * d_quacin_thr;
const double d_unodos_times_dostre_fou = d_unodos_fou * d_dostre_fou;
const double d_dostre_fou_sq = d_dostre_fou * d_dostre_fou;
const double d_dostre_times_trequa_fou = d_trequa_fou * d_dostre_fou;
const double d_trequa_times_quacin_fou = d_trequa_fou * d_quacin_fou;
const double d_quacin_fou_sq = d_quacin_fou * d_quacin_fou;
/*
* Recyclable horizontal products and squares:
*/
const double d_dos_onetwo_times_twothr = d_dos_onetwo * d_dos_twothr;
const double d_dos_twothr_sq = d_dos_twothr * d_dos_twothr;
const double d_dos_twothr_times_thrfou = d_dos_twothr * d_dos_thrfou;
const double d_dos_thrfou_times_foufiv = d_dos_thrfou * d_dos_foufiv;
const double d_dos_foufiv_sq = d_dos_foufiv * d_dos_foufiv;
const double d_tre_onetwo_times_twothr = d_tre_onetwo * d_tre_twothr;
const double d_tre_twothr_sq = d_tre_twothr * d_tre_twothr;
const double d_tre_twothr_times_thrfou = d_tre_thrfou * d_tre_twothr;
const double d_tre_thrfou_times_foufiv = d_tre_thrfou * d_tre_foufiv;
const double d_tre_foufiv_sq = d_tre_foufiv * d_tre_foufiv;
const double d_qua_onetwo_times_twothr = d_qua_onetwo * d_qua_twothr;
const double d_qua_twothr_sq = d_qua_twothr * d_qua_twothr;
const double d_qua_twothr_times_thrfou = d_qua_thrfou * d_qua_twothr;
const double d_qua_thrfou_times_foufiv = d_qua_thrfou * d_qua_foufiv;
const double d_qua_foufiv_sq = d_qua_foufiv * d_qua_foufiv;
/*
* Minmod slopes and first level pixel values:
*/
const double dos_thr_y = NOHALO_MINMOD( d_dostre_thr, d_unodos_thr,
d_dostre_thr_sq,
d_unodos_times_dostre_thr );
const double tre_thr_y = NOHALO_MINMOD( d_dostre_thr, d_trequa_thr,
d_dostre_thr_sq,
d_dostre_times_trequa_thr );
const double newval_uno_two =
.5 * ( dos_thr + tre_thr )
+
.25 * ( dos_thr_y - tre_thr_y );
const double qua_thr_y = NOHALO_MINMOD( d_quacin_thr, d_trequa_thr,
d_quacin_thr_sq,
d_trequa_times_quacin_thr );
const double newval_tre_two =
.5 * ( tre_thr + qua_thr )
+
.25 * ( tre_thr_y - qua_thr_y );
const double tre_fou_y = NOHALO_MINMOD( d_dostre_fou, d_trequa_fou,
d_dostre_fou_sq,
d_dostre_times_trequa_fou );
const double qua_fou_y = NOHALO_MINMOD( d_quacin_fou, d_trequa_fou,
d_quacin_fou_sq,
d_trequa_times_quacin_fou );
const double newval_tre_fou =
.5 * ( tre_fou + qua_fou )
+
.25 * ( tre_fou_y - qua_fou_y );
const double dos_fou_y = NOHALO_MINMOD( d_dostre_fou, d_unodos_fou,
d_dostre_fou_sq,
d_unodos_times_dostre_fou );
const double newval_uno_fou =
.5 * ( dos_fou + tre_fou )
+
.25 * (dos_fou_y - tre_fou_y );
const double tre_two_x = NOHALO_MINMOD( d_tre_twothr, d_tre_onetwo,
d_tre_twothr_sq,
d_tre_onetwo_times_twothr );
const double tre_thr_x = NOHALO_MINMOD( d_tre_twothr, d_tre_thrfou,
d_tre_twothr_sq,
d_tre_twothr_times_thrfou );
const double newval_dos_one =
.5 * ( tre_two + tre_thr )
+
.25 * ( tre_two_x - tre_thr_x );
const double tre_fou_x = NOHALO_MINMOD( d_tre_foufiv, d_tre_thrfou,
d_tre_foufiv_sq,
d_tre_thrfou_times_foufiv );
const double tre_thr_x_minus_tre_fou_x =
tre_thr_x - tre_fou_x;
const double newval_dos_thr =
.5 * ( tre_thr + tre_fou )
+
.25 * tre_thr_x_minus_tre_fou_x;
const double qua_thr_x = NOHALO_MINMOD( d_qua_twothr, d_qua_thrfou,
d_qua_twothr_sq,
d_qua_twothr_times_thrfou );
const double qua_fou_x = NOHALO_MINMOD( d_qua_foufiv, d_qua_thrfou,
d_qua_foufiv_sq,
d_qua_thrfou_times_foufiv );
const double qua_thr_x_minus_qua_fou_x =
qua_thr_x - qua_fou_x;
const double newval_qua_thr =
.5 * ( qua_thr + qua_fou )
+
.25 * qua_thr_x_minus_qua_fou_x;
const double qua_two_x = NOHALO_MINMOD( d_qua_twothr, d_qua_onetwo,
d_qua_twothr_sq,
d_qua_onetwo_times_twothr );
const double newval_qua_one =
.5 * ( qua_two + qua_thr )
+
.25 * ( qua_two_x - qua_thr_x );
const double newval_tre_thr =
.125 * ( tre_thr_x_minus_tre_fou_x + qua_thr_x_minus_qua_fou_x )
+
.5 * ( newval_tre_two + newval_tre_fou );
const double dos_thr_x = NOHALO_MINMOD( d_dos_twothr, d_dos_thrfou,
d_dos_twothr_sq,
d_dos_twothr_times_thrfou );
const double dos_fou_x = NOHALO_MINMOD( d_dos_foufiv, d_dos_thrfou,
d_dos_foufiv_sq,
d_dos_thrfou_times_foufiv );
const double newval_uno_thr =
.25 * ( dos_fou - tre_thr )
+
.125 * ( dos_fou_y - tre_fou_y + dos_thr_x - dos_fou_x )
+
.5 * ( newval_uno_two + newval_dos_thr );
const double tre_two_y = NOHALO_MINMOD( d_dostre_two, d_trequa_two,
d_dostre_two_sq,
d_dostre_times_trequa_two );
const double qua_two_y = NOHALO_MINMOD( d_quacin_two, d_trequa_two,
d_quacin_two_sq,
d_trequa_times_quacin_two );
const double newval_tre_one =
.25 * ( qua_two - tre_thr )
+
.125 * ( qua_two_x - qua_thr_x + tre_two_y - qua_two_y )
+
.5 * ( newval_dos_one + newval_tre_two );
const double dos_two_x = NOHALO_MINMOD( d_dos_twothr, d_dos_onetwo,
d_dos_twothr_sq,
d_dos_onetwo_times_twothr );
const double dos_two_y = NOHALO_MINMOD( d_dostre_two, d_unodos_two,
d_dostre_two_sq,
d_unodos_times_dostre_two );
const double newval_uno_one =
.25 * ( dos_two + dos_thr + tre_two + tre_thr )
+
.125 * ( dos_two_x - dos_thr_x + tre_two_x - tre_thr_x
+
dos_two_y + dos_thr_y - tre_two_y - tre_thr_y );
/*
* Return the sixteen LBB stencil values:
*/
*uno_one_1 = newval_uno_one;
*uno_two_1 = newval_uno_two;
*uno_thr_1 = newval_uno_thr;
*uno_fou_1 = newval_uno_fou;
*dos_one_1 = newval_dos_one;
*dos_two_1 = tre_thr;
*dos_thr_1 = newval_dos_thr;
*dos_fou_1 = tre_fou;
*tre_one_1 = newval_tre_one;
*tre_two_1 = newval_tre_two;
*tre_thr_1 = newval_tre_thr;
*tre_fou_1 = newval_tre_fou;
*qua_one_1 = newval_qua_one;
*qua_two_1 = qua_thr;
*qua_thr_1 = newval_qua_thr;
*qua_fou_1 = qua_fou;
}
/*
* LBB (Locally Bounded Bicubic) is a high quality nonlinear variant
* of Catmull-Rom. Images resampled with LBB have much smaller halos
* than images resampled with windowed sincs or other interpolatory
* cubic spline filters. Specifically, LBB halos are narrower and the
* over/undershoot amplitude is smaller. This is accomplished without
* a significant reduction in the smoothness of the result (compared
* to Catmull-Rom).
*
* Another important property is that the resampled values are
* contained within the range of nearby input values. Consequently, no
* final clamping is needed to stay "in range" (e.g., 0-255 for
* standard 8-bit images).
*
* LBB was developed by N. Robidoux and C. Racette of the Department
* of Mathematics and Computer Science of Laurentian University in the
* course of C.'s Masters Thesis in Computational Sciences.
*/
/*
* LBB is a novel method with the following properties:
*
* --LBB is a Hermite bicubic method: The bicubic surface is defined,
* one convex hull of four nearby input points at a time, using four
* point values, four x-derivatives, four y-derivatives, and four
* cross-derivatives.
*
* --The stencil for values in a square patch is the usual 4x4.
*
* --LBB is interpolatory.
*
* --It is C^1 with continuous cross derivatives.
*
* --When the limiters are inactive, LBB gives the same results as
* Catmull-Rom.
*
* --When used on binary images, LBB gives results similar to bicubic
* Hermite with all first derivatives---but not necessarily the
* cross derivatives--at the input pixel locations set to zero.
*
* --The LBB reconstruction is locally bounded: Over each square
* patch, the surface is contained between the minimum and the
* maximum values among the 16 nearest input pixel values (those in
* the stencil).
*
* --Consequently, the LBB reconstruction is globally bounded between
* the very smallest input pixel value and the very largest input
* pixel value. (It is not necessary to clamp results.)
*
* The LBB method is based on the method of Ken Brodlie, Petros
* Mashwama and Sohail Butt for constraining Hermite interpolants
* between globally defined planes:
*
* Visualization of surface data to preserve positivity and other
* simple constraints. Computer & Graphics, Vol. 19, Number 4, pages
* 585-594, 1995. DOI: 10.1016/0097-8493(95)00036-C.
*
* Instead of forcing the reconstructed surface to lie between two
* GLOBALLY defined planes, LBB constrains one patch at a time to lie
* between LOCALLY defined planes. This is accomplished by
* constraining the derivatives (x, y and cross) at each input pixel
* location so that if the constraint was applied everywhere the
* surface would fit between the min and max of the values at the 9
* closest pixel locations. Because this is done with each of the four
* pixel locations which define the bicubic patch, this forces the
* reconstructed surface to lie between the min and max of the values
* at the 16 closest values pixel locations. (Each corner defines its
* own 3x3 subgroup of the 4x4 stencil. Consequently, the surface is
* necessarily above the minimum of the four minima, which happens to
* be the minimum over the 4x4. Similarly with the maxima.)
*
* The above paragraph described the "soft" version of LBB. The
* "sharp" version is similar.
*/
static inline double
lbbicubic( const double c00,
const double c10,
const double c01,
const double c11,
const double c00dx,
const double c10dx,
const double c01dx,
const double c11dx,
const double c00dy,
const double c10dy,
const double c01dy,
const double c11dy,
const double c00dxdy,
const double c10dxdy,
const double c01dxdy,
const double c11dxdy,
const double uno_one,
const double uno_two,
const double uno_thr,
const double uno_fou,
const double dos_one,
const double dos_two,
const double dos_thr,
const double dos_fou,
const double tre_one,
const double tre_two,
const double tre_thr,
const double tre_fou,
const double qua_one,
const double qua_two,
const double qua_thr,
const double qua_fou )
{
/*
* STENCIL (FOOTPRINT) OF INPUT VALUES:
*
* The stencil of LBB is the same as for any standard Hermite
* bicubic (e.g., Catmull-Rom):
*
* (ix-1,iy-1) (ix,iy-1) (ix+1,iy-1) (ix+2,iy-1)
* = uno_one = uno_two = uno_thr = uno_fou
*
* (ix-1,iy) (ix,iy) (ix+1,iy) (ix+2,iy)
* = dos_one = dos_two = dos_thr = dos_fou
* X
* (ix-1,iy+1) (ix,iy+1) (ix+1,iy+1) (ix+2,iy+1)
* = tre_one = tre_two = tre_thr = tre_fou
*
* (ix-1,iy+2) (ix,iy+2) (ix+1,iy+2) (ix+2,iy+2)
* = qua_one = qua_two = qua_thr = qua_fou
*
* where ix is the (pseudo-)floor of the requested left-to-right
* location ("X"), and iy is the floor of the requested up-to-down
* location.
*/
#if defined (__NOHALO_CHEAP_H__)
/*
* Computation of the four min and four max over 3x3 input data
* sub-crosses of the 4x4 input stencil.
*
* We exploit the fact that the data comes from the (co-monotone)
* method Nohalo so that it is known ahead of time that
*
* dos_thr is between dos_two and dos_fou
*
* tre_two is between dos_two and qua_two
*
* tre_fou is between dos_fou and qua_fou
*
* qua_thr is between qua_two and qua_fou
*
* tre_thr is in the convex hull of dos_two, dos_fou, qua_two and qua_fou
*
* to minimize the number of flags and conditional moves.
*
* (The "between" are not strict: "a between b and c" means
*
* "min(b,c) <= a <= max(b,c)".)
*
* We have, however, succeeded in eliminating one flag computation
* (one comparison) and one use of an intermediate result. See the
* two commented out lines below.
*
* Overall, only 20 comparisons and 28 "? :" are needed (to compute
* 4 mins and 4 maxes). If you can figure how to do this more
* efficiently, let us know.
*/
const double m1 = (uno_two <= tre_two) ? uno_two : tre_two ;
const double M1 = (uno_two <= tre_two) ? tre_two : uno_two ;
const double m2 = (dos_thr <= qua_thr) ? dos_thr : qua_thr ;
const double M2 = (dos_thr <= qua_thr) ? qua_thr : dos_thr ;
const double m3 = (dos_two <= dos_fou) ? dos_two : dos_fou ;
const double M3 = (dos_two <= dos_fou) ? dos_fou : dos_two ;
const double m4 = (uno_thr <= tre_thr) ? uno_thr : tre_thr ;
const double M4 = (uno_thr <= tre_thr) ? tre_thr : uno_thr ;
const double m5 = (dos_two <= qua_two) ? dos_two : qua_two ;
const double M5 = (dos_two <= qua_two) ? qua_two : dos_two ;
const double m6 = (tre_one <= tre_thr) ? tre_one : tre_thr ;
const double M6 = (tre_one <= tre_thr) ? tre_thr : tre_one ;
const double m7 = (dos_one <= dos_thr) ? dos_one : dos_thr ;
const double M7 = (dos_one <= dos_thr) ? dos_thr : dos_one ;
const double m8 = (tre_two <= tre_fou) ? tre_two : tre_fou ;
const double M8 = (tre_two <= tre_fou) ? tre_fou : tre_two ;
const double m9 = NOHALO_MIN( m1, dos_two );
const double M9 = NOHALO_MAX( M1, dos_two );
const double m10 = NOHALO_MIN( m2, tre_thr );
const double M10 = NOHALO_MAX( M2, tre_thr );
const double min10 = NOHALO_MIN( m3, m4 );
const double max10 = NOHALO_MAX( M3, M4 );
const double min01 = NOHALO_MIN( m5, m6 );
const double max01 = NOHALO_MAX( M5, M6 );
const double min00 = NOHALO_MIN( m9, m7 );
const double max00 = NOHALO_MAX( M9, M7 );
const double min11 = NOHALO_MIN( m10, m8 );
const double max11 = NOHALO_MAX( M10, M8 );
#else
/*
* Computation of the four min and four max over 3x3 input data
* sub-blocks of the 4x4 input stencil.
*
* Surprisingly, we have not succeeded in reducing the number of "?
* :" needed by using the fact that the data comes from the
* (co-monotone) method Nohalo so that it is known ahead of time
* that
*
* dos_thr is between dos_two and dos_fou
*
* tre_two is between dos_two and qua_two
*
* tre_fou is between dos_fou and qua_fou
*
* qua_thr is between qua_two and qua_fou
*
* tre_thr is in the convex hull of dos_two, dos_fou, qua_two and qua_fou
*
* to minimize the number of flags and conditional moves.
*
* (The "between" are not strict: "a between b and c" means
*
* "min(b,c) <= a <= max(b,c)".)
*
* We have, however, succeeded in eliminating one flag computation
* (one comparison) and one use of an intermediate result. See the
* two commented out lines below.
*
* Overall, only 27 comparisons are needed (to compute 4 mins and 4
* maxes!). Without the simplification, 28 comparisons would be
* used. Either way, the number of "? :" used is 34. If you can
* figure how to do this more efficiently, let us know.
*/
const double m1 = (dos_two <= dos_thr) ? dos_two : dos_thr ;
const double M1 = (dos_two <= dos_thr) ? dos_thr : dos_two ;
const double m2 = (tre_two <= tre_thr) ? tre_two : tre_thr ;
const double M2 = (tre_two <= tre_thr) ? tre_thr : tre_two ;
const double m4 = (qua_two <= qua_thr) ? qua_two : qua_thr ;
const double M4 = (qua_two <= qua_thr) ? qua_thr : qua_two ;
const double m3 = (uno_two <= uno_thr) ? uno_two : uno_thr ;
const double M3 = (uno_two <= uno_thr) ? uno_thr : uno_two ;
const double m5 = NOHALO_MIN( m1, m2 );
const double M5 = NOHALO_MAX( M1, M2 );
const double m6 = (dos_one <= tre_one) ? dos_one : tre_one ;
const double M6 = (dos_one <= tre_one) ? tre_one : dos_one ;
const double m7 = (dos_fou <= tre_fou) ? dos_fou : tre_fou ;
const double M7 = (dos_fou <= tre_fou) ? tre_fou : dos_fou ;
const double m13 = (dos_fou <= qua_fou) ? dos_fou : qua_fou ;
const double M13 = (dos_fou <= qua_fou) ? qua_fou : dos_fou ;
/*
* Because the data comes from Nohalo subdivision, the following two
* lines can be replaced by the above, simpler, two lines without
* changing the results.
*
* const double m13 = NOHALO_MIN( m7, qua_fou );
* const double M13 = NOHALO_MAX( M7, qua_fou );
*
* This also allows reodering the comparisons to put space between
* the computation of a result and its use.
*/
const double m9 = NOHALO_MIN( m5, m4 );
const double M9 = NOHALO_MAX( M5, M4 );
const double m11 = NOHALO_MIN( m6, qua_one );
const double M11 = NOHALO_MAX( M6, qua_one );
const double m10 = NOHALO_MIN( m6, uno_one );
const double M10 = NOHALO_MAX( M6, uno_one );
const double m8 = NOHALO_MIN( m5, m3 );
const double M8 = NOHALO_MAX( M5, M3 );
const double m12 = NOHALO_MIN( m7, uno_fou );
const double M12 = NOHALO_MAX( M7, uno_fou );
const double min11 = NOHALO_MIN( m9, m13 );
const double max11 = NOHALO_MAX( M9, M13 );
const double min01 = NOHALO_MIN( m9, m11 );
const double max01 = NOHALO_MAX( M9, M11 );
const double min00 = NOHALO_MIN( m8, m10 );
const double max00 = NOHALO_MAX( M8, M10 );
const double min10 = NOHALO_MIN( m8, m12 );
const double max10 = NOHALO_MAX( M8, M12 );
#endif
/*
* The remainder of the "per channel" computation involves the
* computation of:
*
* --8 conditional moves,
*
* --8 signs (in which the sign of zero is unimportant),
*
* --12 minima of two values,
*
* --8 maxima of two values,
*
* --8 absolute values,
*
* for a grand total of 29 minima, 25 maxima, 8 conditional moves, 8
* signs, and 8 absolute values. If everything is done with
* conditional moves, "only" 28+8+8+12+8+8=72 flags are involved
* (because initial min and max can be computed with one flag).
*
* The "per channel" part of the computation also involves 107
* arithmetic operations (54 *, 21 +, 42 -).
*/
/*
* Distances to the local min and max:
*/
const double u11 = tre_thr - min11;
const double v11 = max11 - tre_thr;
const double u01 = tre_two - min01;
const double v01 = max01 - tre_two;
const double u00 = dos_two - min00;
const double v00 = max00 - dos_two;
const double u10 = dos_thr - min10;
const double v10 = max10 - dos_thr;
/*
* Initial values of the derivatives computed with centered
* differences. Factors of 1/2 are left out because they are folded
* in later:
*/
const double dble_dzdx00i = dos_thr - dos_one;
const double dble_dzdy11i = qua_thr - dos_thr;
const double dble_dzdx10i = dos_fou - dos_two;
const double dble_dzdy01i = qua_two - dos_two;
const double dble_dzdx01i = tre_thr - tre_one;
const double dble_dzdy10i = tre_thr - uno_thr;
const double dble_dzdx11i = tre_fou - tre_two;
const double dble_dzdy00i = tre_two - uno_two;
/*
* Signs of the derivatives. The upcoming clamping does not change
* them (except if the clamping sends a negative derivative to 0, in
* which case the sign does not matter anyway).
*/
const double sign_dzdx00 = NOHALO_SIGN( dble_dzdx00i );
const double sign_dzdx10 = NOHALO_SIGN( dble_dzdx10i );
const double sign_dzdx01 = NOHALO_SIGN( dble_dzdx01i );
const double sign_dzdx11 = NOHALO_SIGN( dble_dzdx11i );
const double sign_dzdy00 = NOHALO_SIGN( dble_dzdy00i );
const double sign_dzdy10 = NOHALO_SIGN( dble_dzdy10i );
const double sign_dzdy01 = NOHALO_SIGN( dble_dzdy01i );
const double sign_dzdy11 = NOHALO_SIGN( dble_dzdy11i );
/*
* Initial values of the cross-derivatives. Factors of 1/4 are left
* out because folded in later:
*/
const double quad_d2zdxdy00i = uno_one - uno_thr + dble_dzdx01i;
const double quad_d2zdxdy10i = uno_two - uno_fou + dble_dzdx11i;
const double quad_d2zdxdy01i = qua_thr - qua_one - dble_dzdx00i;
const double quad_d2zdxdy11i = qua_fou - qua_two - dble_dzdx10i;
/*
* Slope limiters. The key multiplier is 3 but we fold a factor of
* 2, hence 6:
*/
const double dble_slopelimit_00 = 6.0 * NOHALO_MIN( u00, v00 );
const double dble_slopelimit_10 = 6.0 * NOHALO_MIN( u10, v10 );
const double dble_slopelimit_01 = 6.0 * NOHALO_MIN( u01, v01 );
const double dble_slopelimit_11 = 6.0 * NOHALO_MIN( u11, v11 );
/*
* Clamped first derivatives:
*/
const double dble_dzdx00 =
( sign_dzdx00 * dble_dzdx00i <= dble_slopelimit_00 )
? dble_dzdx00i : sign_dzdx00 * dble_slopelimit_00;
const double dble_dzdy00 =
( sign_dzdy00 * dble_dzdy00i <= dble_slopelimit_00 )
? dble_dzdy00i : sign_dzdy00 * dble_slopelimit_00;
const double dble_dzdx10 =
( sign_dzdx10 * dble_dzdx10i <= dble_slopelimit_10 )
? dble_dzdx10i : sign_dzdx10 * dble_slopelimit_10;
const double dble_dzdy10 =
( sign_dzdy10 * dble_dzdy10i <= dble_slopelimit_10 )
? dble_dzdy10i : sign_dzdy10 * dble_slopelimit_10;
const double dble_dzdx01 =
( sign_dzdx01 * dble_dzdx01i <= dble_slopelimit_01 )
? dble_dzdx01i : sign_dzdx01 * dble_slopelimit_01;
const double dble_dzdy01 =
( sign_dzdy01 * dble_dzdy01i <= dble_slopelimit_01 )
? dble_dzdy01i : sign_dzdy01 * dble_slopelimit_01;
const double dble_dzdx11 =
( sign_dzdx11 * dble_dzdx11i <= dble_slopelimit_11 )
? dble_dzdx11i : sign_dzdx11 * dble_slopelimit_11;
const double dble_dzdy11 =
( sign_dzdy11 * dble_dzdy11i <= dble_slopelimit_11 )
? dble_dzdy11i : sign_dzdy11 * dble_slopelimit_11;
/*
* Sums and differences of first derivatives:
*/
const double twelve_sum00 = 6.0 * ( dble_dzdx00 + dble_dzdy00 );
const double twelve_dif00 = 6.0 * ( dble_dzdx00 - dble_dzdy00 );
const double twelve_sum10 = 6.0 * ( dble_dzdx10 + dble_dzdy10 );
const double twelve_dif10 = 6.0 * ( dble_dzdx10 - dble_dzdy10 );
const double twelve_sum01 = 6.0 * ( dble_dzdx01 + dble_dzdy01 );
const double twelve_dif01 = 6.0 * ( dble_dzdx01 - dble_dzdy01 );
const double twelve_sum11 = 6.0 * ( dble_dzdx11 + dble_dzdy11 );
const double twelve_dif11 = 6.0 * ( dble_dzdx11 - dble_dzdy11 );
/*
* Absolute values of the sums:
*/
const double twelve_abs_sum00 = NOHALO_ABS( twelve_sum00 );
const double twelve_abs_sum10 = NOHALO_ABS( twelve_sum10 );
const double twelve_abs_sum01 = NOHALO_ABS( twelve_sum01 );
const double twelve_abs_sum11 = NOHALO_ABS( twelve_sum11 );
/*
* Scaled distances to the min:
*/
const double u00_times_36 = 36.0 * u00;
const double u10_times_36 = 36.0 * u10;
const double u01_times_36 = 36.0 * u01;
const double u11_times_36 = 36.0 * u11;
/*
* First cross-derivative limiter:
*/
const double first_limit00 = twelve_abs_sum00 - u00_times_36;
const double first_limit10 = twelve_abs_sum10 - u10_times_36;
const double first_limit01 = twelve_abs_sum01 - u01_times_36;
const double first_limit11 = twelve_abs_sum11 - u11_times_36;
const double quad_d2zdxdy00ii = NOHALO_MAX( quad_d2zdxdy00i, first_limit00 );
const double quad_d2zdxdy10ii = NOHALO_MAX( quad_d2zdxdy10i, first_limit10 );
const double quad_d2zdxdy01ii = NOHALO_MAX( quad_d2zdxdy01i, first_limit01 );
const double quad_d2zdxdy11ii = NOHALO_MAX( quad_d2zdxdy11i, first_limit11 );
/*
* Scaled distances to the max:
*/
const double v00_times_36 = 36.0 * v00;
const double v10_times_36 = 36.0 * v10;
const double v01_times_36 = 36.0 * v01;
const double v11_times_36 = 36.0 * v11;
/*
* Second cross-derivative limiter:
*/
const double second_limit00 = v00_times_36 - twelve_abs_sum00;
const double second_limit10 = v10_times_36 - twelve_abs_sum10;
const double second_limit01 = v01_times_36 - twelve_abs_sum01;
const double second_limit11 = v11_times_36 - twelve_abs_sum11;
const double quad_d2zdxdy00iii =
NOHALO_MIN( quad_d2zdxdy00ii, second_limit00 );
const double quad_d2zdxdy10iii =
NOHALO_MIN( quad_d2zdxdy10ii, second_limit10 );
const double quad_d2zdxdy01iii =
NOHALO_MIN( quad_d2zdxdy01ii, second_limit01 );
const double quad_d2zdxdy11iii =
NOHALO_MIN( quad_d2zdxdy11ii, second_limit11 );
/*
* Absolute values of the differences:
*/
const double twelve_abs_dif00 = NOHALO_ABS( twelve_dif00 );
const double twelve_abs_dif10 = NOHALO_ABS( twelve_dif10 );
const double twelve_abs_dif01 = NOHALO_ABS( twelve_dif01 );
const double twelve_abs_dif11 = NOHALO_ABS( twelve_dif11 );
/*
* Third cross-derivative limiter:
*/
const double third_limit00 = twelve_abs_dif00 - v00_times_36;
const double third_limit10 = twelve_abs_dif10 - v10_times_36;
const double third_limit01 = twelve_abs_dif01 - v01_times_36;
const double third_limit11 = twelve_abs_dif11 - v11_times_36;
const double quad_d2zdxdy00iiii =
NOHALO_MAX( quad_d2zdxdy00iii, third_limit00);
const double quad_d2zdxdy10iiii =
NOHALO_MAX( quad_d2zdxdy10iii, third_limit10);
const double quad_d2zdxdy01iiii =
NOHALO_MAX( quad_d2zdxdy01iii, third_limit01);
const double quad_d2zdxdy11iiii =
NOHALO_MAX( quad_d2zdxdy11iii, third_limit11);
/*
* Fourth cross-derivative limiter:
*/
const double fourth_limit00 = u00_times_36 - twelve_abs_dif00;
const double fourth_limit10 = u10_times_36 - twelve_abs_dif10;
const double fourth_limit01 = u01_times_36 - twelve_abs_dif01;
const double fourth_limit11 = u11_times_36 - twelve_abs_dif11;
const double quad_d2zdxdy00 = NOHALO_MIN( quad_d2zdxdy00iiii, fourth_limit00);
const double quad_d2zdxdy10 = NOHALO_MIN( quad_d2zdxdy10iiii, fourth_limit10);
const double quad_d2zdxdy01 = NOHALO_MIN( quad_d2zdxdy01iiii, fourth_limit01);
const double quad_d2zdxdy11 = NOHALO_MIN( quad_d2zdxdy11iiii, fourth_limit11);
/*
* Part of the result which does not need derivatives:
*/
const double newval1 = c00 * dos_two
+
c10 * dos_thr
+
c01 * tre_two
+
c11 * tre_thr;
/*
* Twice the part of the result which only needs first derivatives.
*/
const double newval2 = c00dx * dble_dzdx00
+
c10dx * dble_dzdx10
+
c01dx * dble_dzdx01
+
c11dx * dble_dzdx11
+
c00dy * dble_dzdy00
+
c10dy * dble_dzdy10
+
c01dy * dble_dzdy01
+
c11dy * dble_dzdy11;
/*
* Four times the part of the result which only uses cross
* derivatives:
*/
const double newval3 = c00dxdy * quad_d2zdxdy00
+
c10dxdy * quad_d2zdxdy10
+
c01dxdy * quad_d2zdxdy01
+
c11dxdy * quad_d2zdxdy11;
const double newval = newval1 + .5 * newval2 + .25 * newval3;
return newval;
}
/*
* Call Nohalo+LBB with a careful type conversion as a parameter.
*
* It would be nice to do this with templates somehow---for one thing
* this would allow code comments!---but we can't figure a clean way
* to do it.
*/
#define NOHALO_CONVERSION( conversion ) \
template <typename T> static void inline \
nohalo_ ## conversion( void* restrict pout, \
const void* restrict pin, \
const int bands, \
const int lskip, \
const double x_0, \
const double y_0 ) \
{ \
T* restrict out = (T *) pout; \
\
const T* restrict in = (T *) pin; \
\
\
const int sign_of_x_0 = 2 * ( x_0 >= 0. ) - 1; \
const int sign_of_y_0 = 2 * ( y_0 >= 0. ) - 1; \
\
\
const int shift_forw_1_pix = sign_of_x_0 * bands; \
const int shift_forw_1_row = sign_of_y_0 * lskip; \
\
const int shift_back_1_pix = -shift_forw_1_pix; \
const int shift_back_1_row = -shift_forw_1_row; \
\
const int shift_back_2_pix = 2 * shift_back_1_pix; \
const int shift_back_2_row = 2 * shift_back_1_row; \
const int shift_forw_2_pix = 2 * shift_forw_1_pix; \
const int shift_forw_2_row = 2 * shift_forw_1_row; \
\
\
const int uno_two_shift = shift_back_1_pix + shift_back_2_row; \
const int uno_thr_shift = shift_back_2_row; \
const int uno_fou_shift = shift_forw_1_pix + shift_back_2_row; \
\
const int dos_one_shift = shift_back_2_pix + shift_back_1_row; \
const int dos_two_shift = shift_back_1_pix + shift_back_1_row; \
const int dos_thr_shift = shift_back_1_row; \
const int dos_fou_shift = shift_forw_1_pix + shift_back_1_row; \
const int dos_fiv_shift = shift_forw_2_pix + shift_back_1_row; \
\
const int tre_one_shift = shift_back_2_pix; \
const int tre_two_shift = shift_back_1_pix; \
const int tre_thr_shift = 0; \
const int tre_fou_shift = shift_forw_1_pix; \
const int tre_fiv_shift = shift_forw_2_pix; \
\
const int qua_one_shift = shift_back_2_pix + shift_forw_1_row; \
const int qua_two_shift = shift_back_1_pix + shift_forw_1_row; \
const int qua_thr_shift = shift_forw_1_row; \
const int qua_fou_shift = shift_forw_1_pix + shift_forw_1_row; \
const int qua_fiv_shift = shift_forw_2_pix + shift_forw_1_row; \
\
const int cin_two_shift = shift_back_1_pix + shift_forw_2_row; \
const int cin_thr_shift = shift_forw_2_row; \
const int cin_fou_shift = shift_forw_1_pix + shift_forw_2_row; \
\
\
const double xp1over2 = ( 2 * sign_of_x_0 ) * x_0; \
const double xm1over2 = xp1over2 - 1.0; \
const double onepx = 0.5 + xp1over2; \
const double onemx = 1.5 - xp1over2; \
const double xp1over2sq = xp1over2 * xp1over2; \
\
const double yp1over2 = ( 2 * sign_of_y_0 ) * y_0; \
const double ym1over2 = yp1over2 - 1.0; \
const double onepy = 0.5 + yp1over2; \
const double onemy = 1.5 - yp1over2; \
const double yp1over2sq = yp1over2 * yp1over2; \
\
const double xm1over2sq = xm1over2 * xm1over2; \
const double ym1over2sq = ym1over2 * ym1over2; \
\
const double twice1px = onepx + onepx; \
const double twice1py = onepy + onepy; \
const double twice1mx = onemx + onemx; \
const double twice1my = onemy + onemy; \
\
const double xm1over2sq_times_ym1over2sq = xm1over2sq * ym1over2sq; \
const double xp1over2sq_times_ym1over2sq = xp1over2sq * ym1over2sq; \
const double xp1over2sq_times_yp1over2sq = xp1over2sq * yp1over2sq; \
const double xm1over2sq_times_yp1over2sq = xm1over2sq * yp1over2sq; \
\
const double four_times_1px_times_1py = twice1px * twice1py; \
const double four_times_1mx_times_1py = twice1mx * twice1py; \
const double twice_xp1over2_times_1py = xp1over2 * twice1py; \
const double twice_xm1over2_times_1py = xm1over2 * twice1py; \
\
const double twice_xm1over2_times_1my = xm1over2 * twice1my; \
const double twice_xp1over2_times_1my = xp1over2 * twice1my; \
const double four_times_1mx_times_1my = twice1mx * twice1my; \
const double four_times_1px_times_1my = twice1px * twice1my; \
\
const double twice_1px_times_ym1over2 = twice1px * ym1over2; \
const double twice_1mx_times_ym1over2 = twice1mx * ym1over2; \
const double xp1over2_times_ym1over2 = xp1over2 * ym1over2; \
const double xm1over2_times_ym1over2 = xm1over2 * ym1over2; \
\
const double xm1over2_times_yp1over2 = xm1over2 * yp1over2; \
const double xp1over2_times_yp1over2 = xp1over2 * yp1over2; \
const double twice_1mx_times_yp1over2 = twice1mx * yp1over2; \
const double twice_1px_times_yp1over2 = twice1px * yp1over2; \
\
\
const double c00 = \
four_times_1px_times_1py * xm1over2sq_times_ym1over2sq; \
const double c00dx = \
twice_xp1over2_times_1py * xm1over2sq_times_ym1over2sq; \
const double c00dy = \
twice_1px_times_yp1over2 * xm1over2sq_times_ym1over2sq; \
const double c00dxdy = \
xp1over2_times_yp1over2 * xm1over2sq_times_ym1over2sq; \
\
const double c10 = \
four_times_1mx_times_1py * xp1over2sq_times_ym1over2sq; \
const double c10dx = \
twice_xm1over2_times_1py * xp1over2sq_times_ym1over2sq; \
const double c10dy = \
twice_1mx_times_yp1over2 * xp1over2sq_times_ym1over2sq; \
const double c10dxdy = \
xm1over2_times_yp1over2 * xp1over2sq_times_ym1over2sq; \
\
const double c01 = \
four_times_1px_times_1my * xm1over2sq_times_yp1over2sq; \
const double c01dx = \
twice_xp1over2_times_1my * xm1over2sq_times_yp1over2sq; \
const double c01dy = \
twice_1px_times_ym1over2 * xm1over2sq_times_yp1over2sq; \
const double c01dxdy = \
xp1over2_times_ym1over2 * xm1over2sq_times_yp1over2sq; \
\
const double c11 = \
four_times_1mx_times_1my * xp1over2sq_times_yp1over2sq; \
const double c11dx = \
twice_xm1over2_times_1my * xp1over2sq_times_yp1over2sq; \
const double c11dy = \
twice_1mx_times_ym1over2 * xp1over2sq_times_yp1over2sq; \
const double c11dxdy = \
xm1over2_times_ym1over2 * xp1over2sq_times_yp1over2sq; \
\
\
int band = bands; \
\
\
do \
{ \
double uno_one, uno_two, uno_thr, uno_fou; \
double dos_one, dos_two, dos_thr, dos_fou; \
double tre_one, tre_two, tre_thr, tre_fou; \
double qua_one, qua_two, qua_thr, qua_fou; \
\
nohalo_subdivision( in[ uno_two_shift ], \
in[ uno_thr_shift ], \
in[ uno_fou_shift ], \
in[ dos_one_shift ], \
in[ dos_two_shift ], \
in[ dos_thr_shift ], \
in[ dos_fou_shift ], \
in[ dos_fiv_shift ], \
in[ tre_one_shift ], \
in[ tre_two_shift ], \
in[ tre_thr_shift ], \
in[ tre_fou_shift ], \
in[ tre_fiv_shift ], \
in[ qua_one_shift ], \
in[ qua_two_shift ], \
in[ qua_thr_shift ], \
in[ qua_fou_shift ], \
in[ qua_fiv_shift ], \
in[ cin_two_shift ], \
in[ cin_thr_shift ], \
in[ cin_fou_shift ], \
&uno_one, \
&uno_two, \
&uno_thr, \
&uno_fou, \
&dos_one, \
&dos_two, \
&dos_thr, \
&dos_fou, \
&tre_one, \
&tre_two, \
&tre_thr, \
&tre_fou, \
&qua_one, \
&qua_two, \
&qua_thr, \
&qua_fou ); \
\
const double double_result = \
lbbicubic( c00, \
c10, \
c01, \
c11, \
c00dx, \
c10dx, \
c01dx, \
c11dx, \
c00dy, \
c10dy, \
c01dy, \
c11dy, \
c00dxdy, \
c10dxdy, \
c01dxdy, \
c11dxdy, \
uno_one, \
uno_two, \
uno_thr, \
uno_fou, \
dos_one, \
dos_two, \
dos_thr, \
dos_fou, \
tre_one, \
tre_two, \
tre_thr, \
tre_fou, \
qua_one, \
qua_two, \
qua_thr, \
qua_fou ); \
\
{ \
const T result = to_ ## conversion<T>( double_result ); \
in++; \
*out++ = result; \
} \
\
} while (--band); \
}
NOHALO_CONVERSION( fptypes )
NOHALO_CONVERSION( withsign )
NOHALO_CONVERSION( nosign )
#define CALL( T, conversion ) \
nohalo_ ## conversion<T>( out, \
p, \
bands, \
lskip, \
relative_x, \
relative_y );
/*
* We need C linkage:
*/
extern "C" {
G_DEFINE_TYPE( VipsInterpolateNohalo, vips_interpolate_nohalo,
VIPS_TYPE_INTERPOLATE );
}
static void
vips_interpolate_nohalo_interpolate( VipsInterpolate* restrict interpolate,
void* restrict out,
VipsRegion* restrict in,
double absolute_x,
double absolute_y )
{
/* absolute_x and absolute_y are always >= 2.0 (see double-check assert
* below), so we don't need floor().
*
* It's 2 not 0 since we ask for a window_offset of 2 at the bottom.
*/
const int ix = (int) (absolute_x + 0.5);
const int iy = (int) (absolute_y + 0.5);
/*
* Move the pointer to (the first band of) the top/left pixel of the
* 2x2 group of pixel centers which contains the sampling location
* in its convex hull:
*/
const VipsPel* restrict p = VIPS_REGION_ADDR( in, ix, iy );
const double relative_x = absolute_x - ix;
const double relative_y = absolute_y - iy;
/*
* VIPS versions of Nicolas's pixel addressing values.
*/
const int lskip = VIPS_REGION_LSKIP( in ) /
VIPS_IMAGE_SIZEOF_ELEMENT( in->im );
/*
* Double the bands for complex images to account for the real and
* imaginary parts being computed independently:
*/
const int actual_bands = in->im->Bands;
const int bands =
vips_band_format_iscomplex( in->im->BandFmt ) ?
2 * actual_bands : actual_bands;
g_assert( ix - 2 >= in->valid.left );
g_assert( iy - 2 >= in->valid.top );
g_assert( ix + 2 <= VIPS_RECT_RIGHT( &in->valid ) );
g_assert( iy + 2 <= VIPS_RECT_BOTTOM( &in->valid ) );
/* Confirm that absolute_x and absolute_y are >= 2, see above.
*/
g_assert( absolute_x >= 2.0 );
g_assert( absolute_y >= 2.0 );
switch( in->im->BandFmt ) {
case VIPS_FORMAT_UCHAR:
CALL( unsigned char, nosign );
break;
case VIPS_FORMAT_CHAR:
CALL( signed char, withsign );
break;
case VIPS_FORMAT_USHORT:
CALL( unsigned short, nosign );
break;
case VIPS_FORMAT_SHORT:
CALL( signed short, withsign );
break;
case VIPS_FORMAT_UINT:
CALL( unsigned int, nosign );
break;
case VIPS_FORMAT_INT:
CALL( signed int, withsign );
break;
/*
* Complex images are handled by doubling of bands.
*/
case VIPS_FORMAT_FLOAT:
case VIPS_FORMAT_COMPLEX:
CALL( float, fptypes );
break;
case VIPS_FORMAT_DOUBLE:
case VIPS_FORMAT_DPCOMPLEX:
CALL( double, fptypes );
break;
default:
g_assert( 0 );
break;
}
}
static void
vips_interpolate_nohalo_class_init( VipsInterpolateNohaloClass *klass )
{
VipsObjectClass *object_class = VIPS_OBJECT_CLASS( klass );
VipsInterpolateClass *interpolate_class = VIPS_INTERPOLATE_CLASS( klass );
object_class->nickname = "nohalo";
object_class->description =
_( "edge sharpening resampler with halo reduction" );
interpolate_class->interpolate = vips_interpolate_nohalo_interpolate;
interpolate_class->window_size = 6;
interpolate_class->window_offset = 2;
}
static void
vips_interpolate_nohalo_init( VipsInterpolateNohalo *nohalo )
{
}
|