File: nohalo.cpp

package info (click to toggle)
vips 8.14.1-3%2Bdeb12u2
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 35,912 kB
  • sloc: ansic: 165,449; cpp: 10,987; python: 4,462; xml: 4,212; sh: 471; perl: 40; makefile: 23
file content (1596 lines) | stat: -rw-r--r-- 63,261 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
/* nohalo subdivision followed by lbb (locally bounded bicubic)
 * interpolation resampler
 *
 * Nohalo level 1 with bilinear finishing scheme hacked for VIPS by
 * J. Cupitt based on code by N. Robidoux, 20/1/09
 *
 * N. Robidoux and J. Cupitt, 4-17/3/09
 *
 * N. Robidoux, 1/4-29/5/2009
 *
 * Nohalo level 2 with bilinear finishing scheme by N. Robidoux based
 * on code by N. Robidoux, A. Turcotte and J. Cupitt, 27/1/2010
 *
 * Nohalo level 1 with LBB finishing scheme by N. Robidoux and
 * C. Racette, 11-18/5/2010
 */

/*

    This file is part of VIPS.

    VIPS is free software; you can redistribute it and/or modify it
    under the terms of the GNU Lesser General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
    02110-1301 USA

 */

/*

    These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk

 */

/*
 * 2009-2010 (c) Nicolas Robidoux, Chantal Racette, John Cupitt and
 * Adam Turcotte
 *
 * N. Robidoux thanks Geert Jordaens, Ralf Meyer, Øyvind Kolås,
 * Minglun Gong, Eric Daoust and Sven Neumann for useful comments and
 * code.
 *
 * N. Robidoux's early research on Nohalo funded in part by an NSERC
 * (National Science and Engineering Research Council of Canada)
 * Discovery Grant awarded to him (298424--2004).
 *
 * C. Racette's image resampling research and programming funded in
 * part by an NSERC (National Science and Engineering Research Council
 * of Canada) Alexander Graham Bell Canada Graduate Scholarship, by an
 * NSERC Discovery Grant awarded to Julien Dompierre (grant number
 * 20-61098) and by N. Robidoux's Laurentian University professional
 * allowance.
 *
 * A. Turcotte's image resampling research on reduced halo funded in
 * part by an NSERC Alexander Graham Bell Canada Graduate Scholarhip
 * awarded to him and by a Google Summer of Code 2010 award awarded to
 * GIMP (Gnu Image Manipulation Program).
 *
 * Nohalo with LBB finishing scheme was developed by N. Robidoux and
 * C. Racette at the Department of Mathematics and Computer Science of
 * Laurentian University in the course of C. Racette's Masters thesis
 * in Computational Sciences. Preliminary work on Nohalo and monotone
 * interpolation was performed by C. Racette and N. Robidoux in the
 * course of her honours thesis, by N. Robidoux, A. Turcotte and
 * E. Daoust during Google Summer of Code 2009 (through two awards
 * made to GIMP to improve GEGL), and, earlier, by N. Robidoux,
 * A. Turcotte, J. Cupitt, M. Gong and K. Martinez.
 */

/*
 * Nohalo with LBB as finishing scheme has two versions, which are
 * only different in the way LBB is implemented:
 *
 *   A "soft" version, which shows a little less staircasing and a
 *   little more haloing, and which is a little more expensive to
 *   compute. We recommend this as the default.
 *
 *   A "sharp" version, which shows a little more staircasing and a
 *   little less haloing, and which is a little cheaper (it uses 6
 *   less comparisons and 12 less "? :").
 *
 * The only difference between the two is that the "soft" versions
 * uses local minima and maxima computed over 3x3 square blocks, and
 * the "sharp" version uses local minima and maxima computed over 3x3
 * crosses.
 *
 * The "sharp" version is (a little) faster. We don't know yet for
 * sure, but it appears that the "soft" version gives marginally
 * better results.
 *
 * If you want to use the "sharp" (cheaper) version, uncomment the
 * following three pre-processor code lines:
 */

/*
#ifndef __NOHALO_CHEAP_H__
#define __NOHALO_CHEAP_H__
#endif
 */

/*
 * ================
 * NOHALO RESAMPLER
 * ================
 *
 * "Nohalo" is a resampler with a mission: smoothly straightening
 * oblique lines without undesirable side-effects. In particular,
 * without much blurring and with no added haloing.
 *
 * In this code, one Nohalo subdivision is performed. The
 * interpolation is finished with LBB (Locally Bounded Bicubic).
 *
 * Key properties:
 *
 * =======================
 * Nohalo is interpolatory
 * =======================
 *
 * That is, Nohalo preserves point values: If asked for the value at
 * the center of an input pixel, the sampler returns the corresponding
 * value, unchanged. In addition, because Nohalo is continuous, if
 * asked for a value at a location "very close" to the center of an
 * input pixel, then the sampler returns a value "very close" to
 * it. (Nohalo is not smoothing like, say, B-Spline
 * pseudo-interpolation.)
 *
 * ====================================================================
 * Nohalo subdivision is co-monotone (this is why it's called "no-halo")
 * ====================================================================
 *
 * One consequence of monotonicity is that additional subdivided
 * values are in the range of the four closest input values, which is
 * a form of local boundedness.  (Note: plain vanilla bilinear and
 * nearest neighbour are also co-monotone.) LBB is also locally
 * bounded. Consequently, Nohalo subdivision followed by LBB is
 * locally bounded. When used as a finishing scheme for Nohalo, the
 * standard LBB bounds imply that the final interpolated value is in
 * the range of the nine closest input values. This property is why
 * there is very little added haloing, even when a finishing scheme
 * which is not strictly monotone. Another consequence of local
 * boundedness is that clamping is unnecessary (provided abyss values
 * are within the range of acceptable values, which is "always" the
 * case).
 *
 * Note: If the abyss policy is an extrapolating one---for example,
 * linear or bilinear extrapolation---clamping is still unnecessary
 * UNLESS one attempts to resample outside of the convex hull of the
 * input pixel positions. Consequence: the "corner" image size
 * convention does not require clamping when using linear
 * extrapolation abyss policy when performing image resizing, but the
 * "center" one does, when upscaling, at locations very close to the
 * boundary. If computing values at locations outside of the convex
 * hull of the pixel locations of the input image, nearest neighbour
 * abyss policy is most likely better anyway, because linear
 * extrapolation produces "streaks" if positions far outside the
 * original image boundary are resampled.
 *
 * ========================
 * Nohalo is a local method
 * ========================
 *
 * The interpolated pixel value when using Nohalo subdivision followed
 * by LBB only depends on the 21 (5x5 minus the four corners) closest
 * input values.
 *
 * ===============================
 * Nohalo is second order accurate
 * ===============================
 *
 * (Except possibly near the boundary: it is easy to make this
 * property carry over everywhere but this requires a tuned abyss
 * policy---linear extrapolation, say---or building the boundary
 * conditions inside the sampler.)  Nohalo+LBB is exact on linear
 * intensity profiles, meaning that if the input pixel values (in the
 * stencil) are obtained from a function of the form f(x,y) = a + b*x
 * + c*y (a, b, c constants), then the computed pixel value is exactly
 * the value of f(x,y) at the asked-for sampling location. The
 * boundary condition which is emulated by VIPS through the "extend"
 * extension of the input image---this corresponds to the nearest
 * neighbour abyss policy---does NOT make this resampler exact on
 * linears near the boundary. It does, however, guarantee that no
 * clamping is required even when resampled values are computed at
 * positions outside of the extent of the input image (when
 * extrapolation is required).
 *
 * ===================
 * Nohalo is nonlinear
 * ===================
 *
 * Both Nohalo and LBB are nonlinear, consequently their composition
 * is nonlinear.  In particular, resampling a sum of images may not be
 * the same as summing the resamples. (This occurs even without taking
 * into account over and underflow issues: images can only take values
 * within a banded range, and consequently no sampler is truly
 * linear.)
 *
 * ====================
 * Weaknesses of Nohalo
 * ====================
 *
 * In some cases, the initial subdivision computation is wasted:
 *
 * If a region is bi-chromatic, the nonlinear component of Nohalo
 * subdivision is zero in the interior of the region, and consequently
 * Nohalo subdivision boils down to bilinear. For such images, LBB is
 * probably a better choice.
 *
 * =========================
 * Bibliographical reference
 * =========================
 *
 * For more information about Nohalo (a prototype version with
 * bilinear finish instead of LBB), see
 *
 * CPU, SMP and GPU implementations of Nohalo level 1, a fast
 * co-convex antialiasing image resampler by Nicolas Robidoux, Minglun
 * Gong, John Cupitt, Adam Turcotte, and Kirk Martinez, in C3S2E '09:
 * Proceedings of the 2nd Canadian Conference on Computer Science and
 * Software Engineering, p. 185--195, ACM, New York, NY, USA, 2009.
 * http://doi.acm.org/10.1145/1557626.1557657.
 */

/* Uncomment to enable bounds checking for VIPS_REGION_ADDR().
 */
#define DEBUG

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <glib/gi18n-lib.h>

#include <stdio.h>
#include <stdlib.h>

#include <vips/vips.h>
#include <vips/internal.h>

#include "templates.h"

#define VIPS_TYPE_INTERPOLATE_NOHALO \
	(vips_interpolate_nohalo_get_type())
#define VIPS_INTERPOLATE_NOHALO( obj ) \
	(G_TYPE_CHECK_INSTANCE_CAST( (obj), \
	VIPS_TYPE_INTERPOLATE_NOHALO, VipsInterpolateNohalo ))
#define VIPS_INTERPOLATE_NOHALO_CLASS( klass ) \
	(G_TYPE_CHECK_CLASS_CAST( (klass), \
	VIPS_TYPE_INTERPOLATE_NOHALO, VipsInterpolateNohaloClass))
#define VIPS_IS_INTERPOLATE_NOHALO( obj ) \
	(G_TYPE_CHECK_INSTANCE_TYPE( (obj), VIPS_TYPE_INTERPOLATE_NOHALO ))
#define VIPS_IS_INTERPOLATE_NOHALO_CLASS( klass ) \
	(G_TYPE_CHECK_CLASS_TYPE( (klass), VIPS_TYPE_INTERPOLATE_NOHALO ))
#define VIPS_INTERPOLATE_NOHALO_GET_CLASS( obj ) \
	(G_TYPE_INSTANCE_GET_CLASS( (obj), \
	VIPS_TYPE_INTERPOLATE_NOHALO, VipsInterpolateNohaloClass ))

typedef struct _VipsInterpolateNohalo {
	VipsInterpolate parent_object;

} VipsInterpolateNohalo;

typedef struct _VipsInterpolateNohaloClass {
	VipsInterpolateClass parent_class;

} VipsInterpolateNohaloClass;

/*
 * NOHALO_MINMOD is an implementation of the minmod function which
 * only needs two "conditional moves."
 * NOHALO_MINMOD(a,b,a_times_a,a_times_b) "returns"
 * minmod(a,b). The macro parameter ("input") a_times_a is assumed to
 * contain the square of a; a_times_b, the product of a and b.
 *
 * For uncompressed natural images in high bit depth (images for which
 * the slopes a and b are unlikely to be equal to zero or be equal to
 * each other), or chips with good branch prediction, the following
 * version of the minmod function may work well:
 *
 * ( (a_times_b)>=0. ? ( (a_times_b)<(a_times_a) ? (b) : (a) ) : 0. )
 *
 * In this version, the forward branch of the second conditional move
 * is taken when |b|>|a| and when a*b<0. However, the "else" branch is
 * taken when a=0 (or when a=b), which is why the above version is not
 * as effective for images with regions with constant pixel values (or
 * regions with pixel values which vary linearly or bilinearly) since
 * we apply minmod to pairs of differences.
 *
 * The following version is more suitable for images with flat
 * (constant) colour areas, since a, which is a pixel difference, will
 * often be 0, in which case both forward branches are likely. This
 * may be preferable if "branch flag look ahead" does not work so
 * well.
 *
 * ( (a_times_b)>=0. ? ( (a_times_a)<=(a_times_b) ? (a) : (b) ) : 0. )
 *
 * This last version appears to be slightly better than the former in
 * speed tests performed on a recent multicore Intel chip, especially
 * when enlarging a sharp image by a large factor, hence the choice.
 */
#define NOHALO_MINMOD(a,b,a_times_a,a_times_b) \
  ( ( (a_times_b)>=0. ) ? ( (a_times_a)<=(a_times_b) ? (a) : (b) ) : 0. )

/*
 * Absolute value and sign macros:
 */
#define NOHALO_ABS(x)  ( ((x)>=0.) ? (x) : -(x) )
#define NOHALO_SIGN(x) ( ((x)>=0.) ? 1.  : -1.  )

/*
 * MIN and MAX macros set up so that I can put the likely winner in
 * the first argument (forward branch likely blah blah blah):
 */
#define NOHALO_MIN(x,y) ( ((x)<=(y)) ? (x) : (y) )
#define NOHALO_MAX(x,y) ( ((x)>=(y)) ? (x) : (y) )


static void inline
nohalo_subdivision (const double           uno_two,
                    const double           uno_thr,
                    const double           uno_fou,
                    const double           dos_one,
                    const double           dos_two,
                    const double           dos_thr,
                    const double           dos_fou,
                    const double           dos_fiv,
                    const double           tre_one,
                    const double           tre_two,
                    const double           tre_thr,
                    const double           tre_fou,
                    const double           tre_fiv,
                    const double           qua_one,
                    const double           qua_two,
                    const double           qua_thr,
                    const double           qua_fou,
                    const double           qua_fiv,
                    const double           cin_two,
                    const double           cin_thr,
                    const double           cin_fou,
                          double* restrict uno_one_1,
                          double* restrict uno_two_1,
                          double* restrict uno_thr_1,
                          double* restrict uno_fou_1,
                          double* restrict dos_one_1,
                          double* restrict dos_two_1,
                          double* restrict dos_thr_1,
                          double* restrict dos_fou_1,
                          double* restrict tre_one_1,
                          double* restrict tre_two_1,
                          double* restrict tre_thr_1,
                          double* restrict tre_fou_1,
                          double* restrict qua_one_1,
                          double* restrict qua_two_1,
                          double* restrict qua_thr_1,
                          double* restrict qua_fou_1)
{
  /*
   * nohalo_subdivision calculates the missing twelve double density
   * pixel values, and also returns the "already known" four, so that
   * the sixteen values which make up the stencil of LBB are
   * available.
   */
  /*
   * THE STENCIL OF INPUT VALUES:
   *
   * Pointer arithmetic is used to implicitly reflect the input
   * stencil about tre_thr---assumed closer to the sampling location
   * than other pixels (ties are OK)---in such a way that after
   * reflection the sampling point is to the bottom right of tre_thr.
   *
   * The following code and picture assumes that the stencil reflexion
   * has already been performed.
   *
   *               (ix-1,iy-2)  (ix,iy-2)    (ix+1,iy-2)
   *               =uno_two     = uno_thr    = uno_fou
   *
   *
   *
   *  (ix-2,iy-1)  (ix-1,iy-1)  (ix,iy-1)    (ix+1,iy-1)  (ix+2,iy-1)
   *  = dos_one    = dos_two    = dos_thr    = dos_fou    = dos_fiv
   *
   *
   *
   *  (ix-2,iy)    (ix-1,iy)    (ix,iy)      (ix+1,iy)    (ix+2,iy)
   *  = tre_one    = tre_two    = tre_thr    = tre_fou    = tre_fiv
   *                                    X
   *
   *
   *  (ix-2,iy+1)  (ix-1,iy+1)  (ix,iy+1)    (ix+1,iy+1)  (ix+2,iy+1)
   *  = qua_one    = qua_two    = qua_thr    = qua_fou    = qua_fiv
   *
   *
   *
   *               (ix-1,iy+2)  (ix,iy+2)    (ix+1,iy+2)
   *               = cin_two    = cin_thr    = cin_fou
   *
   *
   * The above input pixel values are the ones needed in order to make
   * available the following values, needed by LBB:
   *
   *  uno_one_1 =      uno_two_1 =  uno_thr_1 =      uno_fou_1 =
   *  (ix-1/2,iy-1/2)  (ix,iy-1/2)  (ix+1/2,iy-1/2)  (ix+1,iy-1/2)
   *
   *
   *
   *
   *  dos_one_1 =      dos_two_1 =  dos_thr_1 =      dos_fou_1 =
   *  (ix-1/2,iy)      (ix,iy)      (ix+1/2,iy)      (ix+1,iy)
   *
   *                             X
   *
   *
   *  tre_one_1 =      tre_two_1 =  tre_thr_1 =      tre_fou_1 =
   *  (ix-1/2,iy+1/2)  (ix,iy+1/2)  (ix+1/2,iy+1/2)  (ix+1,iy+1/2)
   *
   *
   *
   *
   *  qua_one_1 =      qua_two_1 =  qua_thr_1 =      qua_fou_1 =
   *  (ix-1/2,iy+1)    (ix,iy+1)    (ix+1/2,iy+1)    (ix+1,iy+1)
   *
   */

  /*
   * Computation of the nonlinear slopes: If two consecutive pixel
   * value differences have the same sign, the smallest one (in
   * absolute value) is taken to be the corresponding slope; if the
   * two consecutive pixel value differences don't have the same sign,
   * the corresponding slope is set to 0.
   *
   * In other words: Apply minmod to consecutive differences.
   */
  /*
   * Two vertical simple differences:
   */
  const double d_unodos_two = dos_two - uno_two;
  const double d_dostre_two = tre_two - dos_two;
  const double d_trequa_two = qua_two - tre_two;
  const double d_quacin_two = cin_two - qua_two;
  /*
   * Thr(ee) vertical differences:
   */
  const double d_unodos_thr = dos_thr - uno_thr;
  const double d_dostre_thr = tre_thr - dos_thr;
  const double d_trequa_thr = qua_thr - tre_thr;
  const double d_quacin_thr = cin_thr - qua_thr;
  /*
   * Fou(r) vertical differences:
   */
  const double d_unodos_fou = dos_fou - uno_fou;
  const double d_dostre_fou = tre_fou - dos_fou;
  const double d_trequa_fou = qua_fou - tre_fou;
  const double d_quacin_fou = cin_fou - qua_fou;
  /*
   * Dos horizontal differences:
   */
  const double d_dos_onetwo = dos_two - dos_one;
  const double d_dos_twothr = dos_thr - dos_two;
  const double d_dos_thrfou = dos_fou - dos_thr;
  const double d_dos_foufiv = dos_fiv - dos_fou;
  /*
   * Tre(s) horizontal differences:
   */
  const double d_tre_onetwo = tre_two - tre_one;
  const double d_tre_twothr = tre_thr - tre_two;
  const double d_tre_thrfou = tre_fou - tre_thr;
  const double d_tre_foufiv = tre_fiv - tre_fou;
  /*
   * Qua(ttro) horizontal differences:
   */
  const double d_qua_onetwo = qua_two - qua_one;
  const double d_qua_twothr = qua_thr - qua_two;
  const double d_qua_thrfou = qua_fou - qua_thr;
  const double d_qua_foufiv = qua_fiv - qua_fou;

  /*
   * Recyclable vertical products and squares:
   */
  const double d_unodos_times_dostre_two = d_unodos_two * d_dostre_two;
  const double d_dostre_two_sq           = d_dostre_two * d_dostre_two;
  const double d_dostre_times_trequa_two = d_dostre_two * d_trequa_two;
  const double d_trequa_times_quacin_two = d_quacin_two * d_trequa_two;
  const double d_quacin_two_sq           = d_quacin_two * d_quacin_two;

  const double d_unodos_times_dostre_thr = d_unodos_thr * d_dostre_thr;
  const double d_dostre_thr_sq           = d_dostre_thr * d_dostre_thr;
  const double d_dostre_times_trequa_thr = d_trequa_thr * d_dostre_thr;
  const double d_trequa_times_quacin_thr = d_trequa_thr * d_quacin_thr;
  const double d_quacin_thr_sq           = d_quacin_thr * d_quacin_thr;

  const double d_unodos_times_dostre_fou = d_unodos_fou * d_dostre_fou;
  const double d_dostre_fou_sq           = d_dostre_fou * d_dostre_fou;
  const double d_dostre_times_trequa_fou = d_trequa_fou * d_dostre_fou;
  const double d_trequa_times_quacin_fou = d_trequa_fou * d_quacin_fou;
  const double d_quacin_fou_sq           = d_quacin_fou * d_quacin_fou;
  /*
   * Recyclable horizontal products and squares:
   */
  const double d_dos_onetwo_times_twothr = d_dos_onetwo * d_dos_twothr;
  const double d_dos_twothr_sq           = d_dos_twothr * d_dos_twothr;
  const double d_dos_twothr_times_thrfou = d_dos_twothr * d_dos_thrfou;
  const double d_dos_thrfou_times_foufiv = d_dos_thrfou * d_dos_foufiv;
  const double d_dos_foufiv_sq           = d_dos_foufiv * d_dos_foufiv;

  const double d_tre_onetwo_times_twothr = d_tre_onetwo * d_tre_twothr;
  const double d_tre_twothr_sq           = d_tre_twothr * d_tre_twothr;
  const double d_tre_twothr_times_thrfou = d_tre_thrfou * d_tre_twothr;
  const double d_tre_thrfou_times_foufiv = d_tre_thrfou * d_tre_foufiv;
  const double d_tre_foufiv_sq           = d_tre_foufiv * d_tre_foufiv;

  const double d_qua_onetwo_times_twothr = d_qua_onetwo * d_qua_twothr;
  const double d_qua_twothr_sq           = d_qua_twothr * d_qua_twothr;
  const double d_qua_twothr_times_thrfou = d_qua_thrfou * d_qua_twothr;
  const double d_qua_thrfou_times_foufiv = d_qua_thrfou * d_qua_foufiv;
  const double d_qua_foufiv_sq           = d_qua_foufiv * d_qua_foufiv;

  /*
   * Minmod slopes and first level pixel values:
   */
  const double dos_thr_y = NOHALO_MINMOD( d_dostre_thr, d_unodos_thr,
                                          d_dostre_thr_sq,
                                          d_unodos_times_dostre_thr );
  const double tre_thr_y = NOHALO_MINMOD( d_dostre_thr, d_trequa_thr,
                                          d_dostre_thr_sq,
                                          d_dostre_times_trequa_thr );

  const double newval_uno_two =
    .5 * ( dos_thr + tre_thr )
    +
    .25 * ( dos_thr_y - tre_thr_y );

  const double qua_thr_y = NOHALO_MINMOD( d_quacin_thr, d_trequa_thr,
                                          d_quacin_thr_sq,
                                          d_trequa_times_quacin_thr );

  const double newval_tre_two =
    .5 * ( tre_thr + qua_thr )
    +
    .25 * ( tre_thr_y - qua_thr_y );

  const double tre_fou_y = NOHALO_MINMOD( d_dostre_fou, d_trequa_fou,
                                          d_dostre_fou_sq,
                                          d_dostre_times_trequa_fou );
  const double qua_fou_y = NOHALO_MINMOD( d_quacin_fou, d_trequa_fou,
                                          d_quacin_fou_sq,
                                          d_trequa_times_quacin_fou );

  const double newval_tre_fou =
    .5 * ( tre_fou + qua_fou )
    +
    .25 * ( tre_fou_y - qua_fou_y );

  const double dos_fou_y = NOHALO_MINMOD( d_dostre_fou, d_unodos_fou,
                                          d_dostre_fou_sq,
                                          d_unodos_times_dostre_fou );

  const double newval_uno_fou =
     .5 * ( dos_fou + tre_fou )
     +
     .25 * (dos_fou_y - tre_fou_y );

  const double tre_two_x = NOHALO_MINMOD( d_tre_twothr, d_tre_onetwo,
                                          d_tre_twothr_sq,
                                          d_tre_onetwo_times_twothr );
  const double tre_thr_x = NOHALO_MINMOD( d_tre_twothr, d_tre_thrfou,
                                          d_tre_twothr_sq,
                                          d_tre_twothr_times_thrfou );

  const double newval_dos_one =
    .5 * ( tre_two + tre_thr )
    +
    .25 * ( tre_two_x - tre_thr_x );

  const double tre_fou_x = NOHALO_MINMOD( d_tre_foufiv, d_tre_thrfou,
                                          d_tre_foufiv_sq,
                                          d_tre_thrfou_times_foufiv );

  const double tre_thr_x_minus_tre_fou_x =
    tre_thr_x - tre_fou_x;

  const double newval_dos_thr =
    .5 * ( tre_thr + tre_fou )
    +
    .25 * tre_thr_x_minus_tre_fou_x;

  const double qua_thr_x = NOHALO_MINMOD( d_qua_twothr, d_qua_thrfou,
                                          d_qua_twothr_sq,
                                          d_qua_twothr_times_thrfou );
  const double qua_fou_x = NOHALO_MINMOD( d_qua_foufiv, d_qua_thrfou,
                                          d_qua_foufiv_sq,
                                          d_qua_thrfou_times_foufiv );

  const double qua_thr_x_minus_qua_fou_x =
    qua_thr_x - qua_fou_x;

  const double newval_qua_thr =
    .5 * ( qua_thr + qua_fou )
    +
    .25 * qua_thr_x_minus_qua_fou_x;

  const double qua_two_x = NOHALO_MINMOD( d_qua_twothr, d_qua_onetwo,
                                          d_qua_twothr_sq,
                                          d_qua_onetwo_times_twothr );

  const double newval_qua_one =
    .5 * ( qua_two + qua_thr )
    +
    .25 * ( qua_two_x - qua_thr_x );

  const double newval_tre_thr =
    .125 * ( tre_thr_x_minus_tre_fou_x + qua_thr_x_minus_qua_fou_x )
    +
    .5 * ( newval_tre_two + newval_tre_fou );

  const double dos_thr_x = NOHALO_MINMOD( d_dos_twothr, d_dos_thrfou,
                                          d_dos_twothr_sq,
                                          d_dos_twothr_times_thrfou );
  const double dos_fou_x = NOHALO_MINMOD( d_dos_foufiv, d_dos_thrfou,
                                          d_dos_foufiv_sq,
                                          d_dos_thrfou_times_foufiv );

  const double newval_uno_thr =
    .25 * ( dos_fou - tre_thr )
    +
    .125 * ( dos_fou_y - tre_fou_y + dos_thr_x - dos_fou_x )
    +
    .5 * ( newval_uno_two + newval_dos_thr );

  const double tre_two_y = NOHALO_MINMOD( d_dostre_two, d_trequa_two,
                                          d_dostre_two_sq,
                                          d_dostre_times_trequa_two );
  const double qua_two_y = NOHALO_MINMOD( d_quacin_two, d_trequa_two,
                                          d_quacin_two_sq,
                                          d_trequa_times_quacin_two );

  const double newval_tre_one =
    .25 * ( qua_two - tre_thr )
    +
    .125 * ( qua_two_x - qua_thr_x + tre_two_y - qua_two_y )
    +
    .5 * ( newval_dos_one + newval_tre_two );

  const double dos_two_x = NOHALO_MINMOD( d_dos_twothr, d_dos_onetwo,
                                          d_dos_twothr_sq,
                                          d_dos_onetwo_times_twothr );

  const double dos_two_y = NOHALO_MINMOD( d_dostre_two, d_unodos_two,
                                          d_dostre_two_sq,
                                          d_unodos_times_dostre_two );

  const double newval_uno_one =
    .25 * ( dos_two + dos_thr + tre_two + tre_thr )
    +
    .125 * ( dos_two_x - dos_thr_x + tre_two_x - tre_thr_x
             +
             dos_two_y + dos_thr_y - tre_two_y - tre_thr_y );

  /*
   * Return the sixteen LBB stencil values:
   */
  *uno_one_1 = newval_uno_one;
  *uno_two_1 = newval_uno_two;
  *uno_thr_1 = newval_uno_thr;
  *uno_fou_1 = newval_uno_fou;
  *dos_one_1 = newval_dos_one;
  *dos_two_1 =        tre_thr;
  *dos_thr_1 = newval_dos_thr;
  *dos_fou_1 =        tre_fou;
  *tre_one_1 = newval_tre_one;
  *tre_two_1 = newval_tre_two;
  *tre_thr_1 = newval_tre_thr;
  *tre_fou_1 = newval_tre_fou;
  *qua_one_1 = newval_qua_one;
  *qua_two_1 =        qua_thr;
  *qua_thr_1 = newval_qua_thr;
  *qua_fou_1 =        qua_fou;
}

/*
 * LBB (Locally Bounded Bicubic) is a high quality nonlinear variant
 * of Catmull-Rom. Images resampled with LBB have much smaller halos
 * than images resampled with windowed sincs or other interpolatory
 * cubic spline filters. Specifically, LBB halos are narrower and the
 * over/undershoot amplitude is smaller. This is accomplished without
 * a significant reduction in the smoothness of the result (compared
 * to Catmull-Rom).
 *
 * Another important property is that the resampled values are
 * contained within the range of nearby input values. Consequently, no
 * final clamping is needed to stay "in range" (e.g., 0-255 for
 * standard 8-bit images).
 *
 * LBB was developed by N. Robidoux and C. Racette of the Department
 * of Mathematics and Computer Science of Laurentian University in the
 * course of C.'s Masters Thesis in Computational Sciences.
 */

/*
 * LBB is a novel method with the following properties:
 *
 * --LBB is a Hermite bicubic method: The bicubic surface is defined,
 *   one convex hull of four nearby input points at a time, using four
 *   point values, four x-derivatives, four y-derivatives, and four
 *   cross-derivatives.
 *
 * --The stencil for values in a square patch is the usual 4x4.
 *
 * --LBB is interpolatory.
 *
 * --It is C^1 with continuous cross derivatives.
 *
 * --When the limiters are inactive, LBB gives the same results as
 *   Catmull-Rom.
 *
 * --When used on binary images, LBB gives results similar to bicubic
 *   Hermite with all first derivatives---but not necessarily the
 *   cross derivatives--at the input pixel locations set to zero.
 *
 * --The LBB reconstruction is locally bounded: Over each square
 *   patch, the surface is contained between the minimum and the
 *   maximum values among the 16 nearest input pixel values (those in
 *   the stencil).
 *
 * --Consequently, the LBB reconstruction is globally bounded between
 *   the very smallest input pixel value and the very largest input
 *   pixel value. (It is not necessary to clamp results.)
 *
 * The LBB method is based on the method of Ken Brodlie, Petros
 * Mashwama and Sohail Butt for constraining Hermite interpolants
 * between globally defined planes:
 *
 *   Visualization of surface data to preserve positivity and other
 *   simple constraints. Computer & Graphics, Vol. 19, Number 4, pages
 *   585-594, 1995. DOI: 10.1016/0097-8493(95)00036-C.
 *
 * Instead of forcing the reconstructed surface to lie between two
 * GLOBALLY defined planes, LBB constrains one patch at a time to lie
 * between LOCALLY defined planes. This is accomplished by
 * constraining the derivatives (x, y and cross) at each input pixel
 * location so that if the constraint was applied everywhere the
 * surface would fit between the min and max of the values at the 9
 * closest pixel locations. Because this is done with each of the four
 * pixel locations which define the bicubic patch, this forces the
 * reconstructed surface to lie between the min and max of the values
 * at the 16 closest values pixel locations. (Each corner defines its
 * own 3x3 subgroup of the 4x4 stencil. Consequently, the surface is
 * necessarily above the minimum of the four minima, which happens to
 * be the minimum over the 4x4. Similarly with the maxima.)
 *
 * The above paragraph described the "soft" version of LBB. The
 * "sharp" version is similar.
 */

static inline double
lbbicubic( const double c00,
           const double c10,
           const double c01,
           const double c11,
           const double c00dx,
           const double c10dx,
           const double c01dx,
           const double c11dx,
           const double c00dy,
           const double c10dy,
           const double c01dy,
           const double c11dy,
           const double c00dxdy,
           const double c10dxdy,
           const double c01dxdy,
           const double c11dxdy,
           const double uno_one,
           const double uno_two,
           const double uno_thr,
           const double uno_fou,
           const double dos_one,
           const double dos_two,
           const double dos_thr,
           const double dos_fou,
           const double tre_one,
           const double tre_two,
           const double tre_thr,
           const double tre_fou,
           const double qua_one,
           const double qua_two,
           const double qua_thr,
           const double qua_fou )
{
  /*
   * STENCIL (FOOTPRINT) OF INPUT VALUES:
   *
   * The stencil of LBB is the same as for any standard Hermite
   * bicubic (e.g., Catmull-Rom):
   *
   *  (ix-1,iy-1)  (ix,iy-1)    (ix+1,iy-1)  (ix+2,iy-1)
   *  = uno_one    = uno_two    = uno_thr    = uno_fou
   *
   *  (ix-1,iy)    (ix,iy)      (ix+1,iy)    (ix+2,iy)
   *  = dos_one    = dos_two    = dos_thr    = dos_fou
   *                        X
   *  (ix-1,iy+1)  (ix,iy+1)    (ix+1,iy+1)  (ix+2,iy+1)
   *  = tre_one    = tre_two    = tre_thr    = tre_fou
   *
   *  (ix-1,iy+2)  (ix,iy+2)    (ix+1,iy+2)  (ix+2,iy+2)
   *  = qua_one    = qua_two    = qua_thr    = qua_fou
   *
   * where ix is the (pseudo-)floor of the requested left-to-right
   * location ("X"), and iy is the floor of the requested up-to-down
   * location.
   */

#if defined (__NOHALO_CHEAP_H__)
  /*
   * Computation of the four min and four max over 3x3 input data
   * sub-crosses of the 4x4 input stencil.
   *
   * We exploit the fact that the data comes from the (co-monotone)
   * method Nohalo so that it is known ahead of time that
   *
   *  dos_thr is between dos_two and dos_fou
   *
   *  tre_two is between dos_two and qua_two
   *
   *  tre_fou is between dos_fou and qua_fou
   *
   *  qua_thr is between qua_two and qua_fou
   *
   *  tre_thr is in the convex hull of dos_two, dos_fou, qua_two and qua_fou
   *
   *  to minimize the number of flags and conditional moves.
   *
   * (The "between" are not strict: "a between b and c" means
   *
   * "min(b,c) <= a <= max(b,c)".)
   *
   * We have, however, succeeded in eliminating one flag computation
   * (one comparison) and one use of an intermediate result. See the
   * two commented out lines below.
   *
   * Overall, only 20 comparisons and 28 "? :" are needed (to compute
   * 4 mins and 4 maxes). If you can figure how to do this more
   * efficiently, let us know.
   */
  const double m1    = (uno_two <= tre_two) ? uno_two : tre_two  ;
  const double M1    = (uno_two <= tre_two) ? tre_two : uno_two  ;
  const double m2    = (dos_thr <= qua_thr) ? dos_thr : qua_thr  ;
  const double M2    = (dos_thr <= qua_thr) ? qua_thr : dos_thr  ;
  const double m3    = (dos_two <= dos_fou) ? dos_two : dos_fou  ;
  const double M3    = (dos_two <= dos_fou) ? dos_fou : dos_two  ;
  const double m4    = (uno_thr <= tre_thr) ? uno_thr : tre_thr  ;
  const double M4    = (uno_thr <= tre_thr) ? tre_thr : uno_thr  ;
  const double m5    = (dos_two <= qua_two) ? dos_two : qua_two  ;
  const double M5    = (dos_two <= qua_two) ? qua_two : dos_two  ;
  const double m6    = (tre_one <= tre_thr) ? tre_one : tre_thr  ;
  const double M6    = (tre_one <= tre_thr) ? tre_thr : tre_one  ;
  const double m7    = (dos_one <= dos_thr) ? dos_one : dos_thr  ;
  const double M7    = (dos_one <= dos_thr) ? dos_thr : dos_one  ;
  const double m8    = (tre_two <= tre_fou) ? tre_two : tre_fou  ;
  const double M8    = (tre_two <= tre_fou) ? tre_fou : tre_two  ;
  const double m9    = NOHALO_MIN(            m1,       dos_two );
  const double M9    = NOHALO_MAX(            M1,       dos_two );
  const double m10   = NOHALO_MIN(            m2,       tre_thr );
  const double M10   = NOHALO_MAX(            M2,       tre_thr );
  const double min10 = NOHALO_MIN(            m3,       m4      );
  const double max10 = NOHALO_MAX(            M3,       M4      );
  const double min01 = NOHALO_MIN(            m5,       m6      );
  const double max01 = NOHALO_MAX(            M5,       M6      );
  const double min00 = NOHALO_MIN(            m9,       m7      );
  const double max00 = NOHALO_MAX(            M9,       M7      );
  const double min11 = NOHALO_MIN(           m10,       m8      );
  const double max11 = NOHALO_MAX(           M10,       M8      );
#else
  /*
   * Computation of the four min and four max over 3x3 input data
   * sub-blocks of the 4x4 input stencil.
   *
   * Surprisingly, we have not succeeded in reducing the number of "?
   * :" needed by using the fact that the data comes from the
   * (co-monotone) method Nohalo so that it is known ahead of time
   * that
   *
   *  dos_thr is between dos_two and dos_fou
   *
   *  tre_two is between dos_two and qua_two
   *
   *  tre_fou is between dos_fou and qua_fou
   *
   *  qua_thr is between qua_two and qua_fou
   *
   *  tre_thr is in the convex hull of dos_two, dos_fou, qua_two and qua_fou
   *
   *  to minimize the number of flags and conditional moves.
   *
   * (The "between" are not strict: "a between b and c" means
   *
   * "min(b,c) <= a <= max(b,c)".)
   *
   * We have, however, succeeded in eliminating one flag computation
   * (one comparison) and one use of an intermediate result. See the
   * two commented out lines below.
   *
   * Overall, only 27 comparisons are needed (to compute 4 mins and 4
   * maxes!). Without the simplification, 28 comparisons would be
   * used. Either way, the number of "? :" used is 34. If you can
   * figure how to do this more efficiently, let us know.
   */
  const double m1    = (dos_two <= dos_thr) ? dos_two : dos_thr  ;
  const double M1    = (dos_two <= dos_thr) ? dos_thr : dos_two  ;
  const double m2    = (tre_two <= tre_thr) ? tre_two : tre_thr  ;
  const double M2    = (tre_two <= tre_thr) ? tre_thr : tre_two  ;
  const double m4    = (qua_two <= qua_thr) ? qua_two : qua_thr  ;
  const double M4    = (qua_two <= qua_thr) ? qua_thr : qua_two  ;
  const double m3    = (uno_two <= uno_thr) ? uno_two : uno_thr  ;
  const double M3    = (uno_two <= uno_thr) ? uno_thr : uno_two  ;
  const double m5    = NOHALO_MIN(            m1,       m2      );
  const double M5    = NOHALO_MAX(            M1,       M2      );
  const double m6    = (dos_one <= tre_one) ? dos_one : tre_one  ;
  const double M6    = (dos_one <= tre_one) ? tre_one : dos_one  ;
  const double m7    = (dos_fou <= tre_fou) ? dos_fou : tre_fou  ;
  const double M7    = (dos_fou <= tre_fou) ? tre_fou : dos_fou  ;
  const double m13   = (dos_fou <= qua_fou) ? dos_fou : qua_fou  ;
  const double M13   = (dos_fou <= qua_fou) ? qua_fou : dos_fou  ;
  /*
   * Because the data comes from Nohalo subdivision, the following two
   * lines can be replaced by the above, simpler, two lines without
   * changing the results.
   *
   * const double m13   = NOHALO_MIN(               m7,       qua_fou );
   * const double M13   = NOHALO_MAX(               M7,       qua_fou );
   *
   * This also allows reodering the comparisons to put space between
   * the computation of a result and its use.
   */
  const double m9    = NOHALO_MIN(            m5,       m4      );
  const double M9    = NOHALO_MAX(            M5,       M4      );
  const double m11   = NOHALO_MIN(            m6,       qua_one );
  const double M11   = NOHALO_MAX(            M6,       qua_one );
  const double m10   = NOHALO_MIN(            m6,       uno_one );
  const double M10   = NOHALO_MAX(            M6,       uno_one );
  const double m8    = NOHALO_MIN(            m5,       m3      );
  const double M8    = NOHALO_MAX(            M5,       M3      );
  const double m12   = NOHALO_MIN(            m7,       uno_fou );
  const double M12   = NOHALO_MAX(            M7,       uno_fou );
  const double min11 = NOHALO_MIN(            m9,       m13     );
  const double max11 = NOHALO_MAX(            M9,       M13     );
  const double min01 = NOHALO_MIN(            m9,       m11     );
  const double max01 = NOHALO_MAX(            M9,       M11     );
  const double min00 = NOHALO_MIN(            m8,       m10     );
  const double max00 = NOHALO_MAX(            M8,       M10     );
  const double min10 = NOHALO_MIN(            m8,       m12     );
  const double max10 = NOHALO_MAX(            M8,       M12     );
#endif

  /*
   * The remainder of the "per channel" computation involves the
   * computation of:
   *
   * --8 conditional moves,
   *
   * --8 signs (in which the sign of zero is unimportant),
   *
   * --12 minima of two values,
   *
   * --8 maxima of two values,
   *
   * --8 absolute values,
   *
   * for a grand total of 29 minima, 25 maxima, 8 conditional moves, 8
   * signs, and 8 absolute values. If everything is done with
   * conditional moves, "only" 28+8+8+12+8+8=72 flags are involved
   * (because initial min and max can be computed with one flag).
   *
   * The "per channel" part of the computation also involves 107
   * arithmetic operations (54 *, 21 +, 42 -).
   */

  /*
   * Distances to the local min and max:
   */
  const double u11 = tre_thr - min11;
  const double v11 = max11 - tre_thr;
  const double u01 = tre_two - min01;
  const double v01 = max01 - tre_two;
  const double u00 = dos_two - min00;
  const double v00 = max00 - dos_two;
  const double u10 = dos_thr - min10;
  const double v10 = max10 - dos_thr;

  /*
   * Initial values of the derivatives computed with centered
   * differences. Factors of 1/2 are left out because they are folded
   * in later:
   */
  const double dble_dzdx00i = dos_thr - dos_one;
  const double dble_dzdy11i = qua_thr - dos_thr;
  const double dble_dzdx10i = dos_fou - dos_two;
  const double dble_dzdy01i = qua_two - dos_two;
  const double dble_dzdx01i = tre_thr - tre_one;
  const double dble_dzdy10i = tre_thr - uno_thr;
  const double dble_dzdx11i = tre_fou - tre_two;
  const double dble_dzdy00i = tre_two - uno_two;

  /*
   * Signs of the derivatives. The upcoming clamping does not change
   * them (except if the clamping sends a negative derivative to 0, in
   * which case the sign does not matter anyway).
   */
  const double sign_dzdx00 = NOHALO_SIGN( dble_dzdx00i );
  const double sign_dzdx10 = NOHALO_SIGN( dble_dzdx10i );
  const double sign_dzdx01 = NOHALO_SIGN( dble_dzdx01i );
  const double sign_dzdx11 = NOHALO_SIGN( dble_dzdx11i );

  const double sign_dzdy00 = NOHALO_SIGN( dble_dzdy00i );
  const double sign_dzdy10 = NOHALO_SIGN( dble_dzdy10i );
  const double sign_dzdy01 = NOHALO_SIGN( dble_dzdy01i );
  const double sign_dzdy11 = NOHALO_SIGN( dble_dzdy11i );

  /*
   * Initial values of the cross-derivatives. Factors of 1/4 are left
   * out because folded in later:
   */
  const double quad_d2zdxdy00i = uno_one - uno_thr + dble_dzdx01i;
  const double quad_d2zdxdy10i = uno_two - uno_fou + dble_dzdx11i;
  const double quad_d2zdxdy01i = qua_thr - qua_one - dble_dzdx00i;
  const double quad_d2zdxdy11i = qua_fou - qua_two - dble_dzdx10i;

  /*
   * Slope limiters. The key multiplier is 3 but we fold a factor of
   * 2, hence 6:
   */
  const double dble_slopelimit_00 = 6.0 * NOHALO_MIN( u00, v00 );
  const double dble_slopelimit_10 = 6.0 * NOHALO_MIN( u10, v10 );
  const double dble_slopelimit_01 = 6.0 * NOHALO_MIN( u01, v01 );
  const double dble_slopelimit_11 = 6.0 * NOHALO_MIN( u11, v11 );

  /*
   * Clamped first derivatives:
   */
  const double dble_dzdx00 =
    ( sign_dzdx00 * dble_dzdx00i <= dble_slopelimit_00 )
    ? dble_dzdx00i :  sign_dzdx00 * dble_slopelimit_00;
  const double dble_dzdy00 =
    ( sign_dzdy00 * dble_dzdy00i <= dble_slopelimit_00 )
    ? dble_dzdy00i :  sign_dzdy00 * dble_slopelimit_00;
  const double dble_dzdx10 =
    ( sign_dzdx10 * dble_dzdx10i <= dble_slopelimit_10 )
    ? dble_dzdx10i :  sign_dzdx10 * dble_slopelimit_10;
  const double dble_dzdy10 =
    ( sign_dzdy10 * dble_dzdy10i <= dble_slopelimit_10 )
    ? dble_dzdy10i :  sign_dzdy10 * dble_slopelimit_10;
  const double dble_dzdx01 =
    ( sign_dzdx01 * dble_dzdx01i <= dble_slopelimit_01 )
    ? dble_dzdx01i :  sign_dzdx01 * dble_slopelimit_01;
  const double dble_dzdy01 =
    ( sign_dzdy01 * dble_dzdy01i <= dble_slopelimit_01 )
    ? dble_dzdy01i :  sign_dzdy01 * dble_slopelimit_01;
  const double dble_dzdx11 =
    ( sign_dzdx11 * dble_dzdx11i <= dble_slopelimit_11 )
    ? dble_dzdx11i :  sign_dzdx11 * dble_slopelimit_11;
  const double dble_dzdy11 =
    ( sign_dzdy11 * dble_dzdy11i <= dble_slopelimit_11 )
    ? dble_dzdy11i :  sign_dzdy11 * dble_slopelimit_11;

  /*
   * Sums and differences of first derivatives:
   */
  const double twelve_sum00 = 6.0 * ( dble_dzdx00 + dble_dzdy00 );
  const double twelve_dif00 = 6.0 * ( dble_dzdx00 - dble_dzdy00 );
  const double twelve_sum10 = 6.0 * ( dble_dzdx10 + dble_dzdy10 );
  const double twelve_dif10 = 6.0 * ( dble_dzdx10 - dble_dzdy10 );
  const double twelve_sum01 = 6.0 * ( dble_dzdx01 + dble_dzdy01 );
  const double twelve_dif01 = 6.0 * ( dble_dzdx01 - dble_dzdy01 );
  const double twelve_sum11 = 6.0 * ( dble_dzdx11 + dble_dzdy11 );
  const double twelve_dif11 = 6.0 * ( dble_dzdx11 - dble_dzdy11 );

  /*
   * Absolute values of the sums:
   */
  const double twelve_abs_sum00 = NOHALO_ABS( twelve_sum00 );
  const double twelve_abs_sum10 = NOHALO_ABS( twelve_sum10 );
  const double twelve_abs_sum01 = NOHALO_ABS( twelve_sum01 );
  const double twelve_abs_sum11 = NOHALO_ABS( twelve_sum11 );

  /*
   * Scaled distances to the min:
   */
  const double u00_times_36 = 36.0 * u00;
  const double u10_times_36 = 36.0 * u10;
  const double u01_times_36 = 36.0 * u01;
  const double u11_times_36 = 36.0 * u11;

  /*
   * First cross-derivative limiter:
   */
  const double first_limit00 = twelve_abs_sum00 - u00_times_36;
  const double first_limit10 = twelve_abs_sum10 - u10_times_36;
  const double first_limit01 = twelve_abs_sum01 - u01_times_36;
  const double first_limit11 = twelve_abs_sum11 - u11_times_36;

  const double quad_d2zdxdy00ii = NOHALO_MAX( quad_d2zdxdy00i, first_limit00 );
  const double quad_d2zdxdy10ii = NOHALO_MAX( quad_d2zdxdy10i, first_limit10 );
  const double quad_d2zdxdy01ii = NOHALO_MAX( quad_d2zdxdy01i, first_limit01 );
  const double quad_d2zdxdy11ii = NOHALO_MAX( quad_d2zdxdy11i, first_limit11 );

  /*
   * Scaled distances to the max:
   */
  const double v00_times_36 = 36.0 * v00;
  const double v10_times_36 = 36.0 * v10;
  const double v01_times_36 = 36.0 * v01;
  const double v11_times_36 = 36.0 * v11;

  /*
   * Second cross-derivative limiter:
   */
  const double second_limit00 = v00_times_36 - twelve_abs_sum00;
  const double second_limit10 = v10_times_36 - twelve_abs_sum10;
  const double second_limit01 = v01_times_36 - twelve_abs_sum01;
  const double second_limit11 = v11_times_36 - twelve_abs_sum11;

  const double quad_d2zdxdy00iii =
    NOHALO_MIN( quad_d2zdxdy00ii, second_limit00 );
  const double quad_d2zdxdy10iii =
    NOHALO_MIN( quad_d2zdxdy10ii, second_limit10 );
  const double quad_d2zdxdy01iii =
    NOHALO_MIN( quad_d2zdxdy01ii, second_limit01 );
  const double quad_d2zdxdy11iii =
    NOHALO_MIN( quad_d2zdxdy11ii, second_limit11 );

  /*
   * Absolute values of the differences:
   */
  const double twelve_abs_dif00 = NOHALO_ABS( twelve_dif00 );
  const double twelve_abs_dif10 = NOHALO_ABS( twelve_dif10 );
  const double twelve_abs_dif01 = NOHALO_ABS( twelve_dif01 );
  const double twelve_abs_dif11 = NOHALO_ABS( twelve_dif11 );

  /*
   * Third cross-derivative limiter:
   */
  const double third_limit00 = twelve_abs_dif00 - v00_times_36;
  const double third_limit10 = twelve_abs_dif10 - v10_times_36;
  const double third_limit01 = twelve_abs_dif01 - v01_times_36;
  const double third_limit11 = twelve_abs_dif11 - v11_times_36;

  const double quad_d2zdxdy00iiii =
    NOHALO_MAX( quad_d2zdxdy00iii, third_limit00);
  const double quad_d2zdxdy10iiii =
    NOHALO_MAX( quad_d2zdxdy10iii, third_limit10);
  const double quad_d2zdxdy01iiii =
    NOHALO_MAX( quad_d2zdxdy01iii, third_limit01);
  const double quad_d2zdxdy11iiii =
    NOHALO_MAX( quad_d2zdxdy11iii, third_limit11);

  /*
   * Fourth cross-derivative limiter:
   */
  const double fourth_limit00 = u00_times_36 - twelve_abs_dif00;
  const double fourth_limit10 = u10_times_36 - twelve_abs_dif10;
  const double fourth_limit01 = u01_times_36 - twelve_abs_dif01;
  const double fourth_limit11 = u11_times_36 - twelve_abs_dif11;

  const double quad_d2zdxdy00 = NOHALO_MIN( quad_d2zdxdy00iiii, fourth_limit00);
  const double quad_d2zdxdy10 = NOHALO_MIN( quad_d2zdxdy10iiii, fourth_limit10);
  const double quad_d2zdxdy01 = NOHALO_MIN( quad_d2zdxdy01iiii, fourth_limit01);
  const double quad_d2zdxdy11 = NOHALO_MIN( quad_d2zdxdy11iiii, fourth_limit11);

  /*
   * Part of the result which does not need derivatives:
   */
  const double newval1 = c00 * dos_two
                         +
                         c10 * dos_thr
                         +
                         c01 * tre_two
                         +
                         c11 * tre_thr;

  /*
   * Twice the part of the result which only needs first derivatives.
   */
  const double newval2 = c00dx * dble_dzdx00
                         +
                         c10dx * dble_dzdx10
                         +
                         c01dx * dble_dzdx01
                         +
                         c11dx * dble_dzdx11
                         +
                         c00dy * dble_dzdy00
                         +
                         c10dy * dble_dzdy10
                         +
                         c01dy * dble_dzdy01
                         +
                         c11dy * dble_dzdy11;

  /*
   * Four times the part of the result which only uses cross
   * derivatives:
   */
  const double newval3 = c00dxdy * quad_d2zdxdy00
                         +
                         c10dxdy * quad_d2zdxdy10
                         +
                         c01dxdy * quad_d2zdxdy01
                         +
                         c11dxdy * quad_d2zdxdy11;

  const double newval = newval1 + .5 * newval2 + .25 * newval3;

  return newval;
}

/*
 * Call Nohalo+LBB with a careful type conversion as a parameter.
 *
 * It would be nice to do this with templates somehow---for one thing
 * this would allow code comments!---but we can't figure a clean way
 * to do it.
 */
#define NOHALO_CONVERSION( conversion )               \
  template <typename T> static void inline            \
  nohalo_ ## conversion(       void*  restrict pout,  \
                         const void*  restrict pin,   \
                         const int             bands, \
                         const int             lskip, \
                         const double          x_0,   \
                         const double          y_0 )  \
  { \
    T* restrict out = (T *) pout; \
    \
    const T* restrict in = (T *) pin; \
    \
    \
    const int sign_of_x_0 = 2 * ( x_0 >= 0. ) - 1; \
    const int sign_of_y_0 = 2 * ( y_0 >= 0. ) - 1; \
    \
    \
    const int shift_forw_1_pix = sign_of_x_0 * bands; \
    const int shift_forw_1_row = sign_of_y_0 * lskip; \
    \
    const int shift_back_1_pix = -shift_forw_1_pix; \
    const int shift_back_1_row = -shift_forw_1_row; \
    \
    const int shift_back_2_pix = 2 * shift_back_1_pix; \
    const int shift_back_2_row = 2 * shift_back_1_row; \
    const int shift_forw_2_pix = 2 * shift_forw_1_pix; \
    const int shift_forw_2_row = 2 * shift_forw_1_row; \
    \
    \
    const int uno_two_shift = shift_back_1_pix + shift_back_2_row; \
    const int uno_thr_shift =                    shift_back_2_row; \
    const int uno_fou_shift = shift_forw_1_pix + shift_back_2_row; \
    \
    const int dos_one_shift = shift_back_2_pix + shift_back_1_row; \
    const int dos_two_shift = shift_back_1_pix + shift_back_1_row; \
    const int dos_thr_shift =                    shift_back_1_row; \
    const int dos_fou_shift = shift_forw_1_pix + shift_back_1_row; \
    const int dos_fiv_shift = shift_forw_2_pix + shift_back_1_row; \
    \
    const int tre_one_shift = shift_back_2_pix; \
    const int tre_two_shift = shift_back_1_pix; \
    const int tre_thr_shift = 0;                \
    const int tre_fou_shift = shift_forw_1_pix; \
    const int tre_fiv_shift = shift_forw_2_pix; \
    \
    const int qua_one_shift = shift_back_2_pix + shift_forw_1_row; \
    const int qua_two_shift = shift_back_1_pix + shift_forw_1_row; \
    const int qua_thr_shift =                    shift_forw_1_row; \
    const int qua_fou_shift = shift_forw_1_pix + shift_forw_1_row; \
    const int qua_fiv_shift = shift_forw_2_pix + shift_forw_1_row; \
    \
    const int cin_two_shift = shift_back_1_pix + shift_forw_2_row; \
    const int cin_thr_shift =                    shift_forw_2_row; \
    const int cin_fou_shift = shift_forw_1_pix + shift_forw_2_row; \
    \
    \
    const double xp1over2   = ( 2 * sign_of_x_0 ) * x_0; \
    const double xm1over2   = xp1over2 - 1.0; \
    const double onepx      = 0.5 + xp1over2; \
    const double onemx      = 1.5 - xp1over2; \
    const double xp1over2sq = xp1over2 * xp1over2; \
    \
    const double yp1over2   = ( 2 * sign_of_y_0 ) * y_0; \
    const double ym1over2   = yp1over2 - 1.0; \
    const double onepy      = 0.5 + yp1over2; \
    const double onemy      = 1.5 - yp1over2; \
    const double yp1over2sq = yp1over2 * yp1over2; \
    \
    const double xm1over2sq = xm1over2 * xm1over2; \
    const double ym1over2sq = ym1over2 * ym1over2; \
    \
    const double twice1px = onepx + onepx; \
    const double twice1py = onepy + onepy; \
    const double twice1mx = onemx + onemx; \
    const double twice1my = onemy + onemy; \
    \
    const double xm1over2sq_times_ym1over2sq = xm1over2sq * ym1over2sq; \
    const double xp1over2sq_times_ym1over2sq = xp1over2sq * ym1over2sq; \
    const double xp1over2sq_times_yp1over2sq = xp1over2sq * yp1over2sq; \
    const double xm1over2sq_times_yp1over2sq = xm1over2sq * yp1over2sq; \
    \
    const double four_times_1px_times_1py = twice1px * twice1py; \
    const double four_times_1mx_times_1py = twice1mx * twice1py; \
    const double twice_xp1over2_times_1py = xp1over2 * twice1py; \
    const double twice_xm1over2_times_1py = xm1over2 * twice1py; \
    \
    const double twice_xm1over2_times_1my = xm1over2 * twice1my; \
    const double twice_xp1over2_times_1my = xp1over2 * twice1my; \
    const double four_times_1mx_times_1my = twice1mx * twice1my; \
    const double four_times_1px_times_1my = twice1px * twice1my; \
    \
    const double twice_1px_times_ym1over2 = twice1px * ym1over2; \
    const double twice_1mx_times_ym1over2 = twice1mx * ym1over2; \
    const double xp1over2_times_ym1over2  = xp1over2 * ym1over2; \
    const double xm1over2_times_ym1over2  = xm1over2 * ym1over2; \
    \
    const double xm1over2_times_yp1over2  = xm1over2 * yp1over2; \
    const double xp1over2_times_yp1over2  = xp1over2 * yp1over2; \
    const double twice_1mx_times_yp1over2 = twice1mx * yp1over2; \
    const double twice_1px_times_yp1over2 = twice1px * yp1over2; \
    \
    \
    const double c00 = \
      four_times_1px_times_1py * xm1over2sq_times_ym1over2sq; \
    const double c00dx = \
      twice_xp1over2_times_1py * xm1over2sq_times_ym1over2sq; \
    const double c00dy = \
      twice_1px_times_yp1over2 * xm1over2sq_times_ym1over2sq; \
    const double c00dxdy = \
       xp1over2_times_yp1over2 * xm1over2sq_times_ym1over2sq; \
    \
    const double c10 = \
      four_times_1mx_times_1py * xp1over2sq_times_ym1over2sq; \
    const double c10dx = \
      twice_xm1over2_times_1py * xp1over2sq_times_ym1over2sq; \
    const double c10dy = \
      twice_1mx_times_yp1over2 * xp1over2sq_times_ym1over2sq; \
    const double c10dxdy = \
       xm1over2_times_yp1over2 * xp1over2sq_times_ym1over2sq; \
    \
    const double c01 = \
      four_times_1px_times_1my * xm1over2sq_times_yp1over2sq; \
    const double c01dx = \
      twice_xp1over2_times_1my * xm1over2sq_times_yp1over2sq; \
    const double c01dy = \
      twice_1px_times_ym1over2 * xm1over2sq_times_yp1over2sq; \
    const double c01dxdy = \
       xp1over2_times_ym1over2 * xm1over2sq_times_yp1over2sq; \
    \
    const double c11 = \
      four_times_1mx_times_1my * xp1over2sq_times_yp1over2sq; \
    const double c11dx = \
      twice_xm1over2_times_1my * xp1over2sq_times_yp1over2sq; \
    const double c11dy = \
      twice_1mx_times_ym1over2 * xp1over2sq_times_yp1over2sq; \
    const double c11dxdy = \
       xm1over2_times_ym1over2 * xp1over2sq_times_yp1over2sq; \
    \
    \
    int band = bands; \
    \
    \
    do \
      { \
        double uno_one, uno_two, uno_thr, uno_fou;  \
        double dos_one, dos_two, dos_thr, dos_fou;  \
        double tre_one, tre_two, tre_thr, tre_fou;  \
        double qua_one, qua_two, qua_thr, qua_fou;  \
        \
        nohalo_subdivision( in[ uno_two_shift ], \
                            in[ uno_thr_shift ], \
                            in[ uno_fou_shift ], \
                            in[ dos_one_shift ], \
                            in[ dos_two_shift ], \
                            in[ dos_thr_shift ], \
                            in[ dos_fou_shift ], \
                            in[ dos_fiv_shift ], \
                            in[ tre_one_shift ], \
                            in[ tre_two_shift ], \
                            in[ tre_thr_shift ], \
                            in[ tre_fou_shift ], \
                            in[ tre_fiv_shift ], \
                            in[ qua_one_shift ], \
                            in[ qua_two_shift ], \
                            in[ qua_thr_shift ], \
                            in[ qua_fou_shift ], \
                            in[ qua_fiv_shift ], \
                            in[ cin_two_shift ], \
                            in[ cin_thr_shift ], \
                            in[ cin_fou_shift ], \
                            &uno_one,            \
                            &uno_two,            \
                            &uno_thr,            \
                            &uno_fou,            \
                            &dos_one,            \
                            &dos_two,            \
                            &dos_thr,            \
                            &dos_fou,            \
                            &tre_one,            \
                            &tre_two,            \
                            &tre_thr,            \
                            &tre_fou,            \
                            &qua_one,            \
                            &qua_two,            \
                            &qua_thr,            \
                            &qua_fou );          \
        \
        const double double_result =        \
          lbbicubic( c00,                   \
                     c10,                   \
                     c01,                   \
                     c11,                   \
                     c00dx,                 \
                     c10dx,                 \
                     c01dx,                 \
                     c11dx,                 \
                     c00dy,                 \
                     c10dy,                 \
                     c01dy,                 \
                     c11dy,                 \
                     c00dxdy,               \
                     c10dxdy,               \
                     c01dxdy,               \
                     c11dxdy,               \
                     uno_one,               \
                     uno_two,               \
                     uno_thr,               \
                     uno_fou,               \
                     dos_one,               \
                     dos_two,               \
                     dos_thr,               \
                     dos_fou,               \
                     tre_one,               \
                     tre_two,               \
                     tre_thr,               \
                     tre_fou,               \
                     qua_one,               \
                     qua_two,               \
                     qua_thr,               \
                     qua_fou );             \
        \
        {                                                         \
          const T result = to_ ## conversion<T>( double_result ); \
          in++;                                                   \
          *out++ = result;                                        \
        }                                                         \
        \
      } while (--band); \
  }


NOHALO_CONVERSION( fptypes )
NOHALO_CONVERSION( withsign )
NOHALO_CONVERSION( nosign )


#define CALL( T, conversion )             \
  nohalo_ ## conversion<T>( out,          \
                            p,            \
                            bands,        \
                            lskip,        \
                            relative_x,   \
                            relative_y );


/*
 * We need C linkage:
 */
extern "C" {
G_DEFINE_TYPE( VipsInterpolateNohalo, vips_interpolate_nohalo,
	VIPS_TYPE_INTERPOLATE );
}


static void
vips_interpolate_nohalo_interpolate( VipsInterpolate* restrict interpolate,
                                     void*            restrict out,
                                     VipsRegion*      restrict in,
                                     double                    absolute_x,
                                     double                    absolute_y )
{
  /* absolute_x and absolute_y are always >= 2.0 (see double-check assert
   * below), so we don't need floor(). 
   *
   * It's 2 not 0 since we ask for a window_offset of 2 at the bottom.
   */
  const int ix = (int) (absolute_x + 0.5);
  const int iy = (int) (absolute_y + 0.5);

  /*
   * Move the pointer to (the first band of) the top/left pixel of the
   * 2x2 group of pixel centers which contains the sampling location
   * in its convex hull:
   */
  const VipsPel* restrict p = VIPS_REGION_ADDR( in, ix, iy );

  const double relative_x = absolute_x - ix;
  const double relative_y = absolute_y - iy;

  /*
   * VIPS versions of Nicolas's pixel addressing values.
   */
  const int lskip = VIPS_REGION_LSKIP( in ) / 
	  VIPS_IMAGE_SIZEOF_ELEMENT( in->im );

  /*
   * Double the bands for complex images to account for the real and
   * imaginary parts being computed independently:
   */
  const int actual_bands = in->im->Bands;
  const int bands =
    vips_band_format_iscomplex( in->im->BandFmt ) ? 
      2 * actual_bands : actual_bands;

  g_assert( ix - 2 >= in->valid.left );
  g_assert( iy - 2 >= in->valid.top );
  g_assert( ix + 2 <= VIPS_RECT_RIGHT( &in->valid ) );
  g_assert( iy + 2 <= VIPS_RECT_BOTTOM( &in->valid ) );

  /* Confirm that absolute_x and absolute_y are >= 2, see above. 
   */
  g_assert( absolute_x >= 2.0 );
  g_assert( absolute_y >= 2.0 );

  switch( in->im->BandFmt ) {
  case VIPS_FORMAT_UCHAR:
    CALL( unsigned char, nosign );
    break;

  case VIPS_FORMAT_CHAR:
    CALL( signed char, withsign );
    break;

  case VIPS_FORMAT_USHORT:
    CALL( unsigned short, nosign );
    break;

  case VIPS_FORMAT_SHORT:
    CALL( signed short, withsign );
    break;

  case VIPS_FORMAT_UINT:
    CALL( unsigned int, nosign );
    break;

  case VIPS_FORMAT_INT:
    CALL( signed int, withsign );
    break;

  /*
   * Complex images are handled by doubling of bands.
   */
  case VIPS_FORMAT_FLOAT:
  case VIPS_FORMAT_COMPLEX:
    CALL( float, fptypes );
    break;

  case VIPS_FORMAT_DOUBLE:
  case VIPS_FORMAT_DPCOMPLEX:
    CALL( double, fptypes );
    break;

  default:
    g_assert( 0 );
    break;
  }
}

static void
vips_interpolate_nohalo_class_init( VipsInterpolateNohaloClass *klass )
{
  VipsObjectClass *object_class = VIPS_OBJECT_CLASS( klass );
  VipsInterpolateClass *interpolate_class = VIPS_INTERPOLATE_CLASS( klass );

  object_class->nickname    = "nohalo";
  object_class->description =
    _( "edge sharpening resampler with halo reduction" );

  interpolate_class->interpolate   = vips_interpolate_nohalo_interpolate;
  interpolate_class->window_size   = 6;
  interpolate_class->window_offset = 2;
}

static void
vips_interpolate_nohalo_init( VipsInterpolateNohalo *nohalo )
{
}