File: templates.h

package info (click to toggle)
vips 8.14.1-3%2Bdeb12u2
  • links: PTS
  • area: main
  • in suites: bookworm
  • size: 35,912 kB
  • sloc: ansic: 165,449; cpp: 10,987; python: 4,462; xml: 4,212; sh: 471; perl: 40; makefile: 23
file content (458 lines) | stat: -rw-r--r-- 11,231 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/* various interpolation templates
 */

/*

    This file is part of VIPS.

    VIPS is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
    02110-1301  USA

 */

/*

    These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk

 */

/*
 * Various casts which assume that the data is already in range. (That
 * is, they are to be used with monotone samplers.)
 */
template <typename T> static T inline
to_fptypes( const double val )
{
	const T newval = val;

	return( newval );
}

template <typename T> static T inline
to_withsign( const double val )
{
	const int sign_of_val = 2 * ( val >= 0. ) - 1;
	const int rounded_abs_val = .5 + sign_of_val * val;
	const T newval = sign_of_val * rounded_abs_val;

	return( newval );
}

template <typename T> static T inline
to_nosign( const double val )
{
	const T newval = .5 + val;

	return( newval );
}

/*
 * Various bilinear implementation templates. Note that no clampling
 * is used: There is an assumption that the data is such that
 * over/underflow is not an issue:
 */

/*
 * Bilinear interpolation for float and double types. The first four
 * inputs are weights, the last four are the corresponding pixel
 * values:
 */
template <typename T> static T inline
bilinear_fptypes(
	const double w_times_z,
	const double x_times_z,
	const double w_times_y,
	const double x_times_y,
	const double tre_thr,
	const double tre_thrfou,
	const double trequa_thr,
	const double trequa_thrfou )
{
	const T newval =
		w_times_z * tre_thr +
		x_times_z * tre_thrfou +
		w_times_y * trequa_thr +
		x_times_y * trequa_thrfou;

	return( newval );
}

/*
 * Bilinear interpolation for signed integer types:
 */
template <typename T> static T inline
bilinear_withsign(
	const double w_times_z,
	const double x_times_z,
	const double w_times_y,
	const double x_times_y,
	const double tre_thr,
	const double tre_thrfou,
	const double trequa_thr,
	const double trequa_thrfou )
{
	const double val =
		w_times_z * tre_thr +
		x_times_z * tre_thrfou +
		w_times_y * trequa_thr +
		x_times_y * trequa_thrfou;

	const int sign_of_val = 2 * ( val >= 0. ) - 1;

	const int rounded_abs_val = .5 + sign_of_val * val;

	const T newval = sign_of_val * rounded_abs_val;

	return( newval );
}

/*
 * Bilinear Interpolation for unsigned integer types:
 */
template <typename T> static T inline
bilinear_nosign(
	const double w_times_z,
	const double x_times_z,
	const double w_times_y,
	const double x_times_y,
	const double tre_thr,
	const double tre_thrfou,
	const double trequa_thr,
	const double trequa_thrfou )
{
	const T newval =
		w_times_z * tre_thr +
		x_times_z * tre_thrfou +
		w_times_y * trequa_thr +
		x_times_y * trequa_thrfou +
		0.5;

	return( newval );
}

/*
 * Bicubic (Catmull-Rom) interpolation templates:
 */

static int inline
unsigned_fixed_round( int v )
{
	const int round_by = VIPS_INTERPOLATE_SCALE >> 1;

	return( (v + round_by) >> VIPS_INTERPOLATE_SHIFT );
}

/* Fixed-point integer bicubic, used for 8-bit types.
 */
template <typename T> static int inline
bicubic_unsigned_int(
	const T uno_one, const T uno_two, const T uno_thr, const T uno_fou,
	const T dos_one, const T dos_two, const T dos_thr, const T dos_fou,
	const T tre_one, const T tre_two, const T tre_thr, const T tre_fou,
	const T qua_one, const T qua_two, const T qua_thr, const T qua_fou,
	const int* restrict cx, const int* restrict cy )
{
	const int c0 = cx[0];
	const int c1 = cx[1];
	const int c2 = cx[2];
	const int c3 = cx[3];

	const int r0 = unsigned_fixed_round( 
		c0 * uno_one +
		c1 * uno_two +
		c2 * uno_thr +
		c3 * uno_fou ); 
	const int r1 = unsigned_fixed_round( 
		c0 * dos_one +
		c1 * dos_two +
		c2 * dos_thr +
		c3 * dos_fou ); 
	const int r2 = unsigned_fixed_round( 
		c0 * tre_one +
		c1 * tre_two +
		c2 * tre_thr +
		c3 * tre_fou ); 
	const int r3 = unsigned_fixed_round( 
		c0 * qua_one +
		c1 * qua_two +
		c2 * qua_thr +
		c3 * qua_fou ); 

	return( unsigned_fixed_round( 
		cy[0] * r0 +
		cy[1] * r1 +
		cy[2] * r2 +
		cy[3] * r3 ) ); 
}

static int inline
signed_fixed_round( int v )
{
	const int sign_of_v = 2 * (v > 0) - 1;
	const int round_by = sign_of_v * (VIPS_INTERPOLATE_SCALE >> 1);

	return( (v + round_by) >> VIPS_INTERPOLATE_SHIFT );
}

/* Fixed-point integer bicubic, used for 8-bit types.
 */
template <typename T> static int inline
bicubic_signed_int(
	const T uno_one, const T uno_two, const T uno_thr, const T uno_fou,
	const T dos_one, const T dos_two, const T dos_thr, const T dos_fou,
	const T tre_one, const T tre_two, const T tre_thr, const T tre_fou,
	const T qua_one, const T qua_two, const T qua_thr, const T qua_fou,
	const int* restrict cx, const int* restrict cy )
{
	const int c0 = cx[0];
	const int c1 = cx[1];
	const int c2 = cx[2];
	const int c3 = cx[3];

	const int r0 = signed_fixed_round( 
		c0 * uno_one +
		c1 * uno_two +
		c2 * uno_thr +
		c3 * uno_fou ); 
	const int r1 = signed_fixed_round( 
		c0 * dos_one +
		c1 * dos_two +
		c2 * dos_thr +
		c3 * dos_fou ); 
	const int r2 = signed_fixed_round( 
		c0 * tre_one +
		c1 * tre_two +
		c2 * tre_thr +
		c3 * tre_fou ); 
	const int r3 = signed_fixed_round( 
		c0 * qua_one +
		c1 * qua_two +
		c2 * qua_thr +
		c3 * qua_fou ); 

	return( signed_fixed_round( 
		cy[0] * r0 +
		cy[1] * r1 +
		cy[2] * r2 +
		cy[3] * r3 ) ); 
}

template <typename T> static T inline
cubic_float(
	const T one, const T two, const T thr, const T fou,
	const double* restrict cx )
{
	return( cx[0] * one +
		 cx[1] * two +
		 cx[2] * thr +
		 cx[3] * fou );
}

/* Floating-point bicubic, used for int/float/double types.
 */
template <typename T> static T inline
bicubic_float(
	const T uno_one, const T uno_two, const T uno_thr, const T uno_fou,
	const T dos_one, const T dos_two, const T dos_thr, const T dos_fou,
	const T tre_one, const T tre_two, const T tre_thr, const T tre_fou,
	const T qua_one, const T qua_two, const T qua_thr, const T qua_fou,
	const double* restrict cx, const double* restrict cy )
{
	const double r0 = cubic_float<T>( 
		uno_one, uno_two, uno_thr, uno_fou, cx ); 
	const double r1 = cubic_float<T>( 
		dos_one, dos_two, dos_thr, dos_fou, cx ); 
	const double r2 = cubic_float<T>( 
		tre_one, tre_two, tre_thr, tre_fou, cx ); 
	const double r3 = cubic_float<T>( 
		qua_one, qua_two, qua_thr, qua_fou, cx ); 

	return( cubic_float<T>( r0, r1, r2, r3, cy ) ); 
}

/* Given an offset in [0,1] (we can have x == 1 when building tables),
 * calculate c0, c1, c2, c3, the catmull-rom coefficients. This is called
 * from the interpolator as well as from the table builder.
 */
static void inline
calculate_coefficients_catmull( double c[4], const double x )
{
	/* Nicolas believes that the following is an hitherto unknown
	 * hyper-efficient method of computing Catmull-Rom coefficients. It
	 * only uses 4* & 1+ & 5- for a total of only 10 flops to compute
	 * four coefficients.
	 */
	const double cr1  = 1. - x;
	const double cr2  = -.5 * x;
	const double cr3  = cr1 * cr2;
	const double cone = cr1 * cr3;
	const double cfou = x * cr3;
	const double cr4  = cfou - cone;
	const double ctwo = cr1 - cone + cr4;
	const double cthr = x - cfou - cr4;

	g_assert( x >= 0. && x <= 1. );

	c[0] = cone;
	c[3] = cfou;
	c[1] = ctwo;
	c[2] = cthr;
}

/* Given an x in [0,1] (we can have x == 1 when building tables),
 * calculate c0 .. c(@shrink + 1), the triangle coefficients. This is called
 * from the interpolator as well as from the table builder.
 */
static void inline
calculate_coefficients_triangle( double *c, 
	const double shrink, const double x )
{
	/* Needs to be in sync with vips_reduce_get_points().
	 */
	const int n_points = 2 * rint( shrink ) + 1;
	const double half = x + n_points / 2.0 - 1;

	int i;
	double sum; 

	sum = 0;
	for( i = 0; i < n_points; i++ ) {
		const double xp = (i - half) / shrink;

		double l;

		l = 1.0 - VIPS_FABS( xp );
		l = VIPS_MAX( 0.0, l ); 

		c[i] = l;
		sum += l;
	}

	for( i = 0; i < n_points; i++ ) 
		c[i] /= sum;
}

/* Generate a cubic filter. See:
 *
 * Mitchell and Netravali, Reconstruction Filters in Computer Graphics 
 * Computer Graphics, Volume 22, Number 4, August 1988.
 *
 * B = 1,   C = 0   - cubic B-spline
 * B = 1/3, C = 1/3 - Mitchell
 * B = 0,   C = 1/2 - Catmull-Rom spline
 */
static void inline
calculate_coefficients_cubic( double *c, 
	const double shrink, const double x, double B, double C )
{
	/* Needs to be in sync with vips_reduce_get_points().
	 */
	const int n_points = 2 * rint( 2 * shrink ) + 1; 
	const double half = x + n_points / 2.0 - 1;

	int i;
	double sum; 

	sum = 0;
	for( i = 0; i < n_points; i++ ) {
		const double xp = (i - half) / shrink;
		const double axp = VIPS_FABS( xp ); 
		const double axp2 = axp * axp;
		const double axp3 = axp2 * axp;

		double l;

		if( axp <= 1 ) 
			l = ((12 - 9 * B - 6 * C) * axp3 +
			     (-18 + 12 * B + 6 * C) * axp2 + 
			     (6 - 2 * B)) / 6;
		else if( axp <= 2 )
			l = ((-B - 6 * C) * axp3 +
			     (6 * B + 30 * C) * axp2 + 
			     (-12 * B - 48 * C) * axp + 
			     (8 * B + 24 * C)) / 6;
		else 
			l = 0.0;

		c[i] = l;
		sum += l;
	}

	for( i = 0; i < n_points; i++ ) 
		c[i] /= sum;
}

/* Given an x in [0,1] (we can have x == 1 when building tables),
 * calculate c0 .. c(@a * @shrink + 1), the lanczos coefficients. This is called
 * from the interpolator as well as from the table builder.
 *
 * @a is the number of lobes, so usually 2 or 3. @shrink is the reduction
 * factor, so 1 for interpolation, 2 for a x2 reduction, etc. We need more
 * points for large decimations to avoid aliasing. 
 */
static void inline
calculate_coefficients_lanczos( double *c, 
	const int a, const double shrink, const double x )
{
	/* Needs to be in sync with vips_reduce_get_points().
	 */
	const int n_points = 2 * rint( a * shrink ) + 1; 
	const double half = x + n_points / 2.0 - 1;

	int i;
	double sum; 

	sum = 0;
	for( i = 0; i < n_points; i++ ) {
		const double xp = (i - half) / shrink;

		double l;

		if( xp == 0.0 )
			l = 1.0;
		else if( xp < -a )
			l = 0.0;
		else if( xp > a )
			l = 0.0;
		else
			l = (double) a * sin( VIPS_PI * xp ) * 
				sin( VIPS_PI * xp / (double) a ) / 
				(VIPS_PI * VIPS_PI * xp * xp);

		c[i] = l;
		sum += l;
	}

	for( i = 0; i < n_points; i++ ) 
		c[i] /= sum;
}

/* Our inner loop for resampling with a convolution. Operate on elements of 
 * type T, gather results in an intermediate of type IT.
 */
template <typename T, typename IT>
static IT
reduce_sum( const T * restrict in, int stride, const IT * restrict c, int n )
{
	IT sum;

	sum = 0; 
	for( int i = 0; i < n; i++ ) {
		sum += c[i] * in[0];
		in += stride;
	}

	return( sum ); 
}