1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
/* vertex-split subdivision followed by quadratic b-spline smoothing
*
* C. Racette 23-28/05/2010 based on code by N. Robidoux and J. Cupitt
*
* N. Robidoux 29-30/05/2010
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
/*
* 2010 (c) Chantal Racette, Nicolas Robidoux, John Cupitt.
*
* Nicolas Robidoux thanks Adam Turcotte, Geert Jordaens, Ralf Meyer,
* Øyvind Kolås, Minglun Gong and Eric Daoust for useful comments and
* code.
*
* Chantal Racette's image resampling research and programming funded
* in part by a NSERC Discovery Grant awarded to Julien Dompierre
* (20-61098).
*/
/*
* Vertex-Split Quadratic B-Splines (VSQBS) is a brand new method
* which consists of vertex-split subdivision, a subdivision method
* with the (as yet unknown?) property that data which is (locally)
* constant on diagonals is subdivided into data which is (locally)
* constant on diagonals, followed by quadratic B-Spline smoothing.
* Because both methods are linear, their combination can be
* implemented as if there is no subdivision.
*
* At high enlargement ratios, VSQBS is very effective at "masking"
* that the original has pixels uniformly distributed on a grid. In
* particular, VSQBS produces resamples with only very mild
* staircasing. Like cubic B-Spline smoothing, however, VSQBS is not
* an interpolatory method. For example, using VSQBS to perform the
* identity geometric transformation (enlargement by a scaling factor
* equal to 1) on an image does not return the original: VSQBS
* effectively smooths out the image with the convolution mask
*
* 1/8
* 1/8 1/2 1/8
* 1/8
*
* which is a fairly moderate blur (although the checkerboard mode is
* in its nullspace).
*
* By blending VSQBS with an interpolatory method (bilinear, say) in a
* transformation adaptive environment (current GEGL, for example), it
* is quite easy to restore that resampling for identity geometric
* transformation is equivalent to the identity, and rotations are not
* affected by the above, implicit, blur. Contact N. Robidoux for
* details.
*
* An article on VSQBS is forthcoming.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <glib/gi18n-lib.h>
#include <stdio.h>
#include <stdlib.h>
#include <vips/vips.h>
#include <vips/internal.h>
#include "templates.h"
#define VIPS_TYPE_INTERPOLATE_VSQBS \
(vips_interpolate_vsqbs_get_type())
#define VIPS_INTERPOLATE_VSQBS( obj ) \
(G_TYPE_CHECK_INSTANCE_CAST( (obj), \
VIPS_TYPE_INTERPOLATE_VSQBS, VipsInterpolateVsqbs ))
#define VIPS_INTERPOLATE_VSQBS_CLASS( klass ) \
(G_TYPE_CHECK_CLASS_CAST( (klass), \
VIPS_TYPE_INTERPOLATE_VSQBS, VipsInterpolateVsqbsClass))
#define VIPS_IS_INTERPOLATE_VSQBS( obj ) \
(G_TYPE_CHECK_INSTANCE_TYPE( (obj), VIPS_TYPE_INTERPOLATE_VSQBS ))
#define VIPS_IS_INTERPOLATE_VSQBS_CLASS( klass ) \
(G_TYPE_CHECK_CLASS_TYPE( (klass), VIPS_TYPE_INTERPOLATE_VSQBS ))
#define VIPS_INTERPOLATE_VSQBS_GET_CLASS( obj ) \
(G_TYPE_INSTANCE_GET_CLASS( (obj), \
VIPS_TYPE_INTERPOLATE_VSQBS, VipsInterpolateVsqbsClass ))
typedef struct _VipsInterpolateVsqbs {
VipsInterpolate parent_object;
} VipsInterpolateVsqbs;
typedef struct _VipsInterpolateVsqbsClass {
VipsInterpolateClass parent_class;
} VipsInterpolateVsqbsClass;
/*
* THE STENCIL OF INPUT VALUES:
*
* Pointer arithmetic is used to implicitly reflect the input stencil
* about dos_two---assumed closer to the sampling location than other
* pixels (ties are OK)---in such a way that after reflection the
* sampling point is to the bottom right of dos_two.
*
* The following code and picture assumes that the stencil reflexion
* has already been performed. (X is the sampling location.)
*
*
* (ix,iy-1) (ix+1,iy-1)
* = uno_two = uno_thr
*
*
*
* (ix-1,iy) (ix,iy) (ix+1,iy)
* = dos_one = dos_two = dos_thr
* X
*
*
* (ix-1,iy+1) (ix,iy+1) (ix+1,iy+1)
* = tre_one = tre_two = tre_thr
*
*
* The above input pixel values are the ones needed in order to
* IMPLICITLY make available the following values, needed by quadratic
* B-Splines, which is performed on (shifted) double density data:
*
*
* uno_one_1 = uno_two_1 = uno_thr_1 =
* (ix-1/4,iy-1/4) (ix+1/4,iy-1/4) (ix+3/4,iy-1/4)
*
*
*
* X or X
* dos_one_1 = dos_two_1 = dos_thr_1 =
* (ix-1/4,iy+1/4) (ix+1/4,iy+1/4) (ix+3/4,iy+1/4)
* or X or X
*
*
*
* tre_one_1 = tre_two_1 = tre_thr_1 =
* (ix-1/4,iy+3/4) (ix+1/4,iy+3/4) (ix+3/4,iy+3/4)
*
*
* In the coefficient computations, we fix things so that coordinates
* are relative to dos_two_1, and so that distances are rescaled so
* that double density pixel locations are at a distance of 1.
*/
/*
* Call vertex-split + quadratic B-splines with a careful type
* conversion as a parameter. (It would be nice to do this with
* templates somehow---for one thing this would allow code
* comments---but we can't figure a clean way to do it.)
*/
#define VSQBS_CONVERSION( conversion ) \
template <typename T> static void inline \
vsqbs_ ## conversion( void* restrict pout, \
const VipsPel* restrict pin, \
const int bands, \
const int lskip, \
const double x_0, \
const double y_0 ) \
{ \
T* restrict out = (T *) pout; \
\
const T* restrict in = (T *) pin; \
\
const int sign_of_x_0 = 2 * ( x_0 >= 0. ) - 1; \
const int sign_of_y_0 = 2 * ( y_0 >= 0. ) - 1; \
\
const int shift_forw_1_pix = sign_of_x_0 * bands; \
const int shift_forw_1_row = sign_of_y_0 * lskip; \
\
const int shift_back_1_pix = -shift_forw_1_pix; \
const int shift_back_1_row = -shift_forw_1_row; \
\
const int uno_two_shift = shift_back_1_row; \
const int uno_thr_shift = shift_forw_1_pix + shift_back_1_row; \
\
const int dos_one_shift = shift_back_1_pix; \
const int dos_two_shift = 0; \
const int dos_thr_shift = shift_forw_1_pix; \
\
const int tre_one_shift = shift_back_1_pix + shift_forw_1_row; \
const int tre_two_shift = shift_forw_1_row; \
const int tre_thr_shift = shift_forw_1_pix + shift_forw_1_row; \
\
\
const double twice_abs_x_0 = ( 2 * sign_of_x_0 ) * x_0; \
const double twice_abs_y_0 = ( 2 * sign_of_y_0 ) * y_0; \
const double x = twice_abs_x_0 + -0.5; \
const double y = twice_abs_y_0 + -0.5; \
const double cent = 0.75 - x * x; \
const double mid = 0.75 - y * y; \
const double left = -0.5 * ( x + cent ) + 0.5; \
const double top = -0.5 * ( y + mid ) + 0.5; \
const double left_p_cent = left + cent; \
const double top_p_mid = top + mid; \
const double cent_p_rite = 1.0 - left; \
const double mid_p_bot = 1.0 - top; \
const double rite = 1.0 - left_p_cent; \
const double bot = 1.0 - top_p_mid; \
\
const double four_c_uno_two = left_p_cent * top; \
const double four_c_dos_one = left * top_p_mid; \
const double four_c_dos_two = left_p_cent + top_p_mid; \
const double four_c_dos_thr = cent_p_rite * top_p_mid + rite; \
const double four_c_tre_two = mid_p_bot * left_p_cent + bot; \
const double four_c_tre_thr = mid_p_bot * rite + cent_p_rite * bot; \
const double four_c_uno_thr = top - four_c_uno_two; \
const double four_c_tre_one = left - four_c_dos_one; \
\
\
int band = bands; \
\
do \
{ \
const double double_result = \
( \
( \
( \
four_c_uno_two * in[uno_two_shift] \
+ \
four_c_dos_one * in[dos_one_shift] \
) \
+ \
( \
four_c_dos_two * in[dos_two_shift] \
+ \
four_c_dos_thr * in[dos_thr_shift] \
) \
) \
+ \
( \
( \
four_c_tre_two * in[tre_two_shift] \
+ \
four_c_tre_thr * in[tre_thr_shift] \
) \
+ \
( \
four_c_uno_thr * in[uno_thr_shift] \
+ \
four_c_tre_one * in[tre_one_shift] \
) \
) \
) * 0.25; \
\
const T result = to_ ## conversion<T>( double_result ); \
in++; \
*out++ = result; \
\
} while (--band); \
}
VSQBS_CONVERSION( fptypes )
VSQBS_CONVERSION( withsign )
VSQBS_CONVERSION( nosign )
#define CALL( T, conversion ) \
vsqbs_ ## conversion<T>( out, \
p, \
bands, \
lskip, \
relative_x, \
relative_y );
/*
* We need C linkage:
*/
extern "C" {
G_DEFINE_TYPE( VipsInterpolateVsqbs, vips_interpolate_vsqbs,
VIPS_TYPE_INTERPOLATE );
}
static void
vips_interpolate_vsqbs_interpolate( VipsInterpolate* restrict interpolate,
void* restrict out,
VipsRegion* restrict in,
double absolute_x,
double absolute_y )
{
/* absolute_x and absolute_y are always >= 1.0 (see double-check assert
* below), so we don't need floor().
*
* It's 1 not 0 since we ask for a window_offset of 1 at the bottom.
*/
const int ix = (int) (absolute_x + 0.5);
const int iy = (int) (absolute_y + 0.5);
/*
* Move the pointer to (the first band of) the top/left pixel of the
* 2x2 group of pixel centers which contains the sampling location
* in its convex hull:
*/
const VipsPel* restrict p = VIPS_REGION_ADDR( in, ix, iy );
const double relative_x = absolute_x - ix;
const double relative_y = absolute_y - iy;
/*
* VIPS versions of Nicolas's pixel addressing values.
*/
const int lskip = VIPS_REGION_LSKIP( in ) /
VIPS_IMAGE_SIZEOF_ELEMENT( in->im );
/*
* Double the bands for complex images to account for the real and
* imaginary parts being computed independently:
*/
const int actual_bands = in->im->Bands;
const int bands =
vips_band_format_iscomplex( in->im->BandFmt ) ?
2 * actual_bands : actual_bands;
g_assert( ix - 1 >= in->valid.left );
g_assert( iy - 1 >= in->valid.top );
g_assert( ix + 1 <= VIPS_RECT_RIGHT( &in->valid ) );
g_assert( iy + 1 <= VIPS_RECT_BOTTOM( &in->valid ) );
/* Confirm that absolute_x and absolute_y are >= 1, see above.
*/
g_assert( absolute_x >= 1.0 );
g_assert( absolute_y >= 1.0 );
switch( in->im->BandFmt ) {
case VIPS_FORMAT_UCHAR:
CALL( unsigned char, nosign );
break;
case VIPS_FORMAT_CHAR:
CALL( signed char, withsign );
break;
case VIPS_FORMAT_USHORT:
CALL( unsigned short, nosign );
break;
case VIPS_FORMAT_SHORT:
CALL( signed short, withsign );
break;
case VIPS_FORMAT_UINT:
CALL( unsigned int, nosign );
break;
case VIPS_FORMAT_INT:
CALL( signed int, withsign );
break;
/*
* Complex images are handled by doubling bands:
*/
case VIPS_FORMAT_FLOAT:
case VIPS_FORMAT_COMPLEX:
CALL( float, fptypes );
break;
case VIPS_FORMAT_DOUBLE:
case VIPS_FORMAT_DPCOMPLEX:
CALL( double, fptypes );
break;
default:
g_assert( 0 );
break;
}
}
static void
vips_interpolate_vsqbs_class_init( VipsInterpolateVsqbsClass *klass )
{
VipsObjectClass *object_class = VIPS_OBJECT_CLASS( klass );
VipsInterpolateClass *interpolate_class = VIPS_INTERPOLATE_CLASS( klass );
object_class->nickname = "vsqbs";
object_class->description = _( "B-Splines with antialiasing smoothing" );
interpolate_class->interpolate = vips_interpolate_vsqbs_interpolate;
interpolate_class->window_size = 4;
interpolate_class->window_offset = 1;
}
static void
vips_interpolate_vsqbs_init( VipsInterpolateVsqbs *vsqbs )
{
}
|