1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
/* find position of maximum, subpixel estimation
*
* Copyright: 2008, Nottingham Trent University
* Author: Tom Vajzovic
* Written on: 2008-02-07
*
* 25/1/11
* - gtk-doc
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H */
#include <vips/intl.h>
#include <stdlib.h>
#include <vips/vips.h>
#define MOST_OF( A, B ) ( (A) > 0.9 * (B) )
#define LITTLE_OF( A, B ) ( (B) < 0.1 * (B) )
/**
* im_maxpos_subpel:
* @in: input image
* @x: output position of maximum
* @y: output position of maximum
*
* This function implements:
*
* "Extension of Phase Correlation to Subpixel Registration"
* by H. Foroosh, from IEEE trans. Im. Proc. 11(3), 2002.
*
* If the best three matches in the correlation are aranged:
*
* 02 or 01
* 1 2
*
* then we return a subpixel match using the ratio of correlations in the
* vertical and horizontal dimension.
*
* ( xs[0], ys[0] ) is the best integer alignment
* ( xs[ use_x ], ys[ use_x ] ) is equal in y and (+/-)1 off in x
* ( xs[ use_y ], ys[ use_y ] ) is equal in x and (+/-)1 off in y
*
* Alternatively if the best four matches in the correlation are aranged in
* a square:
*
* 01 or 03 or 02 or 03
* 32 12 31 21
*
* then we return a subpixel match weighting with the sum the two on each
* side over the sum of all four, but only if all four of them are very
* close to the best, and the fifth is nowhere near.
*
* This alternative method is not described by Foroosh, but is often the
* case where the match is close to n-and-a-half pixels in both dimensions.
*
* See also: im_maxpos(), im_min(), im_stats().
*
* Returns: 0 on success, -1 on error
*/
int im_maxpos_subpel( IMAGE *in, double *x, double *y ){
#define FUNCTION_NAME "im_maxpos_subpel"
int xs[5];
int ys[5];
double vals[5];
int xa, ya, xb, yb;
double vxa, vya, vxb, vyb;
if( im_maxpos_vec( in, xs, ys, vals, 5 ))
return -1;
#define WRAP_TEST_RETURN() \
\
/* wrap around if we have alignment -1 < d <= 0 */ \
/* (change it to: size - 1 <= d < size ) */ \
\
if( ! xa && in-> Xsize - 1 == xb ) \
xa= in-> Xsize; \
\
else if( ! xb && in-> Xsize - 1 == xa ) \
xb= in-> Xsize; \
\
if( ! ya && in-> Ysize - 1 == yb ) \
ya= in-> Ysize; \
\
else if( ! yb && in-> Ysize - 1 == ya ) \
yb= in-> Ysize; \
\
if( 1 == abs( xb - xa ) && 1 == abs( yb - ya )){ \
*x= ((double)xa) + ((double)( xb - xa )) * ( vxb / ( vxa + vxb )); \
*y= ((double)ya) + ((double)( yb - ya )) * ( vyb / ( vya + vyb )); \
return 0; \
}
#define TEST3( A, B ) \
if( xs[0] == xs[A] && ys[0] == ys[B] ){ \
xa= xs[0]; \
ya= ys[0]; \
xb= xs[B]; \
yb= ys[A]; \
vxa= vals[0]; \
vya= vals[0]; \
vxb= vals[B]; \
vyb= vals[A]; \
WRAP_TEST_RETURN() \
}
TEST3( 1, 2 )
TEST3( 2, 1 )
if( MOST_OF( vals[1], vals[0] ) && MOST_OF( vals[2], vals[0] )
&& MOST_OF( vals[3], vals[0] ) && LITTLE_OF( vals[4], vals[0] )){
#define TEST4( A, B, C, D, E, F, G, H ) \
if( xs[A] == xs[B] && xs[C] == xs[D] && ys[E] == ys[F] && ys[G] == ys[H] ){ \
xa= xs[A]; \
xb= xs[C]; \
ya= ys[E]; \
yb= ys[G]; \
vxa= vals[A] + vals[B]; \
vxb= vals[C] + vals[D]; \
vya= vals[E] + vals[F]; \
vyb= vals[G] + vals[H]; \
WRAP_TEST_RETURN() \
}
TEST4( 0, 3, 1, 2, 0, 1, 2, 3 )
TEST4( 0, 1, 2, 3, 0, 3, 1, 2 )
TEST4( 0, 3, 1, 2, 0, 2, 1, 3 )
TEST4( 0, 2, 1, 3, 0, 3, 1, 2 )
}
im_warn( FUNCTION_NAME, "registration performed to nearest pixel only: correlation does not have the expected distribution for sub-pixel registration" );
*x= (double) xs[0];
*y= (double) ys[0];
return 0;
}
|