1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
/** @file
* IPRT - Assembly Routines for Optimizing some Integers Math Operations.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
#ifndef ___iprt_asm_math_h
#define ___iprt_asm_math_h
#include <iprt/types.h>
#if defined(_MSC_VER) && RT_INLINE_ASM_USES_INTRIN
# include <intrin.h>
/* Emit the intrinsics at all optimization levels. */
# pragma intrinsic(__emul)
# pragma intrinsic(__emulu)
# ifdef RT_ARCH_AMD64
# pragma intrinsic(_mul128)
# pragma intrinsic(_umul128)
# endif
#endif
/** @defgroup grp_rt_asm_math Interger Math Optimizations
* @ingroup grp_rt_asm
* @{ */
/**
* Multiplies two unsigned 32-bit values returning an unsigned 64-bit result.
*
* @returns u32F1 * u32F2.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_X86)
DECLASM(uint64_t) ASMMult2xU32RetU64(uint32_t u32F1, uint32_t u32F2);
#else
DECLINLINE(uint64_t) ASMMult2xU32RetU64(uint32_t u32F1, uint32_t u32F2)
{
# ifdef RT_ARCH_X86
uint64_t u64;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("mull %%edx"
: "=A" (u64)
: "a" (u32F2), "d" (u32F1));
# elif RT_INLINE_ASM_USES_INTRIN
u64 = __emulu(u32F1, u32F2);
# else
__asm
{
mov edx, [u32F1]
mov eax, [u32F2]
mul edx
mov dword ptr [u64], eax
mov dword ptr [u64 + 4], edx
}
# endif
return u64;
# else /* generic: */
return (uint64_t)u32F1 * u32F2;
# endif
}
#endif
/**
* Multiplies two signed 32-bit values returning a signed 64-bit result.
*
* @returns u32F1 * u32F2.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_X86)
DECLASM(int64_t) ASMMult2xS32RetS64(int32_t i32F1, int32_t i32F2);
#else
DECLINLINE(int64_t) ASMMult2xS32RetS64(int32_t i32F1, int32_t i32F2)
{
# ifdef RT_ARCH_X86
int64_t i64;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("imull %%edx"
: "=A" (i64)
: "a" (i32F2), "d" (i32F1));
# elif RT_INLINE_ASM_USES_INTRIN
i64 = __emul(i32F1, i32F2);
# else
__asm
{
mov edx, [i32F1]
mov eax, [i32F2]
imul edx
mov dword ptr [i64], eax
mov dword ptr [i64 + 4], edx
}
# endif
return i64;
# else /* generic: */
return (int64_t)i32F1 * i32F2;
# endif
}
#endif
#if ARCH_BITS == 64
DECLINLINE(uint64_t) ASMMult2xU64Ret2xU64(uint64_t u64F1, uint64_t u64F2, uint64_t *pu64ProdHi)
{
# if defined(RT_ARCH_AMD64) && (RT_INLINE_ASM_GNU_STYLE || RT_INLINE_ASM_USES_INTRIN)
# if RT_INLINE_ASM_GNU_STYLE
uint64_t u64Low, u64High;
__asm__ __volatile__("mulq %%rdx"
: "=a" (u64Low), "=d" (u64High)
: "0" (u64F1), "1" (u64F2));
*pu64ProdHi = u64High;
return u64Low;
# elif RT_INLINE_ASM_USES_INTRIN
return _umul128(u64F1, u64F2, pu64ProdHi);
# else
# error "hmm"
# endif
# else /* generic: */
/*
* F1 * F2 = Prod
* -- --
* ab * cd = b*d + a*d*10 + b*c*10 + a*c*100
*
* Where a, b, c and d are 'digits', and 10 is max digit + 1.
*
* Our digits are 32-bit wide, so instead of 10 we multiply by 4G.
* Prod = F1.s.Lo*F2.s.Lo + F1.s.Hi*F2.s.Lo*4G
* + F1.s.Lo*F2.s.Hi*4G + F1.s.Hi*F2.s.Hi*4G*4G
*/
RTUINT128U Prod;
RTUINT64U Tmp1;
uint64_t u64Tmp;
RTUINT64U F1, F2;
F1.u = u64F1;
F2.u = u64F2;
Prod.s.Lo = ASMMult2xU32RetU64(F1.s.Lo, F2.s.Lo);
Tmp1.u = ASMMult2xU32RetU64(F1.s.Hi, F2.s.Lo);
u64Tmp = (uint64_t)Prod.DWords.dw1 + Tmp1.s.Lo;
Prod.DWords.dw1 = (uint32_t)u64Tmp;
Prod.s.Hi = Tmp1.s.Hi;
Prod.s.Hi += u64Tmp >> 32; /* carry */
Tmp1.u = ASMMult2xU32RetU64(F1.s.Lo, F2.s.Hi);
u64Tmp = (uint64_t)Prod.DWords.dw1 + Tmp1.s.Lo;
Prod.DWords.dw1 = (uint32_t)u64Tmp;
u64Tmp >>= 32; /* carry */
u64Tmp += Prod.DWords.dw2;
u64Tmp += Tmp1.s.Hi;
Prod.DWords.dw2 = (uint32_t)u64Tmp;
Prod.DWords.dw3 += u64Tmp >> 32; /* carry */
Prod.s.Hi += ASMMult2xU32RetU64(F1.s.Hi, F2.s.Hi);
*pu64ProdHi = Prod.s.Hi;
return Prod.s.Lo;
# endif
}
#endif
/**
* Divides a 64-bit unsigned by a 32-bit unsigned returning an unsigned 32-bit result.
*
* @returns u64 / u32.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
DECLASM(uint32_t) ASMDivU64ByU32RetU32(uint64_t u64, uint32_t u32);
#else
DECLINLINE(uint32_t) ASMDivU64ByU32RetU32(uint64_t u64, uint32_t u32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG uDummy;
__asm__ __volatile__("divl %3"
: "=a" (u32), "=d"(uDummy)
: "A" (u64), "r" (u32));
# else
__asm
{
mov eax, dword ptr [u64]
mov edx, dword ptr [u64 + 4]
mov ecx, [u32]
div ecx
mov [u32], eax
}
# endif
return u32;
# else /* generic: */
return (uint32_t)(u64 / u32);
# endif
}
#endif
/**
* Divides a 64-bit signed by a 32-bit signed returning a signed 32-bit result.
*
* @returns u64 / u32.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
DECLASM(int32_t) ASMDivS64ByS32RetS32(int64_t i64, int32_t i32);
#else
DECLINLINE(int32_t) ASMDivS64ByS32RetS32(int64_t i64, int32_t i32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG iDummy;
__asm__ __volatile__("idivl %3"
: "=a" (i32), "=d"(iDummy)
: "A" (i64), "r" (i32));
# else
__asm
{
mov eax, dword ptr [i64]
mov edx, dword ptr [i64 + 4]
mov ecx, [i32]
idiv ecx
mov [i32], eax
}
# endif
return i32;
# else /* generic: */
return (int32_t)(i64 / i32);
# endif
}
#endif
/**
* Performs 64-bit unsigned by a 32-bit unsigned division with a 32-bit unsigned result,
* returning the rest.
*
* @returns u64 % u32.
*
* @remarks It is important that the result is <= UINT32_MAX or we'll overflow and crash.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
DECLASM(uint32_t) ASMModU64ByU32RetU32(uint64_t u64, uint32_t u32);
#else
DECLINLINE(uint32_t) ASMModU64ByU32RetU32(uint64_t u64, uint32_t u32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG uDummy;
__asm__ __volatile__("divl %3"
: "=a" (uDummy), "=d"(u32)
: "A" (u64), "r" (u32));
# else
__asm
{
mov eax, dword ptr [u64]
mov edx, dword ptr [u64 + 4]
mov ecx, [u32]
div ecx
mov [u32], edx
}
# endif
return u32;
# else /* generic: */
return (uint32_t)(u64 % u32);
# endif
}
#endif
/**
* Performs 64-bit signed by a 32-bit signed division with a 32-bit signed result,
* returning the rest.
*
* @returns u64 % u32.
*
* @remarks It is important that the result is <= UINT32_MAX or we'll overflow and crash.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
DECLASM(int32_t) ASMModS64ByS32RetS32(int64_t i64, int32_t i32);
#else
DECLINLINE(int32_t) ASMModS64ByS32RetS32(int64_t i64, int32_t i32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG iDummy;
__asm__ __volatile__("idivl %3"
: "=a" (iDummy), "=d"(i32)
: "A" (i64), "r" (i32));
# else
__asm
{
mov eax, dword ptr [i64]
mov edx, dword ptr [i64 + 4]
mov ecx, [i32]
idiv ecx
mov [i32], edx
}
# endif
return i32;
# else /* generic: */
return (int32_t)(i64 % i32);
# endif
}
#endif
/**
* Multiple a 64-bit by a 32-bit integer and divide the result by a 32-bit integer
* using a 96 bit intermediate result.
* @note Don't use 64-bit C arithmetic here since some gcc compilers generate references to
* __udivdi3 and __umoddi3 even if this inline function is not used.
*
* @returns (u64A * u32B) / u32C.
* @param u64A The 64-bit value.
* @param u32B The 32-bit value to multiple by A.
* @param u32C The 32-bit value to divide A*B by.
*
* @remarks Architecture specific.
*/
#if RT_INLINE_ASM_EXTERNAL || !defined(__GNUC__) || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
DECLASM(uint64_t) ASMMultU64ByU32DivByU32(uint64_t u64A, uint32_t u32B, uint32_t u32C);
#else
DECLINLINE(uint64_t) ASMMultU64ByU32DivByU32(uint64_t u64A, uint32_t u32B, uint32_t u32C)
{
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
uint64_t u64Result, u64Spill;
__asm__ __volatile__("mulq %2\n\t"
"divq %3\n\t"
: "=a" (u64Result),
"=d" (u64Spill)
: "r" ((uint64_t)u32B),
"r" ((uint64_t)u32C),
"0" (u64A),
"1" (0));
return u64Result;
# else
uint32_t u32Dummy;
uint64_t u64Result;
__asm__ __volatile__("mull %%ecx \n\t" /* eax = u64Lo.lo = (u64A.lo * u32B).lo
edx = u64Lo.hi = (u64A.lo * u32B).hi */
"xchg %%eax,%%esi \n\t" /* esi = u64Lo.lo
eax = u64A.hi */
"xchg %%edx,%%edi \n\t" /* edi = u64Low.hi
edx = u32C */
"xchg %%edx,%%ecx \n\t" /* ecx = u32C
edx = u32B */
"mull %%edx \n\t" /* eax = u64Hi.lo = (u64A.hi * u32B).lo
edx = u64Hi.hi = (u64A.hi * u32B).hi */
"addl %%edi,%%eax \n\t" /* u64Hi.lo += u64Lo.hi */
"adcl $0,%%edx \n\t" /* u64Hi.hi += carry */
"divl %%ecx \n\t" /* eax = u64Hi / u32C
edx = u64Hi % u32C */
"movl %%eax,%%edi \n\t" /* edi = u64Result.hi = u64Hi / u32C */
"movl %%esi,%%eax \n\t" /* eax = u64Lo.lo */
"divl %%ecx \n\t" /* u64Result.lo */
"movl %%edi,%%edx \n\t" /* u64Result.hi */
: "=A"(u64Result), "=c"(u32Dummy),
"=S"(u32Dummy), "=D"(u32Dummy)
: "a"((uint32_t)u64A),
"S"((uint32_t)(u64A >> 32)),
"c"(u32B),
"D"(u32C));
return u64Result;
# endif
# else
RTUINT64U u;
uint64_t u64Lo = (uint64_t)(u64A & 0xffffffff) * u32B;
uint64_t u64Hi = (uint64_t)(u64A >> 32) * u32B;
u64Hi += (u64Lo >> 32);
u.s.Hi = (uint32_t)(u64Hi / u32C);
u.s.Lo = (uint32_t)((((u64Hi % u32C) << 32) + (u64Lo & 0xffffffff)) / u32C);
return u.u;
# endif
}
#endif
/** @} */
#endif
|