1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
|
/* $Id: memobj-r0drv-linux.c $ */
/** @file
* IPRT - Ring-0 Memory Objects, Linux.
*/
/*
* Copyright (C) 2006-2016 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#include "the-linux-kernel.h"
#include <iprt/memobj.h>
#include <iprt/alloc.h>
#include <iprt/assert.h>
#include <iprt/log.h>
#include <iprt/process.h>
#include <iprt/string.h>
#include "internal/memobj.h"
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
/* early 2.6 kernels */
#ifndef PAGE_SHARED_EXEC
# define PAGE_SHARED_EXEC PAGE_SHARED
#endif
#ifndef PAGE_READONLY_EXEC
# define PAGE_READONLY_EXEC PAGE_READONLY
#endif
/*
* 2.6.29+ kernels don't work with remap_pfn_range() anymore because
* track_pfn_vma_new() is apparently not defined for non-RAM pages.
* It should be safe to use vm_insert_page() older kernels as well.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23)
# define VBOX_USE_INSERT_PAGE
#endif
#if defined(CONFIG_X86_PAE) \
&& ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
|| ( LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) \
&& LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)))
# define VBOX_USE_PAE_HACK
#endif
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
/**
* The Darwin version of the memory object structure.
*/
typedef struct RTR0MEMOBJLNX
{
/** The core structure. */
RTR0MEMOBJINTERNAL Core;
/** Set if the allocation is contiguous.
* This means it has to be given back as one chunk. */
bool fContiguous;
/** Set if we've vmap'ed the memory into ring-0. */
bool fMappedToRing0;
/** The pages in the apPages array. */
size_t cPages;
/** Array of struct page pointers. (variable size) */
struct page *apPages[1];
} RTR0MEMOBJLNX, *PRTR0MEMOBJLNX;
static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
/**
* Helper that converts from a RTR0PROCESS handle to a linux task.
*
* @returns The corresponding Linux task.
* @param R0Process IPRT ring-0 process handle.
*/
static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
{
/** @todo fix rtR0ProcessToLinuxTask!! */
/** @todo many (all?) callers currently assume that we return 'current'! */
return R0Process == RTR0ProcHandleSelf() ? current : NULL;
}
/**
* Compute order. Some functions allocate 2^order pages.
*
* @returns order.
* @param cPages Number of pages.
*/
static int rtR0MemObjLinuxOrder(size_t cPages)
{
int iOrder;
size_t cTmp;
for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
;
if (cPages & ~((size_t)1 << iOrder))
++iOrder;
return iOrder;
}
/**
* Converts from RTMEM_PROT_* to Linux PAGE_*.
*
* @returns Linux page protection constant.
* @param fProt The IPRT protection mask.
* @param fKernel Whether it applies to kernel or user space.
*/
static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
{
switch (fProt)
{
default:
AssertMsgFailed(("%#x %d\n", fProt, fKernel));
case RTMEM_PROT_NONE:
return PAGE_NONE;
case RTMEM_PROT_READ:
return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
case RTMEM_PROT_WRITE:
case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
return fKernel ? PAGE_KERNEL : PAGE_SHARED;
case RTMEM_PROT_EXEC:
case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
if (fKernel)
{
pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
pgprot_val(fPg) &= ~_PAGE_RW;
return fPg;
}
return PAGE_READONLY_EXEC;
#else
return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
#endif
case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
}
}
/**
* Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
* an empty user space mapping.
*
* We acquire the mmap_sem of the task!
*
* @returns Pointer to the mapping.
* (void *)-1 on failure.
* @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
* @param cb The size of the mapping.
* @param uAlignment The alignment of the mapping.
* @param pTask The Linux task to create this mapping in.
* @param fProt The RTMEM_PROT_* mask.
*/
static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
{
unsigned fLnxProt;
unsigned long ulAddr;
Assert(pTask == current); /* do_mmap */
RT_NOREF_PV(pTask);
/*
* Convert from IPRT protection to mman.h PROT_ and call do_mmap.
*/
fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
if (fProt == RTMEM_PROT_NONE)
fLnxProt = PROT_NONE;
else
{
fLnxProt = 0;
if (fProt & RTMEM_PROT_READ)
fLnxProt |= PROT_READ;
if (fProt & RTMEM_PROT_WRITE)
fLnxProt |= PROT_WRITE;
if (fProt & RTMEM_PROT_EXEC)
fLnxProt |= PROT_EXEC;
}
if (R3PtrFixed != (RTR3PTR)-1)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
#else
down_write(&pTask->mm->mmap_sem);
ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
up_write(&pTask->mm->mmap_sem);
#endif
}
else
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
#else
down_write(&pTask->mm->mmap_sem);
ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
up_write(&pTask->mm->mmap_sem);
#endif
if ( !(ulAddr & ~PAGE_MASK)
&& (ulAddr & (uAlignment - 1)))
{
/** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
* up alignment gaps. This is of course complicated by fragmentation (which we might have cause
* ourselves) and further by there begin two mmap strategies (top / bottom). */
/* For now, just ignore uAlignment requirements... */
}
}
if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
return (void *)-1;
return (void *)ulAddr;
}
/**
* Worker that destroys a user space mapping.
* Undoes what rtR0MemObjLinuxDoMmap did.
*
* We acquire the mmap_sem of the task!
*
* @param pv The ring-3 mapping.
* @param cb The size of the mapping.
* @param pTask The Linux task to destroy this mapping in.
*/
static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
Assert(pTask == current); RT_NOREF_PV(pTask);
vm_munmap((unsigned long)pv, cb);
#elif defined(USE_RHEL4_MUNMAP)
down_write(&pTask->mm->mmap_sem);
do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
up_write(&pTask->mm->mmap_sem);
#else
down_write(&pTask->mm->mmap_sem);
do_munmap(pTask->mm, (unsigned long)pv, cb);
up_write(&pTask->mm->mmap_sem);
#endif
}
/**
* Internal worker that allocates physical pages and creates the memory object for them.
*
* @returns IPRT status code.
* @param ppMemLnx Where to store the memory object pointer.
* @param enmType The object type.
* @param cb The number of bytes to allocate.
* @param uAlignment The alignment of the physical memory.
* Only valid if fContiguous == true, ignored otherwise.
* @param fFlagsLnx The page allocation flags (GPFs).
* @param fContiguous Whether the allocation must be contiguous.
* @param rcNoMem What to return when we're out of pages.
*/
static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
size_t uAlignment, unsigned fFlagsLnx, bool fContiguous, int rcNoMem)
{
size_t iPage;
size_t const cPages = cb >> PAGE_SHIFT;
struct page *paPages;
/*
* Allocate a memory object structure that's large enough to contain
* the page pointer array.
*/
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
if (!pMemLnx)
return VERR_NO_MEMORY;
pMemLnx->cPages = cPages;
if (cPages > 255)
{
# ifdef __GFP_REPEAT
/* Try hard to allocate the memory, but the allocation attempt might fail. */
fFlagsLnx |= __GFP_REPEAT;
# endif
# ifdef __GFP_NOMEMALLOC
/* Introduced with Linux 2.6.12: Don't use emergency reserves */
fFlagsLnx |= __GFP_NOMEMALLOC;
# endif
}
/*
* Allocate the pages.
* For small allocations we'll try contiguous first and then fall back on page by page.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
if ( fContiguous
|| cb <= PAGE_SIZE * 2)
{
# ifdef VBOX_USE_INSERT_PAGE
paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
# else
paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
# endif
if (paPages)
{
fContiguous = true;
for (iPage = 0; iPage < cPages; iPage++)
pMemLnx->apPages[iPage] = &paPages[iPage];
}
else if (fContiguous)
{
rtR0MemObjDelete(&pMemLnx->Core);
return rcNoMem;
}
}
if (!fContiguous)
{
for (iPage = 0; iPage < cPages; iPage++)
{
pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
{
while (iPage-- > 0)
__free_page(pMemLnx->apPages[iPage]);
rtR0MemObjDelete(&pMemLnx->Core);
return rcNoMem;
}
}
}
#else /* < 2.4.22 */
/** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
if (!paPages)
{
rtR0MemObjDelete(&pMemLnx->Core);
return rcNoMem;
}
for (iPage = 0; iPage < cPages; iPage++)
{
pMemLnx->apPages[iPage] = &paPages[iPage];
MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
if (PageHighMem(pMemLnx->apPages[iPage]))
BUG();
}
fContiguous = true;
#endif /* < 2.4.22 */
pMemLnx->fContiguous = fContiguous;
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
/*
* Reserve the pages.
*
* Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
* pages. According to Michal Hocko this shouldn't be necessary anyway because
* as pages which are not on the LRU list are never evictable.
*/
for (iPage = 0; iPage < cPages; iPage++)
SetPageReserved(pMemLnx->apPages[iPage]);
#endif
/*
* Note that the physical address of memory allocated with alloc_pages(flags, order)
* is always 2^(PAGE_SHIFT+order)-aligned.
*/
if ( fContiguous
&& uAlignment > PAGE_SIZE)
{
/*
* Check for alignment constraints. The physical address of memory allocated with
* alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
*/
if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
{
/*
* This should never happen!
*/
printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
(unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
rtR0MemObjLinuxFreePages(pMemLnx);
return rcNoMem;
}
}
*ppMemLnx = pMemLnx;
return VINF_SUCCESS;
}
/**
* Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
*
* This method does NOT free the object.
*
* @param pMemLnx The object which physical pages should be freed.
*/
static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
{
size_t iPage = pMemLnx->cPages;
if (iPage > 0)
{
/*
* Restore the page flags.
*/
while (iPage-- > 0)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
/*
* See SetPageReserved() in rtR0MemObjLinuxAllocPages()
*/
ClearPageReserved(pMemLnx->apPages[iPage]);
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
#else
MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
#endif
}
/*
* Free the pages.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
if (!pMemLnx->fContiguous)
{
iPage = pMemLnx->cPages;
while (iPage-- > 0)
__free_page(pMemLnx->apPages[iPage]);
}
else
#endif
__free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
pMemLnx->cPages = 0;
}
}
/**
* Maps the allocation into ring-0.
*
* This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
*
* Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
* space, so we'll use that mapping if possible. If execute access is required, we'll
* play safe and do our own mapping.
*
* @returns IPRT status code.
* @param pMemLnx The linux memory object to map.
* @param fExecutable Whether execute access is required.
*/
static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
{
int rc = VINF_SUCCESS;
/*
* Choose mapping strategy.
*/
bool fMustMap = fExecutable
|| !pMemLnx->fContiguous;
if (!fMustMap)
{
size_t iPage = pMemLnx->cPages;
while (iPage-- > 0)
if (PageHighMem(pMemLnx->apPages[iPage]))
{
fMustMap = true;
break;
}
}
Assert(!pMemLnx->Core.pv);
Assert(!pMemLnx->fMappedToRing0);
if (fMustMap)
{
/*
* Use vmap - 2.4.22 and later.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
pgprot_t fPg;
pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
# ifdef _PAGE_NX
if (!fExecutable)
pgprot_val(fPg) |= _PAGE_NX;
# endif
# ifdef VM_MAP
pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
# else
pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
# endif
if (pMemLnx->Core.pv)
pMemLnx->fMappedToRing0 = true;
else
rc = VERR_MAP_FAILED;
#else /* < 2.4.22 */
rc = VERR_NOT_SUPPORTED;
#endif
}
else
{
/*
* Use the kernel RAM mapping.
*/
pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
Assert(pMemLnx->Core.pv);
}
return rc;
}
/**
* Undoes what rtR0MemObjLinuxVMap() did.
*
* @param pMemLnx The linux memory object.
*/
static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
if (pMemLnx->fMappedToRing0)
{
Assert(pMemLnx->Core.pv);
vunmap(pMemLnx->Core.pv);
pMemLnx->fMappedToRing0 = false;
}
#else /* < 2.4.22 */
Assert(!pMemLnx->fMappedToRing0);
#endif
pMemLnx->Core.pv = NULL;
}
DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
IPRT_LINUX_SAVE_EFL_AC();
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
/*
* Release any memory that we've allocated or locked.
*/
switch (pMemLnx->Core.enmType)
{
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_PAGE:
case RTR0MEMOBJTYPE_CONT:
case RTR0MEMOBJTYPE_PHYS:
case RTR0MEMOBJTYPE_PHYS_NC:
rtR0MemObjLinuxVUnmap(pMemLnx);
rtR0MemObjLinuxFreePages(pMemLnx);
break;
case RTR0MEMOBJTYPE_LOCK:
if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
{
struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
size_t iPage;
Assert(pTask);
if (pTask && pTask->mm)
down_read(&pTask->mm->mmap_sem);
iPage = pMemLnx->cPages;
while (iPage-- > 0)
{
if (!PageReserved(pMemLnx->apPages[iPage]))
SetPageDirty(pMemLnx->apPages[iPage]);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
put_page(pMemLnx->apPages[iPage]);
#else
page_cache_release(pMemLnx->apPages[iPage]);
#endif
}
if (pTask && pTask->mm)
up_read(&pTask->mm->mmap_sem);
}
/* else: kernel memory - nothing to do here. */
break;
case RTR0MEMOBJTYPE_RES_VIRT:
Assert(pMemLnx->Core.pv);
if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
{
struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
Assert(pTask);
if (pTask && pTask->mm)
rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
}
else
{
vunmap(pMemLnx->Core.pv);
Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
__free_page(pMemLnx->apPages[0]);
pMemLnx->apPages[0] = NULL;
pMemLnx->cPages = 0;
}
pMemLnx->Core.pv = NULL;
break;
case RTR0MEMOBJTYPE_MAPPING:
Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
{
struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
Assert(pTask);
if (pTask && pTask->mm)
rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
}
else
vunmap(pMemLnx->Core.pv);
pMemLnx->Core.pv = NULL;
break;
default:
AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
return VERR_INTERNAL_ERROR;
}
IPRT_LINUX_RESTORE_EFL_ONLY_AC();
return VINF_SUCCESS;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
IPRT_LINUX_SAVE_EFL_AC();
PRTR0MEMOBJLNX pMemLnx;
int rc;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
false /* non-contiguous */, VERR_NO_MEMORY);
#else
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
false /* non-contiguous */, VERR_NO_MEMORY);
#endif
if (RT_SUCCESS(rc))
{
rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
if (RT_SUCCESS(rc))
{
*ppMem = &pMemLnx->Core;
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
}
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
IPRT_LINUX_SAVE_EFL_AC();
PRTR0MEMOBJLNX pMemLnx;
int rc;
/* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
/* ZONE_DMA32: 0-4GB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
false /* non-contiguous */, VERR_NO_LOW_MEMORY);
if (RT_FAILURE(rc))
#endif
#ifdef RT_ARCH_AMD64
/* ZONE_DMA: 0-16MB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
false /* non-contiguous */, VERR_NO_LOW_MEMORY);
#else
# ifdef CONFIG_X86_PAE
# endif
/* ZONE_NORMAL: 0-896MB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
false /* non-contiguous */, VERR_NO_LOW_MEMORY);
#endif
if (RT_SUCCESS(rc))
{
rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
if (RT_SUCCESS(rc))
{
*ppMem = &pMemLnx->Core;
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
}
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
IPRT_LINUX_SAVE_EFL_AC();
PRTR0MEMOBJLNX pMemLnx;
int rc;
#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
/* ZONE_DMA32: 0-4GB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
true /* contiguous */, VERR_NO_CONT_MEMORY);
if (RT_FAILURE(rc))
#endif
#ifdef RT_ARCH_AMD64
/* ZONE_DMA: 0-16MB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
true /* contiguous */, VERR_NO_CONT_MEMORY);
#else
/* ZONE_NORMAL (32-bit hosts): 0-896MB */
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
true /* contiguous */, VERR_NO_CONT_MEMORY);
#endif
if (RT_SUCCESS(rc))
{
rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
if (RT_SUCCESS(rc))
{
#if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
size_t iPage = pMemLnx->cPages;
while (iPage-- > 0)
Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
#endif
pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
*ppMem = &pMemLnx->Core;
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
}
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
/**
* Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
*
* @returns IPRT status code.
* @param ppMemLnx Where to
* @param enmType The object type.
* @param cb The size of the allocation.
* @param uAlignment The alignment of the physical memory.
* Only valid for fContiguous == true, ignored otherwise.
* @param PhysHighest See rtR0MemObjNativeAllocPhys.
* @param fGfp The Linux GFP flags to use for the allocation.
*/
static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, unsigned fGfp)
{
PRTR0MEMOBJLNX pMemLnx;
int rc;
rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
VERR_NO_PHYS_MEMORY);
if (RT_FAILURE(rc))
return rc;
/*
* Check the addresses if necessary. (Can be optimized a bit for PHYS.)
*/
if (PhysHighest != NIL_RTHCPHYS)
{
size_t iPage = pMemLnx->cPages;
while (iPage-- > 0)
if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
{
rtR0MemObjLinuxFreePages(pMemLnx);
rtR0MemObjDelete(&pMemLnx->Core);
return VERR_NO_MEMORY;
}
}
/*
* Complete the object.
*/
if (enmType == RTR0MEMOBJTYPE_PHYS)
{
pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
pMemLnx->Core.u.Phys.fAllocated = true;
}
*ppMem = &pMemLnx->Core;
return rc;
}
/**
* Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
*
* @returns IPRT status code.
* @param ppMem Where to store the memory object pointer on success.
* @param enmType The object type.
* @param cb The size of the allocation.
* @param uAlignment The alignment of the physical memory.
* Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
* @param PhysHighest See rtR0MemObjNativeAllocPhys.
*/
static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
{
int rc;
IPRT_LINUX_SAVE_EFL_AC();
/*
* There are two clear cases and that's the <=16MB and anything-goes ones.
* When the physical address limit is somewhere in-between those two we'll
* just have to try, starting with HIGHUSER and working our way thru the
* different types, hoping we'll get lucky.
*
* We should probably move this physical address restriction logic up to
* the page alloc function as it would be more efficient there. But since
* we don't expect this to be a performance issue just yet it can wait.
*/
if (PhysHighest == NIL_RTHCPHYS)
/* ZONE_HIGHMEM: the whole physical memory */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
else if (PhysHighest <= _1M * 16)
/* ZONE_DMA: 0-16MB */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
else
{
rc = VERR_NO_MEMORY;
if (RT_FAILURE(rc))
/* ZONE_HIGHMEM: the whole physical memory */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
if (RT_FAILURE(rc))
/* ZONE_NORMAL: 0-896MB */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
#ifdef GFP_DMA32
if (RT_FAILURE(rc))
/* ZONE_DMA32: 0-4GB */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
#endif
if (RT_FAILURE(rc))
/* ZONE_DMA: 0-16MB */
rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
}
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
/**
* Translates a kernel virtual address to a linux page structure by walking the
* page tables.
*
* @note We do assume that the page tables will not change as we are walking
* them. This assumption is rather forced by the fact that I could not
* immediately see any way of preventing this from happening. So, we
* take some extra care when accessing them.
*
* Because of this, we don't want to use this function on memory where
* attribute changes to nearby pages is likely to cause large pages to
* be used or split up. So, don't use this for the linear mapping of
* physical memory.
*
* @returns Pointer to the page structur or NULL if it could not be found.
* @param pv The kernel virtual address.
*/
static struct page *rtR0MemObjLinuxVirtToPage(void *pv)
{
unsigned long ulAddr = (unsigned long)pv;
unsigned long pfn;
struct page *pPage;
pte_t *pEntry;
union
{
pgd_t Global;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
pud_t Upper;
#endif
pmd_t Middle;
pte_t Entry;
} u;
/* Should this happen in a situation this code will be called in? And if
* so, can it change under our feet? See also
* "Documentation/vm/active_mm.txt" in the kernel sources. */
if (RT_UNLIKELY(!current->active_mm))
return NULL;
u.Global = *pgd_offset(current->active_mm, ulAddr);
if (RT_UNLIKELY(pgd_none(u.Global)))
return NULL;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
u.Upper = *pud_offset(&u.Global, ulAddr);
if (RT_UNLIKELY(pud_none(u.Upper)))
return NULL;
# if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)
if (pud_large(u.Upper))
{
pPage = pud_page(u.Upper);
AssertReturn(pPage, NULL);
pfn = page_to_pfn(pPage); /* doing the safe way... */
pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
return pfn_to_page(pfn);
}
# endif
u.Middle = *pmd_offset(&u.Upper, ulAddr);
#else /* < 2.6.11 */
u.Middle = *pmd_offset(&u.Global, ulAddr);
#endif /* < 2.6.11 */
if (RT_UNLIKELY(pmd_none(u.Middle)))
return NULL;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
if (pmd_large(u.Middle))
{
pPage = pmd_page(u.Middle);
AssertReturn(pPage, NULL);
pfn = page_to_pfn(pPage); /* doing the safe way... */
pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
return pfn_to_page(pfn);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
pEntry = pte_offset_map(&u.Middle, ulAddr);
#else
pEntry = pte_offset(&u.Middle, ulAddr);
#endif
if (RT_UNLIKELY(!pEntry))
return NULL;
u.Entry = *pEntry;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map)
pte_unmap(pEntry);
#endif
if (RT_UNLIKELY(!pte_present(u.Entry)))
return NULL;
return pte_page(u.Entry);
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
{
return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
}
DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
}
DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
{
IPRT_LINUX_SAVE_EFL_AC();
/*
* All we need to do here is to validate that we can use
* ioremap on the specified address (32/64-bit dma_addr_t).
*/
PRTR0MEMOBJLNX pMemLnx;
dma_addr_t PhysAddr = Phys;
AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
if (!pMemLnx)
{
IPRT_LINUX_RESTORE_EFL_AC();
return VERR_NO_MEMORY;
}
pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
pMemLnx->Core.u.Phys.fAllocated = false;
pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
Assert(!pMemLnx->cPages);
*ppMem = &pMemLnx->Core;
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
{
IPRT_LINUX_SAVE_EFL_AC();
const int cPages = cb >> PAGE_SHIFT;
struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
struct vm_area_struct **papVMAs;
PRTR0MEMOBJLNX pMemLnx;
int rc = VERR_NO_MEMORY;
int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
/*
* Check for valid task and size overflows.
*/
if (!pTask)
return VERR_NOT_SUPPORTED;
if (((size_t)cPages << PAGE_SHIFT) != cb)
return VERR_OUT_OF_RANGE;
/*
* Allocate the memory object and a temporary buffer for the VMAs.
*/
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
if (!pMemLnx)
{
IPRT_LINUX_RESTORE_EFL_AC();
return VERR_NO_MEMORY;
}
papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
if (papVMAs)
{
down_read(&pTask->mm->mmap_sem);
/*
* Get user pages.
*/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
if (R0Process == RTR0ProcHandleSelf())
rc = get_user_pages(R3Ptr, /* Where from. */
cPages, /* How many pages. */
# if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
fWrite ? FOLL_WRITE | /* Write to memory. */
FOLL_FORCE /* force write access. */
: 0, /* Write to memory. */
# else
fWrite, /* Write to memory. */
fWrite, /* force write access. */
# endif
&pMemLnx->apPages[0], /* Page array. */
papVMAs); /* vmas */
/*
* Actually this should not happen at the moment as call this function
* only for our own process.
*/
else
rc = get_user_pages_remote(
pTask, /* Task for fault accounting. */
pTask->mm, /* Whose pages. */
R3Ptr, /* Where from. */
cPages, /* How many pages. */
# if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
fWrite ? FOLL_WRITE | /* Write to memory. */
FOLL_FORCE /* force write access. */
: 0, /* Write to memory. */
# else
fWrite, /* Write to memory. */
fWrite, /* force write access. */
# endif
&pMemLnx->apPages[0], /* Page array. */
papVMAs); /* vmas */
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0) */
rc = get_user_pages(pTask, /* Task for fault accounting. */
pTask->mm, /* Whose pages. */
R3Ptr, /* Where from. */
cPages, /* How many pages. */
# if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
fWrite ? FOLL_WRITE | /* Write to memory. */
FOLL_FORCE /* force write access. */
: 0, /* Write to memory. */
# else
fWrite, /* Write to memory. */
fWrite, /* force write access. */
# endif
&pMemLnx->apPages[0], /* Page array. */
papVMAs); /* vmas */
#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0) */
if (rc == cPages)
{
/*
* Flush dcache (required?), protect against fork and _really_ pin the page
* table entries. get_user_pages() will protect against swapping out the
* pages but it will NOT protect against removing page table entries. This
* can be achieved with
* - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
* an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
* Usual Linux distributions support only a limited size of locked pages
* (e.g. 32KB).
* - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
* or by
* - setting the VM_LOCKED flag. This is the same as doing mlock() without
* a range check.
*/
/** @todo The Linux fork() protection will require more work if this API
* is to be used for anything but locking VM pages. */
while (rc-- > 0)
{
flush_dcache_page(pMemLnx->apPages[rc]);
papVMAs[rc]->vm_flags |= (VM_DONTCOPY | VM_LOCKED);
}
up_read(&pTask->mm->mmap_sem);
RTMemFree(papVMAs);
pMemLnx->Core.u.Lock.R0Process = R0Process;
pMemLnx->cPages = cPages;
Assert(!pMemLnx->fMappedToRing0);
*ppMem = &pMemLnx->Core;
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
/*
* Failed - we need to unlock any pages that we succeeded to lock.
*/
while (rc-- > 0)
{
if (!PageReserved(pMemLnx->apPages[rc]))
SetPageDirty(pMemLnx->apPages[rc]);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
put_page(pMemLnx->apPages[rc]);
#else
page_cache_release(pMemLnx->apPages[rc]);
#endif
}
up_read(&pTask->mm->mmap_sem);
RTMemFree(papVMAs);
rc = VERR_LOCK_FAILED;
}
rtR0MemObjDelete(&pMemLnx->Core);
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
{
IPRT_LINUX_SAVE_EFL_AC();
void *pvLast = (uint8_t *)pv + cb - 1;
size_t const cPages = cb >> PAGE_SHIFT;
PRTR0MEMOBJLNX pMemLnx;
bool fLinearMapping;
int rc;
uint8_t *pbPage;
size_t iPage;
NOREF(fAccess);
if ( !RTR0MemKernelIsValidAddr(pv)
|| !RTR0MemKernelIsValidAddr(pv + cb))
return VERR_INVALID_PARAMETER;
/*
* The lower part of the kernel memory has a linear mapping between
* physical and virtual addresses. So we take a short cut here. This is
* assumed to be the cleanest way to handle those addresses (and the code
* is well tested, though the test for determining it is not very nice).
* If we ever decide it isn't we can still remove it.
*/
#if 0
fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
#else
fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
&& (unsigned long)pvLast < (unsigned long)high_memory;
#endif
/*
* Allocate the memory object.
*/
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
if (!pMemLnx)
{
IPRT_LINUX_RESTORE_EFL_AC();
return VERR_NO_MEMORY;
}
/*
* Gather the pages.
* We ASSUME all kernel pages are non-swappable and non-movable.
*/
rc = VINF_SUCCESS;
pbPage = (uint8_t *)pvLast;
iPage = cPages;
if (!fLinearMapping)
{
while (iPage-- > 0)
{
struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
if (RT_UNLIKELY(!pPage))
{
rc = VERR_LOCK_FAILED;
break;
}
pMemLnx->apPages[iPage] = pPage;
pbPage -= PAGE_SIZE;
}
}
else
{
while (iPage-- > 0)
{
pMemLnx->apPages[iPage] = virt_to_page(pbPage);
pbPage -= PAGE_SIZE;
}
}
if (RT_SUCCESS(rc))
{
/*
* Complete the memory object and return.
*/
pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
pMemLnx->cPages = cPages;
Assert(!pMemLnx->fMappedToRing0);
*ppMem = &pMemLnx->Core;
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemLnx->Core);
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
IPRT_LINUX_SAVE_EFL_AC();
const size_t cPages = cb >> PAGE_SHIFT;
struct page *pDummyPage;
struct page **papPages;
/* check for unsupported stuff. */
AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
/*
* Allocate a dummy page and create a page pointer array for vmap such that
* the dummy page is mapped all over the reserved area.
*/
pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
if (pDummyPage)
{
papPages = RTMemAlloc(sizeof(*papPages) * cPages);
if (papPages)
{
void *pv;
size_t iPage = cPages;
while (iPage-- > 0)
papPages[iPage] = pDummyPage;
# ifdef VM_MAP
pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
# else
pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
# endif
RTMemFree(papPages);
if (pv)
{
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
if (pMemLnx)
{
pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
pMemLnx->cPages = 1;
pMemLnx->apPages[0] = pDummyPage;
*ppMem = &pMemLnx->Core;
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
vunmap(pv);
}
}
__free_page(pDummyPage);
}
IPRT_LINUX_RESTORE_EFL_AC();
return VERR_NO_MEMORY;
#else /* < 2.4.22 */
/*
* Could probably use ioremap here, but the caller is in a better position than us
* to select some safe physical memory.
*/
return VERR_NOT_SUPPORTED;
#endif
}
DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
{
IPRT_LINUX_SAVE_EFL_AC();
PRTR0MEMOBJLNX pMemLnx;
void *pv;
struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
if (!pTask)
return VERR_NOT_SUPPORTED;
/*
* Check that the specified alignment is supported.
*/
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
/*
* Let rtR0MemObjLinuxDoMmap do the difficult bits.
*/
pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
if (pv == (void *)-1)
{
IPRT_LINUX_RESTORE_EFL_AC();
return VERR_NO_MEMORY;
}
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
if (!pMemLnx)
{
rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
IPRT_LINUX_RESTORE_EFL_AC();
return VERR_NO_MEMORY;
}
pMemLnx->Core.u.ResVirt.R0Process = R0Process;
*ppMem = &pMemLnx->Core;
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap,
void *pvFixed, size_t uAlignment,
unsigned fProt, size_t offSub, size_t cbSub)
{
int rc = VERR_NO_MEMORY;
PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
PRTR0MEMOBJLNX pMemLnx;
IPRT_LINUX_SAVE_EFL_AC();
/* Fail if requested to do something we can't. */
AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
/*
* Create the IPRT memory object.
*/
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
if (pMemLnx)
{
if (pMemLnxToMap->cPages)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
/*
* Use vmap - 2.4.22 and later.
*/
pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
# ifdef VM_MAP
pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg);
# else
pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg);
# endif
if (pMemLnx->Core.pv)
{
pMemLnx->fMappedToRing0 = true;
rc = VINF_SUCCESS;
}
else
rc = VERR_MAP_FAILED;
#else /* < 2.4.22 */
/*
* Only option here is to share mappings if possible and forget about fProt.
*/
if (rtR0MemObjIsRing3(pMemToMap))
rc = VERR_NOT_SUPPORTED;
else
{
rc = VINF_SUCCESS;
if (!pMemLnxToMap->Core.pv)
rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
if (RT_SUCCESS(rc))
{
Assert(pMemLnxToMap->Core.pv);
pMemLnx->Core.pv = pMemLnxToMap->Core.pv;
}
}
#endif
}
else
{
/*
* MMIO / physical memory.
*/
Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb)
: ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb);
if (pMemLnx->Core.pv)
{
/** @todo fix protection. */
rc = VINF_SUCCESS;
}
}
if (RT_SUCCESS(rc))
{
pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
*ppMem = &pMemLnx->Core;
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
rtR0MemObjDelete(&pMemLnx->Core);
}
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
#ifdef VBOX_USE_PAE_HACK
/**
* Replace the PFN of a PTE with the address of the actual page.
*
* The caller maps a reserved dummy page at the address with the desired access
* and flags.
*
* This hack is required for older Linux kernels which don't provide
* remap_pfn_range().
*
* @returns 0 on success, -ENOMEM on failure.
* @param mm The memory context.
* @param ulAddr The mapping address.
* @param Phys The physical address of the page to map.
*/
static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
{
int rc = -ENOMEM;
pgd_t *pgd;
spin_lock(&mm->page_table_lock);
pgd = pgd_offset(mm, ulAddr);
if (!pgd_none(*pgd) && !pgd_bad(*pgd))
{
pmd_t *pmd = pmd_offset(pgd, ulAddr);
if (!pmd_none(*pmd))
{
pte_t *ptep = pte_offset_map(pmd, ulAddr);
if (ptep)
{
pte_t pte = *ptep;
pte.pte_high &= 0xfff00000;
pte.pte_high |= ((Phys >> 32) & 0x000fffff);
pte.pte_low &= 0x00000fff;
pte.pte_low |= (Phys & 0xfffff000);
set_pte(ptep, pte);
pte_unmap(ptep);
rc = 0;
}
}
}
spin_unlock(&mm->page_table_lock);
return rc;
}
#endif /* VBOX_USE_PAE_HACK */
DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed,
size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
{
struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
int rc = VERR_NO_MEMORY;
PRTR0MEMOBJLNX pMemLnx;
#ifdef VBOX_USE_PAE_HACK
struct page *pDummyPage;
RTHCPHYS DummyPhys;
#endif
IPRT_LINUX_SAVE_EFL_AC();
/*
* Check for restrictions.
*/
if (!pTask)
return VERR_NOT_SUPPORTED;
if (uAlignment > PAGE_SIZE)
return VERR_NOT_SUPPORTED;
#ifdef VBOX_USE_PAE_HACK
/*
* Allocate a dummy page for use when mapping the memory.
*/
pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
if (!pDummyPage)
{
IPRT_LINUX_RESTORE_EFL_AC();
return VERR_NO_MEMORY;
}
SetPageReserved(pDummyPage);
DummyPhys = page_to_phys(pDummyPage);
#endif
/*
* Create the IPRT memory object.
*/
pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
if (pMemLnx)
{
/*
* Allocate user space mapping.
*/
void *pv;
pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt);
if (pv != (void *)-1)
{
/*
* Map page by page into the mmap area.
* This is generic, paranoid and not very efficient.
*/
pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
unsigned long ulAddrCur = (unsigned long)pv;
const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT;
size_t iPage;
down_write(&pTask->mm->mmap_sem);
rc = VINF_SUCCESS;
if (pMemLnxToMap->cPages)
{
for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
{
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)
RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
/* remap_page_range() limitation on x86 */
AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
#endif
#if defined(VBOX_USE_INSERT_PAGE) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
/* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
* See remap_pfn_range() in mm/memory.c */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
#else
vma->vm_flags |= VM_RESERVED;
#endif
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
#elif defined(VBOX_USE_PAE_HACK)
rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
if (!rc)
rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
#else /* 2.4 */
rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
#endif
if (rc)
{
rc = VERR_NO_MEMORY;
break;
}
}
}
else
{
RTHCPHYS Phys;
if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
Phys = pMemLnxToMap->Core.u.Cont.Phys;
else
{
AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
Phys = NIL_RTHCPHYS;
}
if (Phys != NIL_RTHCPHYS)
{
for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
/* remap_page_range() limitation on x86 */
AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
#elif defined(VBOX_USE_PAE_HACK)
rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
if (!rc)
rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
#else /* 2.4 */
rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
#endif
if (rc)
{
rc = VERR_NO_MEMORY;
break;
}
}
}
}
#ifdef CONFIG_NUMA_BALANCING
# if LINUX_VERSION_CODE < KERNEL_VERSION(3, 13, 0)
# ifdef RHEL_RELEASE_CODE
# if RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(7, 0)
# define VBOX_NUMA_HACK_OLD
# endif
# endif
# endif
if (RT_SUCCESS(rc))
{
/** @todo Ugly hack! But right now we have no other means to
* disable automatic NUMA page balancing. */
# ifdef RT_OS_X86
# ifdef VBOX_NUMA_HACK_OLD
pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
# endif
pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
# else
# ifdef VBOX_NUMA_HACK_OLD
pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
# endif
pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
# endif
}
#endif /* CONFIG_NUMA_BALANCING */
up_write(&pTask->mm->mmap_sem);
if (RT_SUCCESS(rc))
{
#ifdef VBOX_USE_PAE_HACK
__free_page(pDummyPage);
#endif
pMemLnx->Core.pv = pv;
pMemLnx->Core.u.Mapping.R0Process = R0Process;
*ppMem = &pMemLnx->Core;
IPRT_LINUX_RESTORE_EFL_AC();
return VINF_SUCCESS;
}
/*
* Bail out.
*/
rtR0MemObjLinuxDoMunmap(pv, pMemLnxToMap->Core.cb, pTask);
}
rtR0MemObjDelete(&pMemLnx->Core);
}
#ifdef VBOX_USE_PAE_HACK
__free_page(pDummyPage);
#endif
IPRT_LINUX_RESTORE_EFL_AC();
return rc;
}
DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
{
NOREF(pMem);
NOREF(offSub);
NOREF(cbSub);
NOREF(fProt);
return VERR_NOT_SUPPORTED;
}
DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
{
PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
if (pMemLnx->cPages)
return page_to_phys(pMemLnx->apPages[iPage]);
switch (pMemLnx->Core.enmType)
{
case RTR0MEMOBJTYPE_CONT:
return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
case RTR0MEMOBJTYPE_PHYS:
return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
/* the parent knows */
case RTR0MEMOBJTYPE_MAPPING:
return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
/* cPages > 0 */
case RTR0MEMOBJTYPE_LOW:
case RTR0MEMOBJTYPE_LOCK:
case RTR0MEMOBJTYPE_PHYS_NC:
case RTR0MEMOBJTYPE_PAGE:
default:
AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
/* fall thru */
case RTR0MEMOBJTYPE_RES_VIRT:
return NIL_RTHCPHYS;
}
}
|