1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
|
/** @file
* IPRT - Assembly Routines for Optimizing some Integers Math Operations.
*/
/*
* Copyright (C) 2006-2025 Oracle and/or its affiliates.
*
* This file is part of VirtualBox base platform packages, as
* available from https://www.virtualbox.org.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, in version 3 of the
* License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses>.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL), a copy of it is provided in the "COPYING.CDDL" file included
* in the VirtualBox distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* SPDX-License-Identifier: GPL-3.0-only OR CDDL-1.0
*/
#ifndef IPRT_INCLUDED_asm_math_h
#define IPRT_INCLUDED_asm_math_h
#ifndef RT_WITHOUT_PRAGMA_ONCE
# pragma once
#endif
#include <iprt/types.h>
#if defined(_MSC_VER) && RT_INLINE_ASM_USES_INTRIN
/* Emit the intrinsics at all optimization levels. */
# include <iprt/sanitized/intrin.h>
# if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
# pragma intrinsic(__emul)
# pragma intrinsic(__emulu)
# ifdef RT_ARCH_AMD64
# pragma intrinsic(_mul128)
# pragma intrinsic(_umul128)
# endif
# endif
#endif
/*
* Undefine all symbols we have Watcom C/C++ #pragma aux'es for.
*/
#if defined(__WATCOMC__) && ARCH_BITS == 16 && defined(RT_ARCH_X86)
/*# include "asm-math-watcom-x86-16.h"*/
#elif defined(__WATCOMC__) && ARCH_BITS == 32 && defined(RT_ARCH_X86)
# include "asm-math-watcom-x86-32.h"
#endif
/** @defgroup grp_rt_asm_math Interger Math Optimizations
* @ingroup grp_rt_asm
* @{ */
/**
* Multiplies two unsigned 32-bit values returning an unsigned 64-bit result.
*
* @returns u32F1 * u32F2.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_X86)
RT_ASM_DECL_PRAGMA_WATCOM(uint64_t) ASMMult2xU32RetU64(uint32_t u32F1, uint32_t u32F2);
#else
DECLINLINE(uint64_t) ASMMult2xU32RetU64(uint32_t u32F1, uint32_t u32F2)
{
# ifdef RT_ARCH_X86
uint64_t u64;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("mull %%edx"
: "=A" (u64)
: "a" (u32F2), "d" (u32F1));
# elif RT_INLINE_ASM_USES_INTRIN
u64 = __emulu(u32F1, u32F2);
# else
__asm
{
mov edx, [u32F1]
mov eax, [u32F2]
mul edx
mov dword ptr [u64], eax
mov dword ptr [u64 + 4], edx
}
# endif
return u64;
# else /* generic: */
return (uint64_t)u32F1 * u32F2;
# endif
}
#endif
/**
* Multiplies two signed 32-bit values returning a signed 64-bit result.
*
* @returns u32F1 * u32F2.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_X86)
RT_ASM_DECL_PRAGMA_WATCOM(int64_t) ASMMult2xS32RetS64(int32_t i32F1, int32_t i32F2);
#else
DECLINLINE(int64_t) ASMMult2xS32RetS64(int32_t i32F1, int32_t i32F2)
{
# ifdef RT_ARCH_X86
int64_t i64;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("imull %%edx"
: "=A" (i64)
: "a" (i32F2), "d" (i32F1));
# elif RT_INLINE_ASM_USES_INTRIN
i64 = __emul(i32F1, i32F2);
# else
__asm
{
mov edx, [i32F1]
mov eax, [i32F2]
imul edx
mov dword ptr [i64], eax
mov dword ptr [i64 + 4], edx
}
# endif
return i64;
# else /* generic: */
return (int64_t)i32F1 * i32F2;
# endif
}
#endif
DECLINLINE(uint64_t) ASMMult2xU64Ret2xU64(uint64_t u64F1, uint64_t u64F2, uint64_t *pu64ProdHi)
{
#if defined(RT_ARCH_AMD64) && (RT_INLINE_ASM_GNU_STYLE || RT_INLINE_ASM_USES_INTRIN)
# if RT_INLINE_ASM_GNU_STYLE
uint64_t u64Low, u64High;
__asm__ __volatile__("mulq %%rdx"
: "=a" (u64Low), "=d" (u64High)
: "0" (u64F1), "1" (u64F2));
*pu64ProdHi = u64High;
return u64Low;
# elif RT_INLINE_ASM_USES_INTRIN
return _umul128(u64F1, u64F2, pu64ProdHi);
# else
# error "hmm"
# endif
#else /* generic: */
/*
* F1 * F2 = Prod
* -- --
* ab * cd = b*d + a*d*10 + b*c*10 + a*c*100
*
* Where a, b, c and d are 'digits', and 10 is max digit + 1.
*
* Our digits are 32-bit wide, so instead of 10 we multiply by 4G.
* Prod = F1.s.Lo*F2.s.Lo + F1.s.Hi*F2.s.Lo*4G
* + F1.s.Lo*F2.s.Hi*4G + F1.s.Hi*F2.s.Hi*4G*4G
*/
RTUINT128U Prod;
RTUINT64U Tmp1;
uint64_t u64Tmp;
RTUINT64U F1, F2;
F1.u = u64F1;
F2.u = u64F2;
Prod.s.Lo = ASMMult2xU32RetU64(F1.s.Lo, F2.s.Lo);
Tmp1.u = ASMMult2xU32RetU64(F1.s.Hi, F2.s.Lo);
u64Tmp = (uint64_t)Prod.DWords.dw1 + Tmp1.s.Lo;
Prod.DWords.dw1 = (uint32_t)u64Tmp;
Prod.s.Hi = Tmp1.s.Hi;
Prod.s.Hi += u64Tmp >> 32; /* carry */
Tmp1.u = ASMMult2xU32RetU64(F1.s.Lo, F2.s.Hi);
u64Tmp = (uint64_t)Prod.DWords.dw1 + Tmp1.s.Lo;
Prod.DWords.dw1 = (uint32_t)u64Tmp;
u64Tmp >>= 32; /* carry */
u64Tmp += Prod.DWords.dw2;
u64Tmp += Tmp1.s.Hi;
Prod.DWords.dw2 = (uint32_t)u64Tmp;
Prod.DWords.dw3 += u64Tmp >> 32; /* carry */
Prod.s.Hi += ASMMult2xU32RetU64(F1.s.Hi, F2.s.Hi);
*pu64ProdHi = Prod.s.Hi;
return Prod.s.Lo;
#endif
}
DECLINLINE(int64_t) ASMMult2xS64Ret2xS64(int64_t i64F1, int64_t i64F2, int64_t *pi64ProdHi)
{
#if defined(RT_ARCH_AMD64) && (RT_INLINE_ASM_GNU_STYLE || RT_INLINE_ASM_USES_INTRIN)
# if RT_INLINE_ASM_GNU_STYLE
int64_t i64Low, i64High;
__asm__ __volatile__("imulq %%rdx"
: "=a" (i64Low), "=d" (i64High)
: "0" (i64F1), "1" (i64F2));
*pi64ProdHi = i64High;
return i64Low;
# elif RT_INLINE_ASM_USES_INTRIN
return _mul128(i64F1, i64F2, pi64ProdHi);
# else
# error "hmm"
# endif
#else /* generic: */
/*
* Signed multiplication is done by performing unsigned multiplication of
* the absolute factors and applying the right sign to the product.
*/
uint64_t uProdHi;
uint64_t uProdLo;
if (i64F1 >= 0)
{
/* If both positive, do unsigned multiplication. */
if (i64F2 >= 0)
return (int64_t)ASMMult2xU64Ret2xU64((uint64_t)i64F1, (uint64_t)i64F2, (uint64_t *)pi64ProdHi);
i64F2 = -i64F2;
}
/* If both negative, negate the factors and do unsigned multiplication. */
else if (i64F2 < 0)
return (int64_t)ASMMult2xU64Ret2xU64((uint64_t)-i64F1, (uint64_t)-i64F2, (uint64_t *)pi64ProdHi);
else
i64F1 = -i64F1;
uProdLo = ASMMult2xU64Ret2xU64((uint64_t)i64F1, (uint64_t)i64F2, &uProdHi);
/* Negate the result */
if (uProdLo != 0)
{
*pi64ProdHi = (int64_t)(UINT64_MAX - uProdHi);
return (int64_t)(UINT64_C(0) - uProdLo);
}
*pi64ProdHi = (int64_t)(UINT64_C(0) - uProdHi);
return 0;
#endif
}
/**
* Divides a 64-bit unsigned by a 32-bit unsigned returning an unsigned 32-bit result.
*
* @returns u64 / u32.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMDivU64ByU32RetU32(uint64_t u64, uint32_t u32);
#else
DECLINLINE(uint32_t) ASMDivU64ByU32RetU32(uint64_t u64, uint32_t u32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG uDummy;
__asm__ __volatile__("divl %3"
: "=a" (u32), "=d"(uDummy)
: "A" (u64), "r" (u32));
# else
__asm
{
mov eax, dword ptr [u64]
mov edx, dword ptr [u64 + 4]
mov ecx, [u32]
div ecx
mov [u32], eax
}
# endif
return u32;
# else /* generic: */
return (uint32_t)(u64 / u32);
# endif
}
#endif
/**
* Divides a 64-bit signed by a 32-bit signed returning a signed 32-bit result.
*
* @returns u64 / u32.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
RT_ASM_DECL_PRAGMA_WATCOM(int32_t) ASMDivS64ByS32RetS32(int64_t i64, int32_t i32);
#else
DECLINLINE(int32_t) ASMDivS64ByS32RetS32(int64_t i64, int32_t i32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG iDummy;
__asm__ __volatile__("idivl %3"
: "=a" (i32), "=d"(iDummy)
: "A" (i64), "r" (i32));
# else
__asm
{
mov eax, dword ptr [i64]
mov edx, dword ptr [i64 + 4]
mov ecx, [i32]
idiv ecx
mov [i32], eax
}
# endif
return i32;
# else /* generic: */
return (int32_t)(i64 / i32);
# endif
}
#endif
/**
* Performs 64-bit unsigned by a 32-bit unsigned division with a 32-bit unsigned result,
* returning the rest.
*
* @returns u64 % u32.
*
* @remarks It is important that the result is <= UINT32_MAX or we'll overflow and crash.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMModU64ByU32RetU32(uint64_t u64, uint32_t u32);
#else
DECLINLINE(uint32_t) ASMModU64ByU32RetU32(uint64_t u64, uint32_t u32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG uDummy;
__asm__ __volatile__("divl %3"
: "=a" (uDummy), "=d"(u32)
: "A" (u64), "r" (u32));
# else
__asm
{
mov eax, dword ptr [u64]
mov edx, dword ptr [u64 + 4]
mov ecx, [u32]
div ecx
mov [u32], edx
}
# endif
return u32;
# else /* generic: */
return (uint32_t)(u64 % u32);
# endif
}
#endif
/**
* Performs 64-bit signed by a 32-bit signed division with a 32-bit signed result,
* returning the rest.
*
* @returns u64 % u32.
*
* @remarks It is important that the result is <= UINT32_MAX or we'll overflow and crash.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
RT_ASM_DECL_PRAGMA_WATCOM(int32_t) ASMModS64ByS32RetS32(int64_t i64, int32_t i32);
#else
DECLINLINE(int32_t) ASMModS64ByS32RetS32(int64_t i64, int32_t i32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG iDummy;
__asm__ __volatile__("idivl %3"
: "=a" (iDummy), "=d"(i32)
: "A" (i64), "r" (i32));
# else
__asm
{
mov eax, dword ptr [i64]
mov edx, dword ptr [i64 + 4]
mov ecx, [i32]
idiv ecx
mov [i32], edx
}
# endif
return i32;
# else /* generic: */
return (int32_t)(i64 % i32);
# endif
}
#endif
/**
* Multiple a 32-bit by a 32-bit integer and divide the result by a 32-bit integer
* using a 64 bit intermediate result.
*
* @returns (u32A * u32B) / u32C.
* @param u32A The 32-bit value (A).
* @param u32B The 32-bit value to multiple by A.
* @param u32C The 32-bit value to divide A*B by.
*
* @remarks Architecture specific.
* @remarks Make sure the result won't ever exceed 32-bit, because hardware
* exception may be raised if it does.
* @remarks On x86 this may be used to avoid dragging in 64-bit builtin
* arithmetics functions.
*/
#if RT_INLINE_ASM_EXTERNAL && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
RT_ASM_DECL_PRAGMA_WATCOM(uint32_t) ASMMultU32ByU32DivByU32(uint32_t u32A, uint32_t u32B, uint32_t u32C);
#else
DECLINLINE(uint32_t) ASMMultU32ByU32DivByU32(uint32_t u32A, uint32_t u32B, uint32_t u32C)
{
# if RT_INLINE_ASM_GNU_STYLE && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
uint32_t u32Result, u32Spill;
__asm__ __volatile__("mull %2\n\t"
"divl %3\n\t"
: "=&a" (u32Result),
"=&d" (u32Spill)
: "r" (u32B),
"r" (u32C),
"0" (u32A));
return u32Result;
# else
return (uint32_t)(((uint64_t)u32A * u32B) / u32C);
# endif
}
#endif
/**
* Multiple a 64-bit by a 32-bit integer and divide the result by a 32-bit integer
* using a 96 bit intermediate result.
*
* @returns (u64A * u32B) / u32C.
* @param u64A The 64-bit value.
* @param u32B The 32-bit value to multiple by A.
* @param u32C The 32-bit value to divide A*B by.
*
* @remarks Architecture specific.
* @remarks Make sure the result won't ever exceed 64-bit, because hardware
* exception may be raised if it does.
* @remarks On x86 this may be used to avoid dragging in 64-bit builtin
* arithmetics function.
*/
#if RT_INLINE_ASM_EXTERNAL || !defined(__GNUC__) || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
RT_DECL_ASM(uint64_t) ASMMultU64ByU32DivByU32(uint64_t u64A, uint32_t u32B, uint32_t u32C);
#else
DECLINLINE(uint64_t) ASMMultU64ByU32DivByU32(uint64_t u64A, uint32_t u32B, uint32_t u32C)
{
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
uint64_t u64Result, u64Spill;
__asm__ __volatile__("mulq %2\n\t"
"divq %3\n\t"
: "=&a" (u64Result),
"=&d" (u64Spill)
: "r" ((uint64_t)u32B),
"r" ((uint64_t)u32C),
"0" (u64A));
return u64Result;
# else
uint32_t u32Dummy;
uint64_t u64Result;
__asm__ __volatile__("mull %%ecx \n\t" /* eax = u64Lo.lo = (u64A.lo * u32B).lo
edx = u64Lo.hi = (u64A.lo * u32B).hi */
"xchg %%eax,%%esi \n\t" /* esi = u64Lo.lo
eax = u64A.hi */
"xchg %%edx,%%edi \n\t" /* edi = u64Low.hi
edx = u32C */
"xchg %%edx,%%ecx \n\t" /* ecx = u32C
edx = u32B */
"mull %%edx \n\t" /* eax = u64Hi.lo = (u64A.hi * u32B).lo
edx = u64Hi.hi = (u64A.hi * u32B).hi */
"addl %%edi,%%eax \n\t" /* u64Hi.lo += u64Lo.hi */
"adcl $0,%%edx \n\t" /* u64Hi.hi += carry */
"divl %%ecx \n\t" /* eax = u64Hi / u32C
edx = u64Hi % u32C */
"movl %%eax,%%edi \n\t" /* edi = u64Result.hi = u64Hi / u32C */
"movl %%esi,%%eax \n\t" /* eax = u64Lo.lo */
"divl %%ecx \n\t" /* u64Result.lo */
"movl %%edi,%%edx \n\t" /* u64Result.hi */
: "=A"(u64Result), "=c"(u32Dummy),
"=S"(u32Dummy), "=D"(u32Dummy)
: "a"((uint32_t)u64A),
"S"((uint32_t)(u64A >> 32)),
"c"(u32B),
"D"(u32C));
return u64Result;
# endif
# else
RTUINT64U u;
uint64_t u64Lo = (uint64_t)(u64A & 0xffffffff) * u32B;
uint64_t u64Hi = (uint64_t)(u64A >> 32) * u32B;
u64Hi += (u64Lo >> 32);
u.s.Hi = (uint32_t)(u64Hi / u32C);
u.s.Lo = (uint32_t)((((u64Hi % u32C) << 32) + (u64Lo & 0xffffffff)) / u32C);
return u.u;
# endif
}
#endif
/** @} */
/*
* Include #pragma aux definitions for Watcom C/C++.
*/
#if defined(__WATCOMC__) && ARCH_BITS == 16 && defined(RT_ARCH_X86)
# define IPRT_ASM_WATCOM_X86_16_WITH_PRAGMAS
# undef IPRT_INCLUDED_asm_math_watcom_x86_16_h
/*# include "asm-math-watcom-x86-16.h"*/
#elif defined(__WATCOMC__) && ARCH_BITS == 32 && defined(RT_ARCH_X86)
# define IPRT_ASM_WATCOM_X86_32_WITH_PRAGMAS
# undef IPRT_INCLUDED_asm_math_watcom_x86_32_h
# include "asm-math-watcom-x86-32.h"
#endif
#endif /* !IPRT_INCLUDED_asm_math_h */
|