1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*
* fiber_win32.c
*
* $Id$
*
* Fiber Event Loop (Win32 implementation)
*
* This file is part of the OpenLink Software Virtuoso Open-Source (VOS)
* project.
*
* Copyright (C) 1998-2012 OpenLink Software
*
* This project is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; only version 2 of the License, dated June 1991.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*
*/
#include "thread_int.h"
#ifdef EXPIRIMENTAL
static int _fd_set_or (fd_set * s1, fd_set * s2);
static int _fd_set_intersect (fd_set * s1, fd_set * s2);
static void _fd_set_and (fd_set * s1, fd_set * s2);
int
thread_select (int n, fd_set *rfds, fd_set *wfds, void *event, TVAL timeout)
{
thread_t *thr = _current_fiber;
if (rfds)
thr->thr_rfds = *rfds;
else
FD_ZERO (&thr->thr_rfds);
if (wfds)
thr->thr_wfds = *wfds;
else
FD_ZERO (&thr->thr_wfds);
thr->thr_nfds = n;
/* Signalled in _event_loop () */
if (_fiber_sleep (event, timeout) == -1)
{
thr->thr_nfds = 0;
return 0;
}
thr->thr_nfds = 0;
if (rfds)
*rfds = thr->thr_rfds;
if (wfds)
*wfds = thr->thr_wfds;
return thr->thr_retcode;
}
void
thread_sleep (TVAL timeout)
{
_fiber_sleep (NULL, timeout);
thr_errno = 0;
}
static void
dumpfds (char *lbl, fd_set *p)
{
u_int i;
fprintf (stderr, "%s:", lbl);
for (i = 0; i < p->fd_count; i++)
fprintf (stderr, " %d", p->fd_array[i]);
fprintf (stderr, "\n");
}
/*
* This is the idle task, that runs at the lowest possible priority.
* It's only called when there are no other fibers ready for scheduling.
*/
void
_fiber_event_loop (void)
{
/* These are all static, to minimize stack usage */
static fd_set readfds;
static fd_set writefds;
static int nreadfds;
static int nwritefds;
static int nfds;
static thread_t *thr, *next;
static TVAL timeout;
static struct timeval tv, *ptv;
static int rc;
for (;;)
{
timeout = timer_queue_update (_timerq,
timer_queue_time_elapsed (_timerq));
if (_thread_num_runnable)
return;
//fprintf (stderr, "--------- SELECT to=%d --------\n", timeout);
FD_ZERO (&readfds);
FD_ZERO (&writefds);
for (thr = (thread_t *) _waitq.thq_head.thr_next;
thr != (thread_t *) &_waitq.thq_head;
thr = (thread_t *) thr->thr_hdr.thr_next)
{
if (thr->thr_nfds)
{
//fprintf (stderr, "THR %p ", thr); dumpfds ("READ", &thr->thr_rfds);
//fprintf (stderr, "THR %p ", thr); dumpfds ("WRIT", &thr->thr_wfds);
nreadfds = _fd_set_or (&readfds, &thr->thr_rfds);
nwritefds = _fd_set_or (&writefds, &thr->thr_wfds);
}
}
nfds = MAX (nreadfds, nwritefds);
//dumpfds ("ALL READ", &readfds);
//dumpfds ("ALL WRIT", &writefds);
//fprintf (stderr, "NFDS=%d\n", nfds);
if (timeout == 0)
ptv = NULL;
else
{
tv.tv_sec = timeout / 1000;
tv.tv_usec = (timeout % 1000) * 1000;
ptv = &tv;
}
if (nfds == 0)
{
Sleep (timeout);
timer_queue_update (_timerq, timeout);
return;
}
rc = select (nfds, &readfds, &writefds, NULL, ptv);
if (rc == -1)
{
if (errno != EINTR)
GPF_T1 ("select() returned -1");
continue;
}
//dumpfds ("SEL READ", &readfds);
//dumpfds ("SEL WRIT", &writefds);
timer_queue_update (_timerq, timer_queue_time_elapsed (_timerq));
if (rc > 0)
{
/* Wake up waiting fibers for which an event occurred */
for (thr = (thread_t *) _waitq.thq_head.thr_next;
thr != (thread_t *) &_waitq.thq_head;
thr = next)
{
next = (thread_t *) thr->thr_hdr.thr_next;
if (thr->thr_nfds == 0)
continue;
if (_fd_set_intersect (&thr->thr_rfds, &readfds) ||
_fd_set_intersect (&thr->thr_wfds, &writefds))
{
_fd_set_and (&thr->thr_rfds, &readfds);
_fd_set_and (&thr->thr_wfds, &writefds);
thr->thr_event = NULL;
thr->thr_retcode = 1;
_fiber_status (thr, RUNNABLE);
}
}
}
//fprintf (stderr, "LEAVE SELECT\n");
break;
}
}
static int
_fd_set_or (fd_set * s1, fd_set * s2)
{
u_int i;
for (i = 0; i < s2->fd_count; i++)
{
FD_SET (s2->fd_array[i], s1);
}
return s1->fd_count;
}
static int
_fd_set_intersect (fd_set * s1, fd_set * s2)
{
u_int i;
for (i = 0; i < s2->fd_count; i++)
if (FD_ISSET (s2->fd_array[i], s1))
return 1;
return 0;
}
static void
_fd_set_and (fd_set * s1, fd_set * s2)
{
fd_set ret;
u_int i;
FD_ZERO (&ret);
for (i = 0; i < s1->fd_count; i++)
if (FD_ISSET (s1->fd_array[i], s2))
FD_SET (s1->fd_array[i], &ret);
*s1 = ret;
}
#endif /* EXPIRIMENTAL */
|