1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Simd/SimdMemory.h"
#include "Simd/SimdResizer.h"
#include "Simd/SimdStore.h"
namespace Simd
{
#ifdef SIMD_AVX_ENABLE
namespace Avx
{
ResizerFloatBilinear::ResizerFloatBilinear(const ResParam & param)
: Base::ResizerFloatBilinear(param)
{
}
void ResizerFloatBilinear::Run(const float * src, size_t srcStride, float * dst, size_t dstStride)
{
size_t cn = _param.channels;
size_t rs = _param.dstW * cn;
float * pbx[2] = { _bx[0].data, _bx[1].data };
int32_t prev = -2;
size_t rsa = AlignLo(rs, Avx::F);
size_t rsh = AlignLo(rs, Sse41::F);
for (size_t dy = 0; dy < _param.dstH; dy++, dst += dstStride)
{
float fy1 = _ay[dy];
float fy0 = 1.0f - fy1;
int32_t sy = _iy[dy];
int32_t k = 0;
if (sy == prev)
k = 2;
else if (sy == prev + 1)
{
Swap(pbx[0], pbx[1]);
k = 1;
}
prev = sy;
for (; k < 2; k++)
{
float * pb = pbx[k];
const float * ps = src + (sy + k)*srcStride;
size_t dx = 0;
if (cn == 1)
{
__m256 _1 = _mm256_set1_ps(1.0f);
for (; dx < rsa; dx += Avx::F)
{
__m256 s0145 = Avx::Load(ps + _ix[dx + 0], ps + _ix[dx + 1], ps + _ix[dx + 4], ps + _ix[dx + 5]);
__m256 s2367 = Avx::Load(ps + _ix[dx + 2], ps + _ix[dx + 3], ps + _ix[dx + 6], ps + _ix[dx + 7]);
__m256 fx1 = _mm256_load_ps(_ax.data + dx);
__m256 fx0 = _mm256_sub_ps(_1, fx1);
__m256 m0 = _mm256_mul_ps(fx0, _mm256_shuffle_ps(s0145, s2367, 0x88));
__m256 m1 = _mm256_mul_ps(fx1, _mm256_shuffle_ps(s0145, s2367, 0xDD));
_mm256_store_ps(pb + dx, _mm256_add_ps(m0, m1));
}
for (; dx < rsh; dx += Sse41::F)
{
__m128 s01 = Sse41::Load(ps + _ix[dx + 0], ps + _ix[dx + 1]);
__m128 s23 = Sse41::Load(ps + _ix[dx + 2], ps + _ix[dx + 3]);
__m128 fx1 = _mm_load_ps(_ax.data + dx);
__m128 fx0 = _mm_sub_ps(_mm256_castps256_ps128(_1), fx1);
__m128 m0 = _mm_mul_ps(fx0, _mm_shuffle_ps(s01, s23, 0x88));
__m128 m1 = _mm_mul_ps(fx1, _mm_shuffle_ps(s01, s23, 0xDD));
_mm_store_ps(pb + dx, _mm_add_ps(m0, m1));
}
}
if (cn == 3 && rs > 3)
{
__m256 _1 = _mm256_set1_ps(1.0f);
size_t rs3 = rs - 3;
size_t rs6 = AlignLoAny(rs3, 6);
for (; dx < rs6; dx += 6)
{
__m256 s0 = Load<false>(ps + _ix[dx + 0] + 0, ps + _ix[dx + 3] + 0);
__m256 s1 = Load<false>(ps + _ix[dx + 0] + 3, ps + _ix[dx + 3] + 3);
__m256 fx1 = Load<false>(_ax.data + dx + 0, _ax.data + dx + 3);
__m256 fx0 = _mm256_sub_ps(_1, fx1);
Store<false>(pb + dx + 0, pb + dx + 3, _mm256_add_ps(_mm256_mul_ps(fx0, s0), _mm256_mul_ps(fx1, s1)));
}
for (; dx < rs3; dx += 3)
{
__m128 s0 = _mm_loadu_ps(ps + _ix[dx] + 0);
__m128 s1 = _mm_loadu_ps(ps + _ix[dx] + 3);
__m128 fx1 = _mm_set1_ps(_ax.data[dx]);
__m128 fx0 = _mm_sub_ps(_mm256_castps256_ps128(_1), fx1);
_mm_storeu_ps(pb + dx, _mm_add_ps(_mm_mul_ps(fx0, s0), _mm_mul_ps(fx1, s1)));
}
}
for (; dx < rs; dx++)
{
int32_t sx = _ix[dx];
float fx = _ax[dx];
pb[dx] = ps[sx] * (1.0f - fx) + ps[sx + cn] * fx;
}
}
size_t dx = 0;
__m256 _fy0 = _mm256_set1_ps(fy0);
__m256 _fy1 = _mm256_set1_ps(fy1);
for (; dx < rsa; dx += Avx::F)
{
__m256 m0 = _mm256_mul_ps(_mm256_load_ps(pbx[0] + dx), _fy0);
__m256 m1 = _mm256_mul_ps(_mm256_load_ps(pbx[1] + dx), _fy1);
_mm256_storeu_ps(dst + dx, _mm256_add_ps(m0, m1));
}
for (; dx < rsh; dx += Sse41::F)
{
__m128 m0 = _mm_mul_ps(_mm_load_ps(pbx[0] + dx), _mm256_castps256_ps128(_fy0));
__m128 m1 = _mm_mul_ps(_mm_load_ps(pbx[1] + dx), _mm256_castps256_ps128(_fy1));
_mm_storeu_ps(dst + dx, _mm_add_ps(m0, m1));
}
for (; dx < rs; dx++)
dst[dx] = pbx[0][dx] * fy0 + pbx[1][dx] * fy1;
}
}
}
#endif //SIMD_AVX_ENABLE
}
|