1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2018 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Simd/SimdMemory.h"
#include "Simd/SimdStore.h"
namespace Simd
{
#ifdef SIMD_AVX2_ENABLE
namespace Avx2
{
#ifdef SIMD_MADDUBS_ERROR
SIMD_INLINE __m256i Average8(const __m256i & s00, const __m256i & s01, const __m256i & s10, const __m256i & s11)
{
__m256i lo = Average16(
_mm256_and_si256(s00, K16_00FF),
_mm256_and_si256(_mm256_srli_si256(s00, 1), K16_00FF),
_mm256_and_si256(s10, K16_00FF),
_mm256_and_si256(_mm256_srli_si256(s10, 1), K16_00FF));
__m256i hi = Average16(
_mm256_and_si256(s01, K16_00FF),
_mm256_and_si256(_mm256_srli_si256(s01, 1), K16_00FF),
_mm256_and_si256(s11, K16_00FF),
_mm256_and_si256(_mm256_srli_si256(s11, 1), K16_00FF));
return PackI16ToU8(lo, hi);
}
#else
SIMD_INLINE __m256i Average16(const __m256i & s0, const __m256i & s1)
{
return _mm256_srli_epi16(_mm256_add_epi16(_mm256_add_epi16(_mm256_maddubs_epi16(s0, K8_01), _mm256_maddubs_epi16(s1, K8_01)), K16_0002), 2);
}
SIMD_INLINE __m256i Average8(const __m256i & s00, const __m256i & s01, const __m256i & s10, const __m256i & s11)
{
return PackI16ToU8(Average16(s00, s10), Average16(s01, s11));
}
#endif
template <size_t channelCount> __m256i Average8(const __m256i & s00, const __m256i & s01, const __m256i & s10, const __m256i & s11);
template<> SIMD_INLINE __m256i Average8<1>(const __m256i & s00, const __m256i & s01, const __m256i & s10, const __m256i & s11)
{
return Average8(s00, s01, s10, s11);
}
const __m256i K8_RC2 = SIMD_MM256_SETR_EPI8(
0x0, 0x2, 0x1, 0x3, 0x4, 0x6, 0x5, 0x7, 0x8, 0xA, 0x9, 0xB, 0xC, 0xE, 0xD, 0xF,
0x0, 0x2, 0x1, 0x3, 0x4, 0x6, 0x5, 0x7, 0x8, 0xA, 0x9, 0xB, 0xC, 0xE, 0xD, 0xF);
template<> SIMD_INLINE __m256i Average8<2>(const __m256i & s00, const __m256i & s01, const __m256i & s10, const __m256i & s11)
{
return Average8(_mm256_shuffle_epi8(s00, K8_RC2), _mm256_shuffle_epi8(s01, K8_RC2), _mm256_shuffle_epi8(s10, K8_RC2), _mm256_shuffle_epi8(s11, K8_RC2));
}
const __m256i K8_RC4 = SIMD_MM256_SETR_EPI8(
0x0, 0x4, 0x1, 0x5, 0x2, 0x6, 0x3, 0x7, 0x8, 0xC, 0x9, 0xD, 0xA, 0xE, 0xB, 0xF,
0x0, 0x4, 0x1, 0x5, 0x2, 0x6, 0x3, 0x7, 0x8, 0xC, 0x9, 0xD, 0xA, 0xE, 0xB, 0xF);
template<> SIMD_INLINE __m256i Average8<4>(const __m256i & s00, const __m256i & s01, const __m256i & s10, const __m256i & s11)
{
return Average8(_mm256_shuffle_epi8(s00, K8_RC4), _mm256_shuffle_epi8(s01, K8_RC4), _mm256_shuffle_epi8(s10, K8_RC4), _mm256_shuffle_epi8(s11, K8_RC4));
}
template <size_t channelCount, bool align> SIMD_INLINE void ReduceColor2x2(const uint8_t * src0, const uint8_t * src1, uint8_t * dst)
{
__m256i s00 = Load<align>((__m256i*)src0 + 0);
__m256i s01 = Load<align>((__m256i*)src0 + 1);
__m256i s10 = Load<align>((__m256i*)src1 + 0);
__m256i s11 = Load<align>((__m256i*)src1 + 1);
Store<align>((__m256i*)dst, Average8<channelCount>(s00, s01, s10, s11));
}
template <size_t channelCount, bool align> void ReduceColor2x2(const uint8_t * src, size_t srcWidth, size_t srcHeight, size_t srcStride, uint8_t * dst, size_t dstStride)
{
size_t evenWidth = AlignLo(srcWidth, 2);
size_t evenSize = evenWidth * channelCount;
size_t alignedSize = AlignLo(evenSize, DA);
for (size_t srcRow = 0; srcRow < srcHeight; srcRow += 2)
{
const uint8_t *src0 = src;
const uint8_t *src1 = (srcRow == srcHeight - 1 ? src : src + srcStride);
size_t srcOffset = 0, dstOffset = 0;
for (; srcOffset < alignedSize; srcOffset += DA, dstOffset += A)
ReduceColor2x2<channelCount, align>(src0 + srcOffset, src1 + srcOffset, dst + dstOffset);
if (alignedSize != evenSize)
{
srcOffset = evenSize - DA;
dstOffset = srcOffset / 2;
ReduceColor2x2<channelCount, false>(src0 + srcOffset, src1 + srcOffset, dst + dstOffset);
}
if (evenWidth != srcWidth)
{
for (size_t c = 0; c < channelCount; ++c)
dst[evenSize / 2 + c] = Base::Average(src0[evenSize + c], src1[evenSize + c]);
}
src += 2 * srcStride;
dst += dstStride;
}
}
const __m256i K8_BGR0 = SIMD_MM256_SETR_EPI8(
0x0, 0x3, 0x1, 0x4, 0x2, 0x5, 0x6, 0x9, 0x7, 0xA, 0x8, 0xB, 0xC, 0xF, 0xD, -1,
-1, 0x1, 0x2, 0x5, 0x3, 0x6, 0x4, 0x7, 0x8, 0xB, 0x9, 0xC, 0xA, 0xD, 0xE, -1);
const __m256i K8_BGR1 = SIMD_MM256_SETR_EPI8(
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
0xE, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
const __m256i K8_BGR2 = SIMD_MM256_SETR_EPI8(
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0x0,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0x1);
const __m256i K8_BGR3 = SIMD_MM256_SETR_EPI8(
-1, 0x2, 0x0, 0x3, 0x4, 0x7, 0x5, 0x8, 0x6, 0x9, 0xA, 0xD, 0xB, 0xE, 0xC, 0xF,
0x0, 0x3, 0x1, 0x4, 0x2, 0x5, 0x6, 0x9, 0x7, 0xA, 0x8, 0xB, 0xC, 0xF, 0xD, -1);
const __m256i K8_BGR4 = SIMD_MM256_SETR_EPI8(
0xF, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
const __m256i K8_BGR5 = SIMD_MM256_SETR_EPI8(
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0x0);
const __m256i K8_BGR6 = SIMD_MM256_SETR_EPI8(
-1, 0x1, 0x2, 0x5, 0x3, 0x6, 0x4, 0x7, 0x8, 0xB, 0x9, 0xC, 0xA, 0xD, 0xE, -1,
-1, 0x2, 0x0, 0x3, 0x4, 0x7, 0x5, 0x8, 0x6, 0x9, 0xA, 0xD, 0xB, 0xE, 0xC, 0xF);
const __m256i K8_BGR7 = SIMD_MM256_SETR_EPI8(
0xE, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
0xF, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
const __m256i K8_BGR8 = SIMD_MM256_SETR_EPI8(
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0x1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
template <bool align> SIMD_INLINE void ReduceBgr2x2(const uint8_t * src0, const uint8_t * src1, uint8_t * dst)
{
__m256i s001 = Load<align>((__m256i*)src0 + 0);
__m256i s023 = Load<align>((__m256i*)src0 + 1);
__m256i s045 = Load<align>((__m256i*)src0 + 2);
__m256i s101 = Load<align>((__m256i*)src1 + 0);
__m256i s123 = Load<align>((__m256i*)src1 + 1);
__m256i s145 = Load<align>((__m256i*)src1 + 2);
__m256i s000 = _mm256_permute2x128_si256(s001, s001, 0x00);
__m256i s100 = _mm256_permute2x128_si256(s101, s101, 0x00);
__m256i s012 = _mm256_permute2x128_si256(s001, s023, 0x21);
__m256i s112 = _mm256_permute2x128_si256(s101, s123, 0x21);
__m256i s034 = _mm256_permute2x128_si256(s023, s045, 0x21);
__m256i s134 = _mm256_permute2x128_si256(s123, s145, 0x21);
__m256i m00 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s001, K8_BGR0), _mm256_shuffle_epi8(s000, K8_BGR1)), _mm256_shuffle_epi8(s012, K8_BGR2));
__m256i m01 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s023, K8_BGR3), _mm256_shuffle_epi8(s012, K8_BGR4)), _mm256_shuffle_epi8(s034, K8_BGR5));
__m256i m10 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s101, K8_BGR0), _mm256_shuffle_epi8(s100, K8_BGR1)), _mm256_shuffle_epi8(s112, K8_BGR2));
__m256i m11 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s123, K8_BGR3), _mm256_shuffle_epi8(s112, K8_BGR4)), _mm256_shuffle_epi8(s134, K8_BGR5));
Store<align>((__m256i*)dst + 0, Average8(m00, m01, m10, m11));
__m256i s067 = Load<align>((__m256i*)src0 + 3);
__m256i s089 = Load<align>((__m256i*)src0 + 4);
__m256i s167 = Load<align>((__m256i*)src1 + 3);
__m256i s189 = Load<align>((__m256i*)src1 + 4);
__m256i s056 = _mm256_permute2x128_si256(s045, s067, 0x21);
__m256i s156 = _mm256_permute2x128_si256(s145, s167, 0x21);
__m256i s078 = _mm256_permute2x128_si256(s067, s089, 0x21);
__m256i s178 = _mm256_permute2x128_si256(s167, s189, 0x21);
__m256i m02 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s045, K8_BGR6), _mm256_shuffle_epi8(s034, K8_BGR7)), _mm256_shuffle_epi8(s056, K8_BGR8));
__m256i m03 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s067, K8_BGR0), _mm256_shuffle_epi8(s056, K8_BGR1)), _mm256_shuffle_epi8(s078, K8_BGR2));
__m256i m12 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s145, K8_BGR6), _mm256_shuffle_epi8(s134, K8_BGR7)), _mm256_shuffle_epi8(s156, K8_BGR8));
__m256i m13 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s167, K8_BGR0), _mm256_shuffle_epi8(s156, K8_BGR1)), _mm256_shuffle_epi8(s178, K8_BGR2));
Store<align>((__m256i*)dst + 1, Average8(m02, m03, m12, m13));
__m256i s0ab = Load<align>((__m256i*)src0 + 5);
__m256i s1ab = Load<align>((__m256i*)src1 + 5);
__m256i s09a = _mm256_permute2x128_si256(s089, s0ab, 0x21);
__m256i s19a = _mm256_permute2x128_si256(s189, s1ab, 0x21);
__m256i s0bb = _mm256_permute2x128_si256(s0ab, s0ab, 0x33);
__m256i s1bb = _mm256_permute2x128_si256(s1ab, s1ab, 0x33);
__m256i m04 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s089, K8_BGR3), _mm256_shuffle_epi8(s078, K8_BGR4)), _mm256_shuffle_epi8(s09a, K8_BGR5));
__m256i m05 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s0ab, K8_BGR6), _mm256_shuffle_epi8(s09a, K8_BGR7)), _mm256_shuffle_epi8(s0bb, K8_BGR8));
__m256i m14 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s189, K8_BGR3), _mm256_shuffle_epi8(s178, K8_BGR4)), _mm256_shuffle_epi8(s19a, K8_BGR5));
__m256i m15 = _mm256_or_si256(_mm256_or_si256(_mm256_shuffle_epi8(s1ab, K8_BGR6), _mm256_shuffle_epi8(s19a, K8_BGR7)), _mm256_shuffle_epi8(s1bb, K8_BGR8));
Store<align>((__m256i*)dst + 2, Average8(m04, m05, m14, m15));
}
template <bool align> void ReduceBgr2x2(const uint8_t * src, size_t srcWidth, size_t srcHeight, size_t srcStride, uint8_t * dst, size_t dstStride)
{
size_t evenWidth = AlignLo(srcWidth, 2);
size_t alignedWidth = AlignLo(srcWidth, DA);
size_t evenSize = evenWidth * 3;
size_t alignedSize = alignedWidth * 3;
size_t srcStep = DA * 3, dstStep = A * 3;
for (size_t srcRow = 0; srcRow < srcHeight; srcRow += 2)
{
const uint8_t *src0 = src;
const uint8_t *src1 = (srcRow == srcHeight - 1 ? src : src + srcStride);
size_t srcOffset = 0, dstOffset = 0;
for (; srcOffset < alignedSize; srcOffset += srcStep, dstOffset += dstStep)
ReduceBgr2x2<align>(src0 + srcOffset, src1 + srcOffset, dst + dstOffset);
if (alignedSize != evenSize)
{
srcOffset = evenSize - srcStep;
dstOffset = srcOffset / 2;
ReduceBgr2x2<false>(src0 + srcOffset, src1 + srcOffset, dst + dstOffset);
}
if (evenWidth != srcWidth)
{
for (size_t c = 0; c < 3; ++c)
dst[evenSize / 2 + c] = Base::Average(src0[evenSize + c], src1[evenSize + c]);
}
src += 2 * srcStride;
dst += dstStride;
}
}
template <bool align> void ReduceColor2x2(const uint8_t * src, size_t srcWidth, size_t srcHeight, size_t srcStride,
uint8_t * dst, size_t dstWidth, size_t dstHeight, size_t dstStride, size_t channelCount)
{
assert((srcWidth + 1) / 2 == dstWidth && (srcHeight + 1) / 2 == dstHeight && srcWidth >= DA);
if (align)
{
assert(Aligned(src) && Aligned(srcStride));
assert(Aligned(dst) && Aligned(dstStride));
}
switch (channelCount)
{
case 1: ReduceColor2x2<1, align>(src, srcWidth, srcHeight, srcStride, dst, dstStride); break;
case 2: ReduceColor2x2<2, align>(src, srcWidth, srcHeight, srcStride, dst, dstStride); break;
case 3: ReduceBgr2x2<align>(src, srcWidth, srcHeight, srcStride, dst, dstStride); break;
case 4: ReduceColor2x2<4, align>(src, srcWidth, srcHeight, srcStride, dst, dstStride); break;
default: assert(0);
}
}
void ReduceColor2x2(const uint8_t * src, size_t srcWidth, size_t srcHeight, size_t srcStride,
uint8_t * dst, size_t dstWidth, size_t dstHeight, size_t dstStride, size_t channelCount)
{
if (Aligned(src) && Aligned(srcStride) && Aligned(dst) && Aligned(dstStride))
ReduceColor2x2<true>(src, srcWidth, srcHeight, srcStride, dst, dstWidth, dstHeight, dstStride, channelCount);
else
ReduceColor2x2<false>(src, srcWidth, srcHeight, srcStride, dst, dstWidth, dstHeight, dstStride, channelCount);
}
}
#endif// SIMD_AVX2_ENABLE
}
|