File: SimdAvx2ResizeBilinear.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (428 lines) | stat: -rwxr-xr-x 18,618 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2020 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Simd/SimdMemory.h"
#include "Simd/SimdStore.h"
#include "Simd/SimdBase.h"

namespace Simd
{
#ifdef SIMD_AVX2_ENABLE
    namespace Avx2
    {
        namespace
        {
            struct Buffer
            {
                Buffer(size_t size, size_t width, size_t height)
                {
                    _p = Allocate(3 * size + sizeof(int)*(2 * height + width));
                    bx[0] = (uint8_t*)_p;
                    bx[1] = bx[0] + size;
                    ax = bx[1] + size;
                    ix = (int*)(ax + size);
                    iy = ix + width;
                    ay = iy + height;
                }

                ~Buffer()
                {
                    Free(_p);
                }

                uint8_t * bx[2];
                uint8_t * ax;
                int * ix;
                int * ay;
                int * iy;
            private:
                void *_p;
            };

            struct Index
            {
                int src, dst;
                uint8_t shuffle[A];
            };

            struct BufferG
            {
                BufferG(size_t width, size_t blocks, size_t height)
                {
                    _p = Allocate(3 * width + sizeof(int) * 2 * height + blocks * sizeof(Index) + 2 * A);
                    bx[0] = (uint8_t*)_p;
                    bx[1] = bx[0] + width + A;
                    ax = bx[1] + width + A;
                    ix = (Index*)(ax + width);
                    iy = (int*)(ix + blocks);
                    ay = iy + height;
                }

                ~BufferG()
                {
                    Free(_p);
                }

                uint8_t * bx[2];
                uint8_t * ax;
                Index * ix;
                int * ay;
                int * iy;
            private:
                void *_p;
            };
        }

        template <size_t channelCount> void EstimateAlphaIndexX(size_t srcSize, size_t dstSize, int * indexes, uint8_t * alphas)
        {
            float scale = (float)srcSize / dstSize;

            for (size_t i = 0; i < dstSize; ++i)
            {
                float alpha = (float)((i + 0.5)*scale - 0.5);
                ptrdiff_t index = (ptrdiff_t)::floor(alpha);
                alpha -= index;

                if (index < 0)
                {
                    index = 0;
                    alpha = 0;
                }

                if (index > (ptrdiff_t)srcSize - 2)
                {
                    index = srcSize - 2;
                    alpha = 1;
                }

                indexes[i] = (int)index;
                alphas[1] = (uint8_t)(alpha * Base::FRACTION_RANGE + 0.5);
                alphas[0] = (uint8_t)(Base::FRACTION_RANGE - alphas[1]);
                for (size_t channel = 1; channel < channelCount; channel++)
                    ((uint16_t*)alphas)[channel] = *(uint16_t*)alphas;
                alphas += 2 * channelCount;
            }
        }

        size_t BlockCountMax(size_t src, size_t dst)
        {
            return (size_t)Simd::Max(::ceil(float(src) / (A - 1)), ::ceil(float(dst) / HA));
        }

        void EstimateAlphaIndexX(int srcSize, int dstSize, Index * indexes, uint8_t * alphas, size_t & blockCount)
        {
            float scale = (float)srcSize / dstSize;
            int block = 0;
            indexes[0].src = 0;
            indexes[0].dst = 0;
            for (int dstIndex = 0; dstIndex < dstSize; ++dstIndex)
            {
                float alpha = (float)((dstIndex + 0.5)*scale - 0.5);
                int srcIndex = (int)::floor(alpha);
                alpha -= srcIndex;

                if (srcIndex < 0)
                {
                    srcIndex = 0;
                    alpha = 0;
                }

                if (srcIndex > srcSize - 2)
                {
                    srcIndex = srcSize - 2;
                    alpha = 1;
                }

                int dst = 2 * dstIndex - indexes[block].dst;
                int src = srcIndex - indexes[block].src;
                if (src >= A - 1 || dst >= A)
                {
                    block++;
                    indexes[block].src = Simd::Min(srcIndex, srcSize - (int)A);
                    indexes[block].dst = 2 * dstIndex;
                    dst = 0;
                    src = srcIndex - indexes[block].src;
                }
                indexes[block].shuffle[dst] = src;
                indexes[block].shuffle[dst + 1] = src + 1;

                alphas[1] = (uint8_t)(alpha * Base::FRACTION_RANGE + 0.5);
                alphas[0] = (uint8_t)(Base::FRACTION_RANGE - alphas[1]);
                alphas += 2;
            }
            blockCount = block + 1;
        }

        template <size_t channelCount> void InterpolateX(const __m256i * alpha, __m256i * buffer);

        template <> SIMD_INLINE void InterpolateX<1>(const __m256i * alpha, __m256i * buffer)
        {
#ifdef SIMD_MADDUBS_ERROR
            __m256i _buffer = _mm256_or_si256(K_ZERO, _mm256_load_si256(buffer));
#else
            __m256i _buffer = _mm256_load_si256(buffer);
#endif
            _mm256_store_si256(buffer, _mm256_maddubs_epi16(_buffer, _mm256_load_si256(alpha)));
        }

        const __m256i K8_SHUFFLE_X2 = SIMD_MM256_SETR_EPI8(0x0, 0x2, 0x1, 0x3, 0x4, 0x6, 0x5, 0x7, 0x8, 0xA, 0x9, 0xB, 0xC, 0xE, 0xD, 0xF,
            0x0, 0x2, 0x1, 0x3, 0x4, 0x6, 0x5, 0x7, 0x8, 0xA, 0x9, 0xB, 0xC, 0xE, 0xD, 0xF);

        SIMD_INLINE void InterpolateX2(const __m256i * alpha, __m256i * buffer)
        {
            __m256i src = _mm256_shuffle_epi8(_mm256_load_si256(buffer), K8_SHUFFLE_X2);
            _mm256_store_si256(buffer, _mm256_maddubs_epi16(src, _mm256_load_si256(alpha)));
        }

        template <> SIMD_INLINE void InterpolateX<2>(const __m256i * alpha, __m256i * buffer)
        {
            InterpolateX2(alpha + 0, buffer + 0);
            InterpolateX2(alpha + 1, buffer + 1);
        }

        const __m256i K8_SHUFFLE_X3_00 = SIMD_MM256_SETR_EPI8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            0xE, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
        const __m256i K8_SHUFFLE_X3_01 = SIMD_MM256_SETR_EPI8(0x0, 0x3, 0x1, 0x4, 0x2, 0x5, 0x6, 0x9, 0x7, 0xA, 0x8, 0xB, 0xC, 0xF, 0xD, -1,
            -1, 0x1, 0x2, 0x5, 0x3, 0x6, 0x4, 0x7, 0x8, 0xB, 0x9, 0xC, 0xA, 0xD, 0xE, -1);
        const __m256i K8_SHUFFLE_X3_02 = SIMD_MM256_SETR_EPI8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0x0,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0x1);

        const __m256i K8_SHUFFLE_X3_10 = SIMD_MM256_SETR_EPI8(0xF, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
        const __m256i K8_SHUFFLE_X3_11 = SIMD_MM256_SETR_EPI8(-1, 0x2, 0x0, 0x3, 0x4, 0x7, 0x5, 0x8, 0x6, 0x9, 0xA, 0xD, 0xB, 0xE, 0xC, 0xF,
            0x0, 0x3, 0x1, 0x4, 0x2, 0x5, 0x6, 0x9, 0x7, 0xA, 0x8, 0xB, 0xC, 0xF, 0xD, -1);
        const __m256i K8_SHUFFLE_X3_12 = SIMD_MM256_SETR_EPI8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0x0);

        const __m256i K8_SHUFFLE_X3_20 = SIMD_MM256_SETR_EPI8(0xE, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            0xF, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
        const __m256i K8_SHUFFLE_X3_21 = SIMD_MM256_SETR_EPI8(-1, 0x1, 0x2, 0x5, 0x3, 0x6, 0x4, 0x7, 0x8, 0xB, 0x9, 0xC, 0xA, 0xD, 0xE, -1,
            -1, 0x2, 0x0, 0x3, 0x4, 0x7, 0x5, 0x8, 0x6, 0x9, 0xA, 0xD, 0xB, 0xE, 0xC, 0xF);
        const __m256i K8_SHUFFLE_X3_22 = SIMD_MM256_SETR_EPI8(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0x1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);

        template <> SIMD_INLINE void InterpolateX<3>(const __m256i * alpha, __m256i * buffer)
        {
            __m256i src[3], shuffled;
            src[0] = _mm256_load_si256(buffer + 0);
            src[1] = _mm256_load_si256(buffer + 1);
            src[2] = _mm256_load_si256(buffer + 2);

            shuffled = _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[0], src[0], 0x21), K8_SHUFFLE_X3_00);
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(src[0], K8_SHUFFLE_X3_01));
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[0], src[1], 0x21), K8_SHUFFLE_X3_02));
            _mm256_store_si256(buffer + 0, _mm256_maddubs_epi16(shuffled, _mm256_load_si256(alpha + 0)));

            shuffled = _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[0], src[1], 0x21), K8_SHUFFLE_X3_10);
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(src[1], K8_SHUFFLE_X3_11));
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[1], src[2], 0x21), K8_SHUFFLE_X3_12));
            _mm256_store_si256(buffer + 1, _mm256_maddubs_epi16(shuffled, _mm256_load_si256(alpha + 1)));

            shuffled = _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[1], src[2], 0x21), K8_SHUFFLE_X3_20);
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(src[2], K8_SHUFFLE_X3_21));
            shuffled = _mm256_or_si256(shuffled, _mm256_shuffle_epi8(_mm256_permute2x128_si256(src[2], src[2], 0x21), K8_SHUFFLE_X3_22));
            _mm256_store_si256(buffer + 2, _mm256_maddubs_epi16(shuffled, _mm256_load_si256(alpha + 2)));
        }

        const __m256i K8_SHUFFLE_X4 = SIMD_MM256_SETR_EPI8(0x0, 0x4, 0x1, 0x5, 0x2, 0x6, 0x3, 0x7, 0x8, 0xC, 0x9, 0xD, 0xA, 0xE, 0xB, 0xF,
            0x0, 0x4, 0x1, 0x5, 0x2, 0x6, 0x3, 0x7, 0x8, 0xC, 0x9, 0xD, 0xA, 0xE, 0xB, 0xF);

        SIMD_INLINE void InterpolateX4(const __m256i * alpha, __m256i * buffer)
        {
            __m256i src = _mm256_shuffle_epi8(_mm256_load_si256(buffer), K8_SHUFFLE_X4);
            _mm256_store_si256(buffer, _mm256_maddubs_epi16(src, _mm256_load_si256(alpha)));
        }

        template <> SIMD_INLINE void InterpolateX<4>(const __m256i * alpha, __m256i * buffer)
        {
            InterpolateX4(alpha + 0, buffer + 0);
            InterpolateX4(alpha + 1, buffer + 1);
            InterpolateX4(alpha + 2, buffer + 2);
            InterpolateX4(alpha + 3, buffer + 3);
        }

        const __m256i K16_FRACTION_ROUND_TERM = SIMD_MM256_SET1_EPI16(Base::BILINEAR_ROUND_TERM);

        template<bool align> SIMD_INLINE __m256i InterpolateY(const __m256i * pbx0, const __m256i * pbx1, __m256i alpha[2])
        {
            __m256i sum = _mm256_add_epi16(_mm256_mullo_epi16(Load<align>(pbx0), alpha[0]), _mm256_mullo_epi16(Load<align>(pbx1), alpha[1]));
            return _mm256_srli_epi16(_mm256_add_epi16(sum, K16_FRACTION_ROUND_TERM), Base::BILINEAR_SHIFT);
        }

        template<bool align> SIMD_INLINE void InterpolateY(const uint8_t * bx0, const uint8_t * bx1, __m256i alpha[2], uint8_t * dst)
        {
            __m256i lo = InterpolateY<align>((__m256i*)bx0 + 0, (__m256i*)bx1 + 0, alpha);
            __m256i hi = InterpolateY<align>((__m256i*)bx0 + 1, (__m256i*)bx1 + 1, alpha);
            Store<false>((__m256i*)dst, PackI16ToU8(lo, hi));
        }

        template <size_t channelCount> void ResizeBilinear(
            const uint8_t *src, size_t srcWidth, size_t srcHeight, size_t srcStride,
            uint8_t *dst, size_t dstWidth, size_t dstHeight, size_t dstStride)
        {
            assert(dstWidth >= A);

            struct One { uint8_t channels[channelCount]; };
            struct Two { uint8_t channels[channelCount * 2]; };

            size_t size = 2 * dstWidth*channelCount;
            size_t bufferSize = AlignHi(dstWidth, A)*channelCount * 2;
            size_t alignedSize = AlignHi(size, DA) - DA;
            const size_t step = A*channelCount;

            Buffer buffer(bufferSize, dstWidth, dstHeight);

            Base::EstimateAlphaIndex(srcHeight, dstHeight, buffer.iy, buffer.ay, 1);

            EstimateAlphaIndexX<channelCount>(srcWidth, dstWidth, buffer.ix, buffer.ax);

            ptrdiff_t previous = -2;

            __m256i a[2];

            for (size_t yDst = 0; yDst < dstHeight; yDst++, dst += dstStride)
            {
                a[0] = _mm256_set1_epi16(int16_t(Base::FRACTION_RANGE - buffer.ay[yDst]));
                a[1] = _mm256_set1_epi16(int16_t(buffer.ay[yDst]));

                ptrdiff_t sy = buffer.iy[yDst];
                int k = 0;

                if (sy == previous)
                    k = 2;
                else if (sy == previous + 1)
                {
                    Swap(buffer.bx[0], buffer.bx[1]);
                    k = 1;
                }

                previous = sy;

                for (; k < 2; k++)
                {
                    Two * pb = (Two *)buffer.bx[k];
                    const One * psrc = (const One *)(src + (sy + k)*srcStride);
                    for (size_t x = 0; x < dstWidth; x++)
                        pb[x] = *(Two *)(psrc + buffer.ix[x]);

                    uint8_t * pbx = buffer.bx[k];
                    for (size_t i = 0; i < bufferSize; i += step)
                        InterpolateX<channelCount>((__m256i*)(buffer.ax + i), (__m256i*)(pbx + i));
                }

                for (size_t ib = 0, id = 0; ib < alignedSize; ib += DA, id += A)
                    InterpolateY<true>(buffer.bx[0] + ib, buffer.bx[1] + ib, a, dst + id);
                size_t i = size - DA;
                InterpolateY<false>(buffer.bx[0] + i, buffer.bx[1] + i, a, dst + i / 2);
            }
        }

        SIMD_INLINE void LoadGrayIntrepolated(const uint8_t * src, const Index & index, const uint8_t * alpha, uint8_t * dst)
        {
            __m256i _src = _mm256_loadu_si256((__m256i*)(src + index.src));
            __m256i _shuffle = _mm256_loadu_si256((__m256i*)&index.shuffle);
            __m256i _alpha = _mm256_loadu_si256((__m256i*)(alpha + index.dst));
            _mm256_storeu_si256((__m256i*)(dst + index.dst), _mm256_maddubs_epi16(Shuffle(_src, _shuffle), _alpha));
        }

        void ResizeBilinearGray(const uint8_t *src, size_t srcWidth, size_t srcHeight, size_t srcStride, uint8_t *dst, size_t dstWidth, size_t dstHeight, size_t dstStride)
        {
            assert(dstWidth >= A);

            size_t size = 2 * dstWidth;
            size_t bufferWidth = AlignHi(dstWidth, A) * 2;
            size_t blockCount = BlockCountMax(srcWidth, dstWidth);
            size_t alignedSize = AlignHi(size, DA) - DA;

            BufferG buffer(bufferWidth, blockCount, dstHeight);

            Base::EstimateAlphaIndex(srcHeight, dstHeight, buffer.iy, buffer.ay, 1);

            EstimateAlphaIndexX((int)srcWidth, (int)dstWidth, buffer.ix, buffer.ax, blockCount);

            ptrdiff_t previous = -2;

            __m256i a[2];

            for (size_t yDst = 0; yDst < dstHeight; yDst++, dst += dstStride)
            {
                a[0] = _mm256_set1_epi16(int16_t(Base::FRACTION_RANGE - buffer.ay[yDst]));
                a[1] = _mm256_set1_epi16(int16_t(buffer.ay[yDst]));

                ptrdiff_t sy = buffer.iy[yDst];
                int k = 0;

                if (sy == previous)
                    k = 2;
                else if (sy == previous + 1)
                {
                    Swap(buffer.bx[0], buffer.bx[1]);
                    k = 1;
                }

                previous = sy;

                for (; k < 2; k++)
                {
                    const uint8_t * psrc = src + (sy + k)*srcStride;
                    uint8_t * pdst = buffer.bx[k];
                    for (size_t i = 0; i < blockCount; ++i)
                        LoadGrayIntrepolated(psrc, buffer.ix[i], buffer.ax, pdst);
                }

                for (size_t ib = 0, id = 0; ib < alignedSize; ib += DA, id += A)
                    InterpolateY<true>(buffer.bx[0] + ib, buffer.bx[1] + ib, a, dst + id);
                size_t i = size - DA;
                InterpolateY<false>(buffer.bx[0] + i, buffer.bx[1] + i, a, dst + i / 2);
            }
        }

        void ResizeBilinear(
            const uint8_t *src, size_t srcWidth, size_t srcHeight, size_t srcStride,
            uint8_t *dst, size_t dstWidth, size_t dstHeight, size_t dstStride, size_t channelCount)
        {
            switch (channelCount)
            {
            case 1:
                if (srcWidth >= A && srcWidth < 4 * dstWidth)
                    ResizeBilinearGray(src, srcWidth, srcHeight, srcStride, dst, dstWidth, dstHeight, dstStride);
                else
                    ResizeBilinear<1>(src, srcWidth, srcHeight, srcStride, dst, dstWidth, dstHeight, dstStride);
                break;
            case 2:
                ResizeBilinear<2>(src, srcWidth, srcHeight, srcStride, dst, dstWidth, dstHeight, dstStride);
                break;
            case 3:
                ResizeBilinear<3>(src, srcWidth, srcHeight, srcStride, dst, dstWidth, dstHeight, dstStride);
                break;
            case 4:
                ResizeBilinear<4>(src, srcWidth, srcHeight, srcStride, dst, dstWidth, dstHeight, dstStride);
                break;
            default:
                Base::ResizeBilinear(src, srcWidth, srcHeight, srcStride, dst, dstWidth, dstHeight, dstStride, channelCount);
            }
        }
    }
#endif//SIMD_AVX2_ENABLE
}