1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Simd/SimdMemory.h"
#include "Simd/SimdResizer.h"
#include "Simd/SimdResizerCommon.h"
#include "Simd/SimdStore.h"
#include "Simd/SimdSet.h"
#include "Simd/SimdExtract.h"
namespace Simd
{
#ifdef SIMD_AVX2_ENABLE
namespace Avx2
{
ResizerByteBicubic::ResizerByteBicubic(const ResParam& param)
: Sse41::ResizerByteBicubic(param)
{
}
template<int N> __m256i LoadAx(const int8_t* ax);
template<> SIMD_INLINE __m256i LoadAx<1>(const int8_t* ax)
{
return _mm256_loadu_si256((__m256i*)ax);
}
template<> SIMD_INLINE __m256i LoadAx<2>(const int8_t* ax)
{
static const __m256i PERMUTE = SIMD_MM256_SETR_EPI32(0, 0, 1, 1, 2, 2, 3, 3);
return _mm256_permutevar8x32_epi32(_mm256_castsi128_si256(_mm_loadu_si128((__m128i*)ax)), PERMUTE);
}
template<> SIMD_INLINE __m256i LoadAx<3>(const int8_t* ax)
{
static const __m256i PERMUTE = SIMD_MM256_SETR_EPI32(0, 0, 0, 0, 1, 1, 1, 1);
return _mm256_permutevar8x32_epi32(_mm256_castsi128_si256(_mm_loadl_epi64((__m128i*)ax)), PERMUTE);
}
template<> SIMD_INLINE __m256i LoadAx<4>(const int8_t* ax)
{
static const __m256i PERMUTE = SIMD_MM256_SETR_EPI32(0, 0, 0, 0, 1, 1, 1, 1);
return _mm256_permutevar8x32_epi32(_mm256_castsi128_si256(_mm_loadl_epi64((__m128i*)ax)), PERMUTE);
}
template<int N> __m256i CubicSumX(const uint8_t* src, const int32_t* ix, __m256i ax, __m256i ay);
template<> SIMD_INLINE __m256i CubicSumX<1>(const uint8_t* src, const int32_t* ix, __m256i ax, __m256i ay)
{
__m256i _src = _mm256_i32gather_epi32((int32_t*)src, _mm256_loadu_si256((__m256i*)ix), 1);
return _mm256_madd_epi16(_mm256_maddubs_epi16(_src, ax), ay);
}
template<> SIMD_INLINE __m256i CubicSumX<2>(const uint8_t* src, const int32_t* ix, __m256i ax, __m256i ay)
{
static const __m256i SHUFFLE = SIMD_MM256_SETR_EPI8(
0x0, 0x2, 0x4, 0x6, 0x1, 0x3, 0x5, 0x7, 0x8, 0xA, 0xC, 0xE, 0x9, 0xB, 0xD, 0xF,
0x0, 0x2, 0x4, 0x6, 0x1, 0x3, 0x5, 0x7, 0x8, 0xA, 0xC, 0xE, 0x9, 0xB, 0xD, 0xF);
__m256i _src = _mm256_shuffle_epi8(_mm256_i32gather_epi64((long long*)src, _mm_loadu_si128((__m128i*)ix), 1), SHUFFLE);
return _mm256_madd_epi16(_mm256_maddubs_epi16(_src, ax), ay);
}
template<> SIMD_INLINE __m256i CubicSumX<3>(const uint8_t* src, const int32_t* ix, __m256i ax, __m256i ay)
{
static const __m256i SHUFFLE = SIMD_MM256_SETR_EPI8(
0x0, 0x3, 0x6, 0x9, 0x1, 0x4, 0x7, 0xA, 0x2, 0x5, 0x8, 0xB, -1, -1, -1, -1,
0x0, 0x3, 0x6, 0x9, 0x1, 0x4, 0x7, 0xA, 0x2, 0x5, 0x8, 0xB, -1, -1, -1, -1);
__m256i _src = _mm256_shuffle_epi8(Load<false>((__m128i*)(src + ix[0]), (__m128i*)(src + ix[1])), SHUFFLE);
return _mm256_madd_epi16(_mm256_maddubs_epi16(_src, ax), ay);
}
template<> SIMD_INLINE __m256i CubicSumX<4>(const uint8_t* src, const int32_t* ix, __m256i ax, __m256i ay)
{
static const __m256i SHUFFLE = SIMD_MM256_SETR_EPI8(
0x0, 0x4, 0x8, 0xC, 0x1, 0x5, 0x9, 0xD, 0x2, 0x6, 0xA, 0xE, 0x3, 0x7, 0xB, 0xF,
0x0, 0x4, 0x8, 0xC, 0x1, 0x5, 0x9, 0xD, 0x2, 0x6, 0xA, 0xE, 0x3, 0x7, 0xB, 0xF);
__m256i _src = _mm256_shuffle_epi8(Load<false>((__m128i*)(src + ix[0]), (__m128i*)(src + ix[1])), SHUFFLE);
return _mm256_madd_epi16(_mm256_maddubs_epi16(_src, ax), ay);
}
template <int N> SIMD_INLINE void StoreBicubicInt(__m256i val, uint8_t* dst)
{
*((int64_t*)dst) = Extract64i<0>(PackI16ToU8(PackI32ToI16(val, K_ZERO), K_ZERO));
}
template <> SIMD_INLINE void StoreBicubicInt<3>(__m256i val, uint8_t* dst)
{
static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x1, 0x2, 0x4, 0x5, 0x6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1);
__m128i u8 = _mm256_castsi256_si128(PackI16ToU8(PackI32ToI16(val, K_ZERO), K_ZERO));
*((int64_t*)dst) = Sse41::ExtractInt64<0>(_mm_shuffle_epi8(u8, SHUFFLE));
}
template <int N> SIMD_INLINE void BicubicInt(const uint8_t* src0, const uint8_t* src1, const uint8_t* src2, const uint8_t* src3, const int32_t* ix, const int8_t* ax, const __m256i* ay, uint8_t* dst)
{
static const __m256i ROUND = SIMD_MM256_SET1_EPI32(Base::BICUBIC_ROUND);
__m256i _ax = LoadAx<N>(ax);
__m256i say0 = CubicSumX<N>(src0 - N, ix, _ax, ay[0]);
__m256i say1 = CubicSumX<N>(src1 - N, ix, _ax, ay[1]);
__m256i say2 = CubicSumX<N>(src2 - N, ix, _ax, ay[2]);
__m256i say3 = CubicSumX<N>(src3 - N, ix, _ax, ay[3]);
__m256i sum = _mm256_add_epi32(_mm256_add_epi32(say0, say1), _mm256_add_epi32(say2, say3));
__m256i dst0 = _mm256_srai_epi32(_mm256_add_epi32(sum, ROUND), Base::BICUBIC_SHIFT);
StoreBicubicInt<N>(dst0, dst);
}
SIMD_INLINE __m256i CubicSumX1(const uint8_t* src, __m256i ix, __m256i ax, __m256i ay)
{
__m256i _src = _mm256_i32gather_epi32((int32_t*)(src - 1), ix, 1);
return _mm256_madd_epi16(_mm256_maddubs_epi16(_src, ax), ay);
}
template <> SIMD_INLINE void BicubicInt<1>(const uint8_t* src0, const uint8_t* src1, const uint8_t* src2, const uint8_t* src3, const int32_t* ix, const int8_t* ax, const __m256i* ay, uint8_t* dst)
{
static const __m256i ROUND = SIMD_MM256_SET1_EPI32(Base::BICUBIC_ROUND);
__m256i _ix = _mm256_loadu_si256((__m256i*)ix);
__m256i _ax = LoadAx<1>(ax);
__m256i say0 = CubicSumX1(src0, _ix, _ax, ay[0]);
__m256i say1 = CubicSumX1(src1, _ix, _ax, ay[1]);
__m256i say2 = CubicSumX1(src2, _ix, _ax, ay[2]);
__m256i say3 = CubicSumX1(src3, _ix, _ax, ay[3]);
__m256i sum = _mm256_add_epi32(_mm256_add_epi32(say0, say1), _mm256_add_epi32(say2, say3));
__m256i dst0 = _mm256_srai_epi32(_mm256_add_epi32(sum, ROUND), Base::BICUBIC_SHIFT);
StoreBicubicInt<1>(dst0, dst);
}
template<int N> void ResizerByteBicubic::RunS(const uint8_t* src, size_t srcStride, uint8_t* dst, size_t dstStride)
{
assert(_xn == 0 && _xt == _param.dstW);
size_t step = 4 / N * 2;
size_t body = AlignLoAny(_param.dstW - (N == 3 ? 1 : 0), step);
for (size_t dy = 0; dy < _param.dstH; dy++, dst += dstStride)
{
size_t sy = _iy[dy];
const uint8_t* src1 = src + sy * srcStride;
const uint8_t* src2 = src1 + srcStride;
const uint8_t* src0 = sy ? src1 - srcStride : src1;
const uint8_t* src3 = sy < _param.srcH - 2 ? src2 + srcStride : src2;
const int32_t* ay = _ay.data + dy * 4;
__m256i ays[4];
ays[0] = _mm256_set1_epi16(ay[0]);
ays[1] = _mm256_set1_epi16(ay[1]);
ays[2] = _mm256_set1_epi16(ay[2]);
ays[3] = _mm256_set1_epi16(ay[3]);
size_t dx = 0;
for (; dx < body; dx += step)
BicubicInt<N>(src0, src1, src2, src3, _ix.data + dx, _ax.data + dx * 4, ays, dst + dx * N);
for (; dx < _param.dstW; dx++)
Base::BicubicInt<N, -1, 2>(src0, src1, src2, src3, _ix[dx], _ax.data + dx * 4, ay, dst + dx * N);
}
}
template<int F> SIMD_INLINE void PixelCubicSumX(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst);
template<> SIMD_INLINE void PixelCubicSumX<1>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
{
#if 1
__m128i src0 = _mm_setr_epi32(*(int32_t*)(src + ix[0]), *(int32_t*)(src + ix[1]), *(int32_t*)(src + ix[2]), *(int32_t*)(src + ix[3]));
__m128i src1 = _mm_setr_epi32(*(int32_t*)(src + ix[4]), *(int32_t*)(src + ix[5]), *(int32_t*)(src + ix[6]), *(int32_t*)(src + ix[7]));
__m256i _src = Set(src0, src1);
#else
__m256i _src = _mm256_i32gather_epi32((int32_t*)src, _mm256_loadu_si256((__m256i*)ix), 1);
#endif
__m256i _ax = _mm256_loadu_si256((__m256i*)ax);
_mm256_storeu_si256((__m256i*)dst, _mm256_madd_epi16(_mm256_maddubs_epi16(_src, _ax), K16_0001));
}
template<> SIMD_INLINE void PixelCubicSumX<2>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
{
static const __m256i PERMUTE = SIMD_MM256_SETR_EPI32(0, 0, 1, 1, 2, 2, 3, 3);
__m256i _ax = _mm256_permutevar8x32_epi32(_mm256_castsi128_si256(_mm_loadu_si128((__m128i*)ax)), PERMUTE);
static const __m256i SHUFFLE = SIMD_MM256_SETR_EPI8(
0x0, 0x2, 0x4, 0x6, 0x1, 0x3, 0x5, 0x7, 0x8, 0xA, 0xC, 0xE, 0x9, 0xB, 0xD, 0xF,
0x0, 0x2, 0x4, 0x6, 0x1, 0x3, 0x5, 0x7, 0x8, 0xA, 0xC, 0xE, 0x9, 0xB, 0xD, 0xF);
__m256i _src = _mm256_shuffle_epi8(_mm256_i32gather_epi64((long long*)src, _mm_loadu_si128((__m128i*)ix), 1), SHUFFLE);
_mm256_storeu_si256((__m256i*)dst, _mm256_madd_epi16(_mm256_maddubs_epi16(_src, _ax), K16_0001));
}
template<> SIMD_INLINE void PixelCubicSumX<3>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
{
static const __m256i PERM_A = SIMD_MM256_SETR_EPI32(0, 0, 0, 1, 1, 1, 0, 0);
__m256i _ax = _mm256_permutevar8x32_epi32(_mm256_castsi128_si256(_mm_loadl_epi64((__m128i*)ax)), PERM_A);
static const __m256i SHUFFLE = SIMD_MM256_SETR_EPI8(
0x0, 0x3, 0x6, 0x9, 0x1, 0x4, 0x7, 0xA, 0x2, 0x5, 0x8, 0xB, -1, -1, -1, -1,
0x0, 0x3, 0x6, 0x9, 0x1, 0x4, 0x7, 0xA, 0x2, 0x5, 0x8, 0xB, -1, -1, -1, -1);
static const __m256i PERM_B = SIMD_MM256_SETR_EPI32(0, 1, 2, 4, 5, 6, 0, 0);
__m256i _src = _mm256_permutevar8x32_epi32(_mm256_shuffle_epi8(Load<false>((__m128i*)(src + ix[0]), (__m128i*)(src + ix[1])), SHUFFLE), PERM_B);
_mm256_storeu_si256((__m256i*)dst, _mm256_madd_epi16(_mm256_maddubs_epi16(_src, _ax), K16_0001));
}
template<> SIMD_INLINE void PixelCubicSumX<4>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
{
static const __m256i PERMUTE = SIMD_MM256_SETR_EPI32(0, 0, 0, 0, 1, 1, 1, 1);
__m256i _ax = _mm256_permutevar8x32_epi32(_mm256_castsi128_si256(_mm_loadl_epi64((__m128i*)ax)), PERMUTE);
static const __m256i SHUFFLE = SIMD_MM256_SETR_EPI8(
0x0, 0x4, 0x8, 0xC, 0x1, 0x5, 0x9, 0xD, 0x2, 0x6, 0xA, 0xE, 0x3, 0x7, 0xB, 0xF,
0x0, 0x4, 0x8, 0xC, 0x1, 0x5, 0x9, 0xD, 0x2, 0x6, 0xA, 0xE, 0x3, 0x7, 0xB, 0xF);
__m256i _src = _mm256_shuffle_epi8(Load<false>((__m128i*)(src + ix[0]), (__m128i*)(src + ix[1])), SHUFFLE);
_mm256_storeu_si256((__m256i*)dst, _mm256_madd_epi16(_mm256_maddubs_epi16(_src, _ax), K16_0001));
}
template<int N> SIMD_INLINE void RowCubicSumX(const uint8_t* src, size_t nose, size_t body, size_t tail, const int32_t* ix, const int8_t* ax, int32_t* dst)
{
size_t step = 4 / N * 2;
size_t bodyS = nose + AlignLoAny(body - nose, step);
size_t dx = 0;
for (; dx < nose; dx++, ax += 4, dst += N)
Base::PixelCubicSumX<N, 0, 2>(src + ix[dx], ax, dst);
for (; dx < bodyS; dx += step, ax += 4 * step, dst += N * step)
PixelCubicSumX<N>(src - N, ix + dx, ax, dst);
for (; dx < body; dx++, ax += 4, dst += N)
Base::PixelCubicSumX<N, -1, 2>(src + ix[dx], ax, dst);
for (; dx < tail; dx++, ax += 4, dst += N)
Base::PixelCubicSumX<N, -1, 1>(src + ix[dx], ax, dst);
}
SIMD_INLINE void BicubicRowInt(const int32_t* src0, const int32_t* src1, const int32_t* src2, const int32_t* src3, size_t n, const int32_t* ay, uint8_t* dst)
{
size_t nF = AlignLo(n, F);
size_t i = 0;
if (nF)
{
static const __m256i ROUND = SIMD_MM256_SET1_EPI32(Base::BICUBIC_ROUND);
__m256i ay0 = _mm256_set1_epi32(ay[0]);
__m256i ay1 = _mm256_set1_epi32(ay[1]);
__m256i ay2 = _mm256_set1_epi32(ay[2]);
__m256i ay3 = _mm256_set1_epi32(ay[3]);
for (; i < nF; i += F)
{
__m256i say0 = _mm256_mullo_epi32(_mm256_loadu_si256((__m256i*)(src0 + i)), ay0);
__m256i say1 = _mm256_mullo_epi32(_mm256_loadu_si256((__m256i*)(src1 + i)), ay1);
__m256i say2 = _mm256_mullo_epi32(_mm256_loadu_si256((__m256i*)(src2 + i)), ay2);
__m256i say3 = _mm256_mullo_epi32(_mm256_loadu_si256((__m256i*)(src3 + i)), ay3);
__m256i sum = _mm256_add_epi32(_mm256_add_epi32(say0, say1), _mm256_add_epi32(say2, say3));
__m256i dst0 = _mm256_srai_epi32(_mm256_add_epi32(sum, ROUND), Base::BICUBIC_SHIFT);
*((int64_t*)(dst + i)) = Extract64i<0>(PackI16ToU8(PackI32ToI16(dst0, K_ZERO), K_ZERO));
}
}
for (; i < n; ++i)
{
int32_t sum = ay[0] * src0[i] + ay[1] * src1[i] + ay[2] * src2[i] + ay[3] * src3[i];
dst[i] = Base::RestrictRange((sum + Base::BICUBIC_ROUND) >> Base::BICUBIC_SHIFT, 0, 255);
}
}
template<int N> void ResizerByteBicubic::RunB(const uint8_t* src, size_t srcStride, uint8_t* dst, size_t dstStride)
{
int32_t prev = -1;
for (size_t dy = 0; dy < _param.dstH; dy++, dst += dstStride)
{
int32_t sy = _iy[dy], next = prev;
for (int32_t curr = sy - 1, end = sy + 3; curr < end; ++curr)
{
if (curr < prev)
continue;
const uint8_t* ps = src + RestrictRange(curr, 0, (int)_param.srcH - 1) * srcStride;
int32_t* pb = _bx[(curr + 1) & 3].data;
RowCubicSumX<N>(ps, _xn, _xt, _param.dstW, _ix.data, _ax.data, pb);
next++;
}
prev = next;
const int32_t* ay = _ay.data + dy * 4;
int32_t* pb0 = _bx[(sy + 0) & 3].data;
int32_t* pb1 = _bx[(sy + 1) & 3].data;
int32_t* pb2 = _bx[(sy + 2) & 3].data;
int32_t* pb3 = _bx[(sy + 3) & 3].data;
BicubicRowInt(pb0, pb1, pb2, pb3, _bx[0].size, ay, dst);
}
}
void ResizerByteBicubic::Run(const uint8_t* src, size_t srcStride, uint8_t* dst, size_t dstStride)
{
bool sparse = _param.dstH * 3.0 <= _param.srcH;
Init(sparse);
switch (_param.channels)
{
case 1: sparse ? Sse41::ResizerByteBicubic::RunS<1>(src, srcStride, dst, dstStride) : RunB<1>(src, srcStride, dst, dstStride); return;
case 2: sparse ? RunS<2>(src, srcStride, dst, dstStride) : RunB<2>(src, srcStride, dst, dstStride); return;
case 3: sparse ? RunS<3>(src, srcStride, dst, dstStride) : RunB<3>(src, srcStride, dst, dstStride); return;
case 4: sparse ? RunS<4>(src, srcStride, dst, dstStride) : RunB<4>(src, srcStride, dst, dstStride); return;
default:
assert(0);
}
}
}
#endif //SIMD_AVX2_ENABLE
}
|