File: SimdBaseImageLoadPng.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (1151 lines) | stat: -rw-r--r-- 48,570 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar,
*               2022-2022 Fabien Spindler.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Simd/SimdImageLoad.h"
#include "Simd/SimdImageSavePng.h"
#include "Simd/SimdArray.h"
#include "Simd/SimdCpu.h"
#include "Simd/SimdBase.h"

namespace Simd
{
    namespace Base
    {
        SIMD_INLINE int PngError(const char* str, const char* stub)
        {
            std::cout << "PNG load error: " << str << ", " << stub << "!" << std::endl;
            return 0;
        }

        namespace Zlib
        {
            const size_t ZFAST_BITS = 9;
            const size_t ZFAST_SIZE = 1 << ZFAST_BITS;
            const size_t ZFAST_MASK = ZFAST_SIZE - 1;

            struct Zhuffman
            {
                uint16_t fast[ZFAST_SIZE];
                uint16_t firstCode[16];
                int maxCode[17];
                uint16_t firstSymbol[16];
                uint8_t  size[288];
                uint16_t value[288];

                bool Build(const uint8_t* sizelist, int num)
                {
                    int i, k = 0;
                    int code, nextCode[16], sizes[17];

                    memset(sizes, 0, sizeof(sizes));
                    memset(fast, 0, sizeof(fast));
                    for (i = 0; i < num; ++i)
                        ++sizes[sizelist[i]];
                    sizes[0] = 0;
                    for (i = 1; i < 16; ++i)
                        if (sizes[i] > (1 << i))
                            return PngError("bad sizes", "Corrupt PNG");
                    code = 0;
                    for (i = 1; i < 16; ++i)
                    {
                        nextCode[i] = code;
                        firstCode[i] = (uint16_t)code;
                        firstSymbol[i] = (uint16_t)k;
                        code = (code + sizes[i]);
                        if (sizes[i] && code - 1 >= (1 << i))
                            return PngError("bad codelengths", "Corrupt PNG");
                        maxCode[i] = code << (16 - i); // preshift for inner loop
                        code <<= 1;
                        k += sizes[i];
                    }
                    maxCode[16] = 0x10000; // sentinel
                    for (i = 0; i < num; ++i)
                    {
                        int s = sizelist[i];
                        if (s)
                        {
                            int c = nextCode[s] - firstCode[s] + firstSymbol[s];
                            uint16_t fastv = (uint16_t)((s << 9) | i);
                            size[c] = (uint8_t)s;
                            value[c] = (uint16_t)i;
                            if (s <= (int)ZFAST_BITS)
                            {
                                int j = ZlibBitRev(nextCode[s], s);
                                while (j < (1 << ZFAST_BITS))
                                {
                                    fast[j] = fastv;
                                    j += (1 << s);
                                }
                            }
                            ++nextCode[s];
                        }
                    }
                    return 1;
                }
            };

            static SIMD_INLINE int BitRev16(int n)
            {
                n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1);
                n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2);
                n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4);
                n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8);
                return n;
            }

            static SIMD_INLINE int ZhuffmanDecode(InputMemoryStream& is, const Zhuffman& z)
            {
                int b, s;
                if (is.BitCount() < 16)
                {
                    if (is.Eof())
                        return -1;
                    is.FillBits();
                }
                b = z.fast[is.BitBuffer() & ZFAST_MASK];
                if (b)
                {
                    s = b >> 9;
                    is.BitBuffer() >>= s;
                    is.BitCount() -= s;
                    return b & 511;
                }
                else
                {
                    int k;
                    k = BitRev16((int)is.BitBuffer());
                    for (s = ZFAST_BITS + 1; k >= z.maxCode[s]; ++s);
                    if (s >= 16)
                        return -1;
                    b = (k >> (16 - s)) - z.firstCode[s] + z.firstSymbol[s];
                    if (b >= sizeof(z.size) || z.size[b] != s)
                        return -1;
                    is.BitBuffer() >>= s;
                    is.BitCount() -= s;
                    return z.value[b];
                }
            }

            static int ParseHuffmanBlock(InputMemoryStream& is, const Zhuffman& zLength, const Zhuffman& zDistance, OutputMemoryStream& os)
            {
                static const int zlengthBase[31] = { 3,4,5,6,7,8,9,10,11,13, 15,17,19,23,27,31,35,43,51,59, 67,83,99,115,131,163,195,227,258,0,0 };
                static const int zlengthExtra[31] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
                static const int zdistBase[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, 257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0 };
                static const int zdistExtra[32] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };

                SIMD_PERF_FUNC();

                uint8_t* beg = os.Data(), * dst = os.Current(), * end = beg + os.Capacity();
                for (;;)
                {
                    int z = ZhuffmanDecode(is, zLength);
                    if (z < 256)
                    {
                        if (z < 0)
                            return PngError("bad huffman code", "Corrupt PNG");
                        if (dst >= end)
                        {
                            os.Reserve(end - beg + 1);
                            beg = os.Data();
                            dst = os.Current();
                            end = beg + os.Capacity();
                        }
                        *dst++ = (uint8_t)z;
                    }
                    else
                    {
                        int len, dist;
                        if (z == 256)
                        {
                            os.Seek(dst - beg);
                            return 1;
                        }
                        z -= 257;
                        len = zlengthBase[z];
                        if (zlengthExtra[z])
                            len += (int)is.ReadBits(zlengthExtra[z]);
                        z = ZhuffmanDecode(is, zDistance);
                        if (z < 0)
                            return PngError("bad huffman code", "Corrupt PNG");
                        dist = zdistBase[z];
                        if (zdistExtra[z])
                            dist += (int)is.ReadBits(zdistExtra[z]);
                        if (dst - beg < dist)
                            return PngError("bad dist", "Corrupt PNG");
                        if (dst + len > end)
                        {
                            os.Reserve(dst - beg + len);
                            beg = os.Data();
                            dst = os.Current();
                            end = beg + os.Capacity();
                        }
                        if (dist == 1)
                        {
                            uint8_t val = dst[-dist];
                            if (len < 16)
                            {
                                while (len--)
                                    *dst++ = val;
                            }
                            else
                            {
                                memset(dst, val, len);
                                dst += len;
                            }
                        }
                        else
                        {
                            uint8_t* src = dst - dist;
                            if (dist < len || len < 16)
                            {
                                while(len--)
                                    *dst++ = *src++;
                            }
                            else
                            {
                                memcpy(dst, src, len);
                                dst += len;
                            }
                        }
                    }
                }
            }

            static int ComputeHuffmanCodes(InputMemoryStream& is, Zhuffman& zLength, Zhuffman& zDistance)
            {
                static const uint8_t length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
                Zhuffman z_codelength;
                uint8_t lencodes[286 + 32 + 137];
                uint8_t codelength_sizes[19];
                int i, n;

                int hlit = (int)is.ReadBits(5) + 257;
                int hdist = (int)is.ReadBits(5) + 1;
                int hclen = (int)is.ReadBits(4) + 4;
                int ntot = hlit + hdist;

                memset(codelength_sizes, 0, sizeof(codelength_sizes));
                for (i = 0; i < hclen; ++i)
                {
                    int s = (int)is.ReadBits(3);
                    codelength_sizes[length_dezigzag[i]] = (uint8_t)s;
                }
                if (!z_codelength.Build(codelength_sizes, 19))
                    return 0;
                n = 0;
                while (n < ntot)
                {
                    int c = ZhuffmanDecode(is, z_codelength);
                    if (c < 0 || c >= 19)
                        return PngError("bad codelengths", "Corrupt PNG");
                    if (c < 16)
                        lencodes[n++] = (uint8_t)c;
                    else
                    {
                        uint8_t fill = 0;
                        if (c == 16)
                        {
                            c = (int)is.ReadBits(2) + 3;
                            if (n == 0) return PngError("bad codelengths", "Corrupt PNG");
                            fill = lencodes[n - 1];
                        }
                        else if (c == 17)
                            c = (int)is.ReadBits(3) + 3;
                        else if (c == 18)
                            c = (int)is.ReadBits(7) + 11;
                        else
                            return PngError("bad codelengths", "Corrupt PNG");
                        if (ntot - n < c)
                            return PngError("bad codelengths", "Corrupt PNG");
                        memset(lencodes + n, fill, c);
                        n += c;
                    }
                }
                if (n != ntot)
                    return PngError("bad codelengths", "Corrupt PNG");
                if (!zLength.Build(lencodes, hlit))
                    return 0;
                if (!zDistance.Build(lencodes + hlit, hdist))
                    return 0;
                return 1;
            }

            static int ParseUncompressedBlock(InputMemoryStream& is, OutputMemoryStream& os)
            {
                is.ClearBits();
                uint16_t len, nlen;
                if (!is.Read16u(len) || !is.Read16u(nlen) || nlen != (len ^ 0xffff))
                    return PngError("zlib corrupt", "Corrupt PNG");
                if (!os.Write(is, len))
                    return PngError("read past buffer", "Corrupt PNG");
                return 1;
            }

            static int ParseHeader(InputMemoryStream& is)
            {
                uint8_t cmf, flg;
                if (!(is.Read8u(cmf) && is.Read8u(flg)))
                    return PngError("bad zlib header", "Corrupt PNG");
                if ((int(cmf) * 256 + flg) % 31 != 0)
                    return PngError("bad zlib header", "Corrupt PNG");
                if (flg & 32)
                    return PngError("no preset dict", "Corrupt PNG");
                if ((cmf & 15) != 8)
                    return PngError("bad compression", "Corrupt PNG");
                return 1;
            }

            bool Decode(InputMemoryStream& is, OutputMemoryStream& os, bool parseHeader)
            {
                static const uint8_t ZdefaultLength[288] = {
                   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
                   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
                   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
                   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
                   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
                   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
                   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
                   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
                   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8
                };
                static const uint8_t ZdefaultDistance[32] = {
                   5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
                };

                Zhuffman zLength, zDistance;
                int final, type;
                if (parseHeader)
                {
                    if (!ParseHeader(is))
                        return false;
                }
                do
                {
                    final = (int)is.ReadBits(1);
                    type = (int)is.ReadBits(2);
                    if (type == 0)
                    {
                        if (!ParseUncompressedBlock(is, os))
                            return false;
                    }
                    else if (type == 3)
                        return false;
                    else
                    {
                        if (type == 1)
                        {
                            if (!zLength.Build(ZdefaultLength, 288))
                                return false;
                            if (!zDistance.Build(ZdefaultDistance, 32))
                                return false;
                        }
                        else
                        {
                            if (!ComputeHuffmanCodes(is, zLength, zDistance))
                                return false;
                        }
                        if (!ParseHuffmanBlock(is, zLength, zDistance, os))
                            return false;
                    }
                } while (!final);
                return true;
            }
        }

#define PNG__BYTECAST(x)  ((uint8_t) ((x) & 255))  // truncate int to byte without warnings

        struct Png
        {
            uint32_t width, height;
            int channels, img_out_n;
            uint8_t depth;
            Array8u buf0, buf1;

            SIMD_INLINE int Swap()
            {
                buf0.Swap(buf1);
                return 1;
            }
        };

        enum
        {
            PNG__F_none = 0,
            PNG__F_sub = 1,
            PNG__F_up = 2,
            PNG__F_avg = 3,
            PNG__F_paeth = 4,
            PNG__F_avg_first,
            PNG__F_paeth_first
        };

        static uint8_t FirstRowFilter[5] =
        {
           PNG__F_none,
           PNG__F_sub,
           PNG__F_none,
           PNG__F_avg_first,
           PNG__F_paeth_first
        };

        static const uint8_t DepthScaleTable[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 };

        static int CreatePngImageRaw(Png& a, const uint8_t* raw, uint32_t raw_len, int out_n, uint32_t x, uint32_t y, int depth, int color)
        {
            int bytes = (depth == 16 ? 2 : 1);
            uint32_t i, j, stride = x * out_n * bytes;
            uint32_t img_len, img_width_bytes;
            int k;
            int img_n = a.channels;

            int output_bytes = out_n * bytes;
            int filter_bytes = img_n * bytes;
            int width = x;

            assert(out_n == a.channels || out_n == a.channels + 1);

            a.buf0.Resize(x * y * output_bytes);
            if (a.buf0.Empty())
                return PngError("outofmem", "Out of memory");

            img_width_bytes = (img_n * x * depth + 7) >> 3;
            img_len = (img_width_bytes + 1) * y;

            if (raw_len < img_len)
                return PngError("not enough pixels", "Corrupt PNG");

            for (j = 0; j < y; ++j)
            {
                uint8_t* cur = a.buf0.data + stride * j;
                uint8_t* prior;
                int filter = *raw++;

                if (filter > 4)
                    return PngError("invalid filter", "Corrupt PNG");

                if (depth < 8)
                {
                    if (img_width_bytes > x)
                        return PngError("invalid width", "Corrupt PNG");
                    cur += x * out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place
                    filter_bytes = 1;
                    width = img_width_bytes;
                }
                prior = cur - stride; // bugfix: need to compute this after 'cur +=' computation above
                if (j == 0)
                    filter = FirstRowFilter[filter];

                for (k = 0; k < filter_bytes; ++k)
                {
                    switch (filter)
                    {
                    case PNG__F_none: cur[k] = raw[k]; break;
                    case PNG__F_sub: cur[k] = raw[k]; break;
                    case PNG__F_up: cur[k] = PNG__BYTECAST(raw[k] + prior[k]); break;
                    case PNG__F_avg: cur[k] = PNG__BYTECAST(raw[k] + (prior[k] >> 1)); break;
                    case PNG__F_paeth: cur[k] = PNG__BYTECAST(raw[k] + Paeth(0, prior[k], 0)); break;
                    case PNG__F_avg_first: cur[k] = raw[k]; break;
                    case PNG__F_paeth_first: cur[k] = raw[k]; break;
                    }
                }

                if (depth == 8)
                {
                    if (img_n != out_n)
                        cur[img_n] = 255; // first pixel
                    raw += img_n;
                    cur += out_n;
                    prior += out_n;
                }
                else if (depth == 16)
                {
                    if (img_n != out_n)
                    {
                        cur[filter_bytes] = 255; // first pixel top byte
                        cur[filter_bytes + 1] = 255; // first pixel bottom byte
                    }
                    raw += filter_bytes;
                    cur += output_bytes;
                    prior += output_bytes;
                }
                else
                {
                    raw += 1;
                    cur += 1;
                    prior += 1;
                }
                if (depth < 8 || img_n == out_n)
                {
                    int nk = (width - 1) * filter_bytes;
#define PNG__CASE(f) \
             case f:     \
                for (k=0; k < nk; ++k)
                    switch (filter) {
                    case PNG__F_none:         memcpy(cur, raw, nk); break;
                        PNG__CASE(PNG__F_sub) { cur[k] = PNG__BYTECAST(raw[k] + cur[k - filter_bytes]); } break;
                        PNG__CASE(PNG__F_up) { cur[k] = PNG__BYTECAST(raw[k] + prior[k]); } break;
                        PNG__CASE(PNG__F_avg) { cur[k] = PNG__BYTECAST(raw[k] + ((prior[k] + cur[k - filter_bytes]) >> 1)); } break;
                        PNG__CASE(PNG__F_paeth) { cur[k] = PNG__BYTECAST(raw[k] + Paeth(cur[k - filter_bytes], prior[k], prior[k - filter_bytes])); } break;
                        PNG__CASE(PNG__F_avg_first) { cur[k] = PNG__BYTECAST(raw[k] + (cur[k - filter_bytes] >> 1)); } break;
                        PNG__CASE(PNG__F_paeth_first) { cur[k] = PNG__BYTECAST(raw[k] + Paeth(cur[k - filter_bytes], 0, 0)); } break;
                    }
#undef PNG__CASE
                    raw += nk;
                }
                else
                {
                    assert(img_n + 1 == out_n);
#define PNG__CASE(f) \
             case f:     \
                for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \
                   for (k=0; k < filter_bytes; ++k)
                    switch (filter) {
                        PNG__CASE(PNG__F_none) { cur[k] = raw[k]; } break;
                        PNG__CASE(PNG__F_sub) { cur[k] = PNG__BYTECAST(raw[k] + cur[k - output_bytes]); } break;
                        PNG__CASE(PNG__F_up) { cur[k] = PNG__BYTECAST(raw[k] + prior[k]); } break;
                        PNG__CASE(PNG__F_avg) { cur[k] = PNG__BYTECAST(raw[k] + ((prior[k] + cur[k - output_bytes]) >> 1)); } break;
                        PNG__CASE(PNG__F_paeth) { cur[k] = PNG__BYTECAST(raw[k] + Paeth(cur[k - output_bytes], prior[k], prior[k - output_bytes])); } break;
                        PNG__CASE(PNG__F_avg_first) { cur[k] = PNG__BYTECAST(raw[k] + (cur[k - output_bytes] >> 1)); } break;
                        PNG__CASE(PNG__F_paeth_first) { cur[k] = PNG__BYTECAST(raw[k] + Paeth(cur[k - output_bytes], 0, 0)); } break;
                    }
#undef PNG__CASE
                    if (depth == 16)
                    {
                        cur = a.buf0.data + stride * j;
                        for (i = 0; i < x; ++i, cur += output_bytes)
                            cur[filter_bytes + 1] = 255;
                    }
                }
            }
            if (depth < 8)
            {
                for (j = 0; j < y; ++j)
                {
                    uint8_t* cur = a.buf0.data + stride * j;
                    const uint8_t* in = a.buf0.data + stride * j + x * out_n - img_width_bytes;
                    uint8_t scale = (color == 0) ? DepthScaleTable[depth] : 1;
                    if (depth == 4)
                    {
                        for (k = x * img_n; k >= 2; k -= 2, ++in)
                        {
                            *cur++ = scale * ((*in >> 4));
                            *cur++ = scale * ((*in) & 0x0f);
                        }
                        if (k > 0)
                            *cur++ = scale * ((*in >> 4));
                    }
                    else if (depth == 2)
                    {
                        for (k = x * img_n; k >= 4; k -= 4, ++in)
                        {
                            *cur++ = scale * ((*in >> 6));
                            *cur++ = scale * ((*in >> 4) & 0x03);
                            *cur++ = scale * ((*in >> 2) & 0x03);
                            *cur++ = scale * ((*in) & 0x03);
                        }
                        if (k > 0)
                            *cur++ = scale * ((*in >> 6));
                        if (k > 1)
                            *cur++ = scale * ((*in >> 4) & 0x03);
                        if (k > 2)
                            *cur++ = scale * ((*in >> 2) & 0x03);
                    }
                    else if (depth == 1)
                    {
                        for (k = x * img_n; k >= 8; k -= 8, ++in)
                        {
                            *cur++ = scale * ((*in >> 7));
                            *cur++ = scale * ((*in >> 6) & 0x01);
                            *cur++ = scale * ((*in >> 5) & 0x01);
                            *cur++ = scale * ((*in >> 4) & 0x01);
                            *cur++ = scale * ((*in >> 3) & 0x01);
                            *cur++ = scale * ((*in >> 2) & 0x01);
                            *cur++ = scale * ((*in >> 1) & 0x01);
                            *cur++ = scale * ((*in) & 0x01);
                        }
                        if (k > 0) *cur++ = scale * ((*in >> 7));
                        if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01);
                        if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01);
                        if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01);
                        if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01);
                        if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01);
                        if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01);
                    }
                    if (img_n != out_n)
                    {
                        int q;
                        cur = a.buf0.data + stride * j;
                        if (img_n == 1)
                        {
                            for (q = x - 1; q >= 0; --q)
                            {
                                cur[q * 2 + 1] = 255;
                                cur[q * 2 + 0] = cur[q];
                            }
                        }
                        else
                        {
                            assert(img_n == 3);
                            for (q = x - 1; q >= 0; --q)
                            {
                                cur[q * 4 + 3] = 255;
                                cur[q * 4 + 2] = cur[q * 3 + 2];
                                cur[q * 4 + 1] = cur[q * 3 + 1];
                                cur[q * 4 + 0] = cur[q * 3 + 0];
                            }
                        }
                    }
                }
            }
            else if (depth == 16)
            {
                uint8_t* cur = a.buf0.data;
                uint16_t* cur16 = (uint16_t*)cur;
                for (i = 0; i < x * y * out_n; ++i, cur16++, cur += 2)
                    *cur16 = (cur[0] << 8) | cur[1];
            }
            return 1;
        }

        static int CreatePngImage(Png& a, const uint8_t* image_data, uint32_t image_data_len, int out_n, int depth, int color, int interlaced)
        {
            SIMD_PERF_FUNC();

            int bytes = (depth == 16 ? 2 : 1);
            int out_bytes = out_n * bytes;
            if (!interlaced)
                return CreatePngImageRaw(a, image_data, image_data_len, out_n, a.width, a.height, depth, color);

            a.buf1.Resize(a.width * a.height * out_bytes);
            for (int p = 0; p < 7; ++p)
            {
                int xorig[] = { 0,4,0,2,0,1,0 };
                int yorig[] = { 0,0,4,0,2,0,1 };
                int xspc[] = { 8,8,4,4,2,2,1 };
                int yspc[] = { 8,8,8,4,4,2,2 };
                int i, j, x, y;
                x = (a.width - xorig[p] + xspc[p] - 1) / xspc[p];
                y = (a.height - yorig[p] + yspc[p] - 1) / yspc[p];
                if (x && y)
                {
                    uint32_t img_len = ((((a.channels * x * depth) + 7) >> 3) + 1) * y;
                    if (!CreatePngImageRaw(a, image_data, image_data_len, out_n, x, y, depth, color))
                    {
                        return 0;
                    }
                    for (j = 0; j < y; ++j)
                    {
                        for (i = 0; i < x; ++i)
                        {
                            int out_y = j * yspc[p] + yorig[p];
                            int out_x = i * xspc[p] + xorig[p];
                            memcpy(a.buf1.data + out_y * a.width * out_bytes + out_x * out_bytes,
                                a.buf0.data + (j * x + i) * out_bytes, out_bytes);
                        }
                    }
                    image_data += img_len;
                    image_data_len -= img_len;
                }
            }
            return a.Swap();
        }

        template<class T> void ComputeTransparency(T * dst, size_t size, size_t out_n, T tc[3])
        {
            if (out_n == 2)
            {
                for (size_t i = 0; i < size; ++i)
                {
                    dst[1] = (dst[0] == tc[0] ? 0 : std::numeric_limits<T>::max());
                    dst += 2;
                }
            }
            else if (out_n == 4)
            {
                for (size_t i = 0; i < size; ++i)
                {
                    if (dst[0] == tc[0] && dst[1] == tc[1] && dst[2] == tc[2])
                        dst[3] = 0;
                    dst += 4;
                }
            }
            else
                assert(0);
        }

        static int ExpandPalette(Png & a, const uint8_t* palette)
        {
            uint32_t i, pixel_count = a.width * a.height;
            uint8_t * orig = a.buf0.data;

            a.buf1.Resize(pixel_count * a.img_out_n);
            if(a.buf1.Empty())
                return PngError("outofmem", "Out of memory");

            uint8_t* p = a.buf1.data;
            if (a.img_out_n == 3)
            {
                for (i = 0; i < pixel_count; ++i)
                {
                    int n = orig[i] * 4;
                    p[0] = palette[n];
                    p[1] = palette[n + 1];
                    p[2] = palette[n + 2];
                    p += 3;
                }
            }
            else
            {
                for (i = 0; i < pixel_count; ++i)
                {
                    int n = orig[i] * 4;
                    p[0] = palette[n];
                    p[1] = palette[n + 1];
                    p[2] = palette[n + 2];
                    p[3] = palette[n + 3];
                    p += 4;
                }
            }
            return a.Swap();
        }

        static uint8_t png__compute_y(int r, int g, int b)
        {
            return (uint8_t)(((r * 77) + (g * 150) + (29 * b)) >> 8);
        }

        static int ConvertFormat(Png& a, int img_n, int req_comp, unsigned int x, unsigned int y)
        {
            SIMD_PERF_FUNC();

            if (req_comp == img_n)
                return 1;
            assert(req_comp >= 1 && req_comp <= 4);

            a.buf1.Resize(req_comp * x * y * 1);
            if (a.buf1.Empty())
                return PngError("outofmem", "Out of memory");

            for (int j = 0; j < (int)y; ++j)
            {
                uint8_t* src = a.buf0.data + j * x * img_n;
                uint8_t* dest = a.buf1.data + j * x * req_comp;
#define PNG__COMBO(a,b)  ((a)*8+(b))
#define PNG__CASE(a,b)   case PNG__COMBO(a,b): for(int i=x-1; i >= 0; --i, src += a, dest += b)
                switch (PNG__COMBO(img_n, req_comp))
                {
                    PNG__CASE(1, 2) { dest[0] = src[0]; dest[1] = 255; } break;
                    PNG__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
                    PNG__CASE(1, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = 255; } break;
                    PNG__CASE(2, 1) { dest[0] = src[0]; } break;
                    PNG__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
                    PNG__CASE(2, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = src[1]; } break;
                    PNG__CASE(3, 4) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = 255; } break;
                    PNG__CASE(3, 1) { dest[0] = png__compute_y(src[0], src[1], src[2]); } break;
                    PNG__CASE(3, 2) { dest[0] = png__compute_y(src[0], src[1], src[2]); dest[1] = 255; } break;
                    PNG__CASE(4, 1) { dest[0] = png__compute_y(src[0], src[1], src[2]); } break;
                    PNG__CASE(4, 2) { dest[0] = png__compute_y(src[0], src[1], src[2]); dest[1] = src[3]; } break;
                    PNG__CASE(4, 3) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; } break;
                default: assert(0); return PngError("unsupported", "Unsupported format conversion");
                }
#undef PNG__CASE
            }
            return a.Swap();
        }

        static uint16_t png__compute_y_16(int r, int g, int b)
        {
            return (uint16_t)(((r * 77) + (g * 150) + (29 * b)) >> 8);
        }

        static int ConvertFormat16(Png& a, int img_n, int req_comp, unsigned int x, unsigned int y)
        {
            SIMD_PERF_FUNC();

            if (req_comp == img_n)
                return 1;
            assert(req_comp >= 1 && req_comp <= 4);

            a.buf1.Resize(req_comp * x * y * 2);
            if (a.buf1.Empty())
                return PngError("outofmem", "Out of memory");

            for (int j = 0; j < (int)y; ++j)
            {
                uint16_t* src = (uint16_t*)a.buf0.data + j * x * img_n;
                uint16_t* dest = (uint16_t*)a.buf1.data + j * x * req_comp;

#define PNG__COMBO(a,b)  ((a)*8+(b))
#define PNG__CASE(a,b)   case PNG__COMBO(a,b): for(int i=x-1; i >= 0; --i, src += a, dest += b)
                switch (PNG__COMBO(img_n, req_comp)) {
                    PNG__CASE(1, 2) { dest[0] = src[0]; dest[1] = 0xffff; } break;
                    PNG__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
                    PNG__CASE(1, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = 0xffff; } break;
                    PNG__CASE(2, 1) { dest[0] = src[0]; } break;
                    PNG__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
                    PNG__CASE(2, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = src[1]; } break;
                    PNG__CASE(3, 4) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = 0xffff; } break;
                    PNG__CASE(3, 1) { dest[0] = png__compute_y_16(src[0], src[1], src[2]); } break;
                    PNG__CASE(3, 2) { dest[0] = png__compute_y_16(src[0], src[1], src[2]); dest[1] = 0xffff; } break;
                    PNG__CASE(4, 1) { dest[0] = png__compute_y_16(src[0], src[1], src[2]); } break;
                    PNG__CASE(4, 2) { dest[0] = png__compute_y_16(src[0], src[1], src[2]); dest[1] = src[3]; } break;
                    PNG__CASE(4, 3) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; } break;
                default: assert(0); return PngError("unsupported", "Unsupported format conversion");
                }
#undef PNG__CASE
            }
            return a.Swap();
        }

        //---------------------------------------------------------------------

        ImagePngLoader::ImagePngLoader(const ImageLoaderParam& param)
            : ImageLoader(param)
            , _toAny8(NULL)
            , _toBgra8(NULL)
            , _toAny16(NULL)
            , _toBgra16(NULL)
        {
            if (_param.format == SimdPixelFormatNone)
                _param.format = SimdPixelFormatRgba32;
        }

        void ImagePngLoader::SetConverters()
        {
            _bgrToBgra = Base::BgrToBgra;
        }

#ifdef SIMD_CPP_2011_ENABLE
        SIMD_INLINE constexpr uint32_t ChunkType(char a, char b, char c, char d)
#else
        SIMD_INLINE uint32_t ChunkType(char a, char b, char c, char d)
#endif
        {
            return ((uint32_t(a) << 24) + (uint32_t(b) << 16) + (uint32_t(c) << 8) + uint32_t(d));
        }

        bool ImagePngLoader::FromStream()
        {
            if (!ParseFile())
                return false;

            Png p;
            p.width = _width;
            p.height = _height;
            p.channels = _channels;
            p.depth = _depth;

            InputMemoryStream zSrc = MergedDataStream();
            OutputMemoryStream zDst(AlignHi(size_t(_width) * _depth, 8) * _height * _channels + _height);
            if(!Zlib::Decode(zSrc, zDst, !_iPhone))
                return false;

            int req_comp = 4;
            if (Image::ChannelCount((Image::Format)_param.format) == _channels && _depth != 16)
                req_comp = _channels;

            if ((req_comp == p.channels + 1 && req_comp != 3 && !_paletteChannels) || _hasTrans)
                p.img_out_n = p.channels + 1;
            else
                p.img_out_n = p.channels;
            if (!CreatePngImage(p, zDst.Data(), (int)zDst.Size(), p.img_out_n, p.depth, _color, _interlace))
                return 0;
            if (_hasTrans)
            {
                if (p.depth == 16)
                    ComputeTransparency((uint16_t*)p.buf0.data, p.width * p.height, p.img_out_n, _tc16);

                else
                    ComputeTransparency(p.buf0.data, p.width * p.height, p.img_out_n, _tc);
            }
            if (_paletteChannels)
            {
                p.channels = _paletteChannels;
                p.img_out_n = _paletteChannels;
                if (req_comp >= 3)
                    p.img_out_n = req_comp;
                if (!ExpandPalette(p, _palette.data))
                    return false;
            }
            else if (_hasTrans)
                ++p.channels;

            if (!(p.depth <= 8 || p.depth == 16))
                return false;
            if (req_comp && req_comp != p.img_out_n)
            {
                int res;
                if (p.depth <= 8)
                    res = ConvertFormat(p, p.img_out_n, req_comp, _width, _height);
                else
                    res = ConvertFormat16(p, p.img_out_n, req_comp, _width, _height);
                p.img_out_n = req_comp;
                if (res == 0)
                    return false;
            }
            if (p.depth == 16)
            {
                size_t size = p.width * p.height * req_comp;
                p.buf1.Resize(size);
                const uint16_t* src = (uint16_t*)p.buf0.data;
                uint8_t* dst = p.buf1.data;
                for (size_t i = 0; i < size; ++i)
                    dst[i] = uint8_t(src[i] >> 8);
                p.buf0.Swap(p.buf1);
            }
            if (p.buf0.data)
            {
                size_t stride = req_comp * p.width;
                _image.Recreate(p.width, p.height, (Image::Format)_param.format);
                switch (_param.format)
                {
                case SimdPixelFormatGray8:
                    if(req_comp != 4)
                        Base::Copy(p.buf0.data, stride, p.width, p.height, _image.PixelSize(), _image.data, _image.stride);
                    else
                        Base::RgbaToGray(p.buf0.data, p.width, p.height, stride, _image.data, _image.stride);
                    break;
                case SimdPixelFormatBgr24:
                    if (req_comp != 4)
                        Base::BgrToRgb(p.buf0.data, p.width, p.height, stride, _image.data, _image.stride);
                    else
                        Base::BgraToRgb(p.buf0.data, p.width, p.height, stride, _image.data, _image.stride);
                    break;
                case SimdPixelFormatBgra32:
                    Base::BgraToRgba(p.buf0.data, p.width, p.height, stride, _image.data, _image.stride);
                    break;
                case SimdPixelFormatRgb24:
                    if (req_comp != 4)
                        Base::Copy(p.buf0.data, stride, p.width, p.height, _image.PixelSize(), _image.data, _image.stride);
                    else
                        Base::BgraToBgr(p.buf0.data, p.width, p.height, stride, _image.data, _image.stride);
                    break;
                case SimdPixelFormatRgba32:
                    Base::Copy(p.buf0.data, stride, p.width, p.height, _image.PixelSize(), _image.data, _image.stride);
                    break;
                default:
                    break;
                }
                return true;
            }
            return false;
        }

        bool ImagePngLoader::ParseFile()
        {
            _first = true, _iPhone = false, _hasTrans = false;
            if (!CheckHeader())
                return false;
            for (bool run = true; run;)
            {
                Chunk chunk;
                if (!ReadChunk(chunk))
                    return 0;
                if (chunk.type == ChunkType('C', 'g', 'B', 'I'))
                {
                    _iPhone = true;
                    _stream.Skip(chunk.size);
                }
                else if (chunk.type == ChunkType('I', 'H', 'D', 'R'))
                {
                    if (!ReadHeader(chunk))
                        return false;
                    SetConverters();
                }
                else if (chunk.type == ChunkType('P', 'L', 'T', 'E'))
                {
                    if (!ReadPalette(chunk))
                        return false;
                }
                else if (chunk.type == ChunkType('t', 'R', 'N', 'S'))
                {
                    if (!ReadTransparency(chunk))
                        return false;
                }
                else if (chunk.type == ChunkType('I', 'D', 'A', 'T'))
                {
                    if (!ReadData(chunk))
                        return false;
                }
                else if (chunk.type == ChunkType('I', 'E', 'N', 'D'))
                {
                    if (_first)
                        return false;
                    run = false;
                }
                else
                {
                    if (_first || (chunk.type & (1 << 29)) == 0)
                        return false;
                    _stream.Skip(chunk.size);
                }
                uint32_t crc32;
                if (!_stream.ReadBe32u(crc32))
                    return false;
            }
            return _idats.size() != 0;
        }

        bool ImagePngLoader::CheckHeader()
        {
            const size_t size = 8;
            const uint8_t control[size] = { 137, 80, 78, 71, 13, 10, 26, 10 };
            uint8_t buffer[size];
            return _stream.Read(size, buffer) == size && memcmp(buffer, control, size) == 0;
        }

        SIMD_INLINE bool ImagePngLoader::ReadChunk(Chunk& chunk)
        {
            if (_stream.ReadBe32u(chunk.size) && _stream.ReadBe32u(chunk.type))
            {
                chunk.offs = (uint32_t)_stream.Pos();
                return true;
            }
            return false;
        }

        bool ImagePngLoader::ReadHeader(const Chunk& chunk)
        {
            const int MAX_SIZE = 1 << 24;
            if (!_first)
                return false;
            _first = false;
            if (!(chunk.size == 13 && _stream.CanRead(13)))
                return false;
            uint8_t comp, filter;
            if (!(_stream.ReadBe32u(_width) && _stream.ReadBe32u(_height) &&
                _stream.Read8u(_depth) && _stream.Read8u(_color) && _stream.Read8u(comp) &&
                _stream.Read8u(filter) && _stream.Read8u(_interlace)))
                return false;
            if (_width == 0 || _width > MAX_SIZE || _height == 0 || _height > MAX_SIZE)
                return false;
            if (_depth != 1 && _depth != 2 && _depth != 4 && _depth != 8 && _depth != 16)
                return false;
            if (_color > 6 || (_color == 3 && _depth == 16))
                return false;
            _paletteChannels = 0;
            if (_color == 3)
                _paletteChannels = 3;
            else if (_color & 1)
                return false;
            if (comp != 0 || filter != 0 || _interlace > 1)
                return false;
            if (!_paletteChannels)
            {
                _channels = (_color & 2 ? 3 : 1) + (_color & 4 ? 1 : 0);
                if ((1 << 30) / _width / _channels < _height)
                    return false;
            }
            else
            {
                _channels = 1;
                if ((1 << 30) / _width / 4 < _height)
                    return false;
            }
            return true;
        }

        bool ImagePngLoader::ReadPalette(const Chunk& chunk)
        {
            if (_first || chunk.size > 256 * 3)
                return false;
            size_t length = chunk.size / 3;
            if (length * 3 != chunk.size)
                return false;
            if (_stream.CanRead(chunk.size))
            {
                _palette.Resize(length * 4);
                _bgrToBgra(_stream.Current(), length, 1, length, _palette.data, _palette.size, 0xFF);
                _stream.Skip(chunk.size);
                return true;
            }
            else
                return false;
        }

        bool ImagePngLoader::ReadTransparency(const Chunk& chunk)
        {
            if (_first)
                return false;
            if (_idats.size())
                return false;
            if (_paletteChannels)
            {
                if (_palette.size == 0 || chunk.size > _palette.size || !_stream.CanRead(chunk.size))
                    return false;
                _paletteChannels = 4;
                for (size_t i = 0; i < chunk.size; ++i)
                    _palette.data[i * 4 + 3] = _stream.Current()[i];
                _stream.Skip(chunk.size);
            }
            else
            {
                if (!(_channels & 1) || chunk.size != _channels * 2)
                    return false;
                _hasTrans = true;
                for (size_t k = 0; k < _channels; ++k)
                    if (!_stream.ReadBe16u(_tc16[k]))
                        return false;
                if (_depth != 16)
                {
                    for (size_t k = 0; k < _channels; ++k)
                        _tc[k] = uint8_t(_tc16[k]) * DepthScaleTable[_depth];
                }
            }
            return true;
        }

        bool ImagePngLoader::ReadData(const Chunk& chunk)
        {
            if (_first)
                return false;
            if (_paletteChannels && !_palette.size)
                return false;
            if (!_stream.CanRead(chunk.size))
                return false;
            _idats.push_back(chunk);
            _stream.Skip(chunk.size);
            return true;
        }

        InputMemoryStream ImagePngLoader::MergedDataStream()
        {
            if (_idats.size() == 1)
                return InputMemoryStream((uint8_t*)_stream.Data() + _idats[0].offs, _idats[0].size);
            else
            {
                size_t size = 0;
                for (size_t i = 0; i < _idats.size(); ++i)
                    size += _idats[i].size;
                _idat.Resize(size);
                for (size_t i = 0, offset = 0; i < _idats.size(); ++i)
                {
                    memcpy(_idat.data + offset, _stream.Data() + _idats[i].offs, _idats[i].size);
                    offset += _idats[i].size;
                }
                return InputMemoryStream(_idat.data, _idat.size);
            }
        }
    }
}