1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2018 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Simd/SimdMemory.h"
namespace Simd
{
namespace Base
{
namespace
{
struct Buffer
{
Buffer(size_t width)
{
_p = Allocate(sizeof(uint16_t) * 3 * width);
isc0 = (uint16_t*)_p;
isc1 = isc0 + width;
iscp = isc1 + width;
}
~Buffer()
{
Free(_p);
}
uint16_t * isc0;
uint16_t * isc1;
uint16_t * iscp;
private:
void *_p;
};
}
/**************************************************************************************************
* The Burt & Adelson Reduce operation. This function use 2-D version of algorithm;
*
* Reference:
* Frederick M. Waltz and John W.V. Miller. An efficient algorithm for Gaussian blur using
* finite-state machines.
* SPIE Conf. on Machine Vision Systems for Inspection and Metrology VII. November 1998.
*
*
* 2-D explanation:
*
* src image pixels: A B C D E dst image pixels: a b c
* F G H I J
* K L M N O d e f
* P Q R S T
* U V W X Y g h i
*
* Algorithm visits all src image pixels from left to right and top to bottom.
* When visiting src pixel Y, the value of e will be written to the dst image.
*
* State variables before visiting Y:
* sr0 = W
* sr1 = U + 4V
* srp = 4X
* sc0[2] = K + 4L + 6M + 4N + O
* sc1[2] = (A + 4B + 6C + 4D + E) + 4*(F + 4G + 6H + 4I + J)
* scp[2] = 4*(P + 4Q + 6R + 4S + T)
*
* State variables after visiting Y:
* sr0 = Y
* sr1 = W + 4X
* srp = 4X
* sc0[2] = U + 4V + 6W + 4X + Y
* sc1[2] = (K + 4L + 6M + 4N + O) + 4*(P + 4Q + 6R + 4S + T)
* scp[2] = 4*(P + 4Q + 6R + 4S + T)
* e = 1 * (A + 4B + 6C + 4D + E)
* + 4 * (F + 4G + 6H + 4I + J)
* + 6 * (K + 4L + 6M + 4N + O)
* + 4 * (P + 4Q + 6R + 4S + T)
* + 1 * (U + 4V + 6W + 4X + Y)
*
* Updates when visiting (even x, even y) source pixel:
* (all updates occur in parallel)
* sr0 <= current
* sr1 <= sr0 + srp
* sc0[x] <= sr1 + 6*sr0 + srp + current
* sc1[x] <= sc0[x] + scp[x]
* dst(-1,-1) <= sc1[x] + 6*sc0[x] + scp + (new sc0[x])
*
* Updates when visiting (odd x, even y) source pixel:
* srp <= 4*current
*
* Updates when visiting (even x, odd y) source pixel:
* sr0 <= current
* sr1 <= sr0 + srp
* scp[x] <= 4*(sr1 + 6*sr0 + srp + current)
*
* Updates when visting (odd x, odd y) source pixel:
* srp <= 4*current
**************************************************************************************************/
template <bool compensation> SIMD_INLINE int DivideBy256(int value);
template <> SIMD_INLINE int DivideBy256<true>(int value)
{
return (value + 128) >> 8;
}
template <> SIMD_INLINE int DivideBy256<false>(int value)
{
return value >> 8;
}
template <bool compensation> void ReduceGray5x5(const uint8_t *src, size_t srcWidth, size_t srcHeight, size_t srcStride,
uint8_t *dst, size_t dstWidth, size_t dstHeight, size_t dstStride)
{
assert((srcWidth + 1) / 2 == dstWidth && (srcHeight + 1) / 2 == dstHeight);
Buffer buffer(dstWidth + 1);
unsigned short isr0, isr1, isrp;
const short zeroPixel = 0;
uint8_t * dy = dst;
uint8_t * dx = dy;
const uint8_t * sy = src;
const uint8_t * sx = sy;
bool evenY = true;
bool evenX = true;
size_t srcy = 0;
size_t srcx = 0;
size_t dstx = 0;
// First row
{
isr0 = *sy;
isr1 = zeroPixel;
isrp = (unsigned short)(*sy) * 4;
// Main pixels in first row
for (sx = sy, evenX = true, srcx = 0, dstx = 0; srcx < srcWidth; ++srcx, ++sx)
{
unsigned short icurrent(*sx);
if (evenX)
{
buffer.isc0[dstx] = isr1 + 6 * isr0 + isrp + icurrent;
buffer.isc1[dstx] = 5 * buffer.isc0[dstx];
isr1 = isr0 + isrp;
isr0 = icurrent;
}
else
{
isrp = icurrent * 4;
++dstx;
}
evenX = !evenX;
}
// Last entries in first row
if (!evenX)
{
// previous srcx was even
++dstx;
buffer.isc0[dstx] = isr1 + 11 * isr0;
buffer.isc1[dstx] = 5 * buffer.isc0[dstx];
}
else
{
// previous srcx was odd
buffer.isc0[dstx] = isr1 + 6 * isr0 + isrp + (isrp >> 2);
buffer.isc1[dstx] = 5 * buffer.isc0[dstx];
}
}
sy += srcStride;
// Main Rows
{
for (evenY = false, srcy = 1; srcy < srcHeight; ++srcy, sy += srcStride)
{
isr0 = (unsigned short)(*sy);
isr1 = zeroPixel;
isrp = (unsigned short)(*sy) * 4;
if (evenY)
{
// Even-numbered row
// First entry in row
sx = sy;
isr1 = isr0 + isrp;
isr0 = (unsigned short)(*sx);
++sx;
dx = dy;
unsigned short * p_isc0 = buffer.isc0;
unsigned short * p_isc1 = buffer.isc1;
unsigned short * p_iscp = buffer.iscp;
// Main entries in row
for (evenX = false, srcx = 1, dstx = 0; srcx < (srcWidth - 1); srcx += 2, ++sx)
{
p_isc0++;
p_isc1++;
p_iscp++;
unsigned short icurrent = (unsigned short)(*sx);
isrp = icurrent * 4;
icurrent = (unsigned short)(*(++sx));
unsigned short ip;
ip = *p_isc1 + 6 * (*p_isc0) + *p_iscp;
*p_isc1 = *p_isc0 + *p_iscp;
*p_isc0 = isr1 + 6 * isr0 + isrp + icurrent;
isr1 = isr0 + isrp;
isr0 = icurrent;
ip = ip + *p_isc0;
*dx = DivideBy256<compensation>(ip);
++dx;
}
dstx += p_isc0 - buffer.isc0;
//doing the last operation due to even number of operations in previous cycle
if (!(srcWidth & 1))
{
unsigned short icurrent = (unsigned short)(*sx);
isrp = icurrent * 4;
++dstx;
evenX = !evenX;
++sx;
}
// Last entries in row
if (!evenX)
{
// previous srcx was even
++dstx;
unsigned short ip;
ip = buffer.isc1[dstx] + 6 * buffer.isc0[dstx] + buffer.iscp[dstx];
buffer.isc1[dstx] = buffer.isc0[dstx] + buffer.iscp[dstx];
buffer.isc0[dstx] = isr1 + 11 * isr0;
ip = ip + buffer.isc0[dstx];
*dx = DivideBy256<compensation>(ip);
}
else
{
// Previous srcx was odd
unsigned short ip;
ip = buffer.isc1[dstx] + 6 * buffer.isc0[dstx] + buffer.iscp[dstx];
buffer.isc1[dstx] = buffer.isc0[dstx] + buffer.iscp[dstx];
buffer.isc0[dstx] = isr1 + 6 * isr0 + isrp + (isrp >> 2);
ip = ip + buffer.isc0[dstx];
*dx = DivideBy256<compensation>(ip);
}
dy += dstStride;
}
else
{
// First entry in odd-numbered row
sx = sy;
isr1 = isr0 + isrp;
isr0 = (unsigned short)(*sx);
++sx;
// Main entries in odd-numbered row
unsigned short * p_iscp = buffer.iscp;
for (evenX = false, srcx = 1, dstx = 0; srcx < (srcWidth - 1); srcx += 2, ++sx)
{
unsigned short icurrent = (unsigned short)(*sx);
isrp = icurrent * 4;
p_iscp++;
icurrent = (unsigned short)(*(++sx));
*p_iscp = (isr1 + 6 * isr0 + isrp + icurrent) * 4;
isr1 = isr0 + isrp;
isr0 = icurrent;
}
dstx += p_iscp - buffer.iscp;
//doing the last operation due to even number of operations in previous cycle
if (!(srcWidth & 1))
{
unsigned short icurrent = (unsigned short)(*sx);
isrp = icurrent * 4;
++dstx;
evenX = !evenX;
++sx;
}
// Last entries in row
if (!evenX)
{
// previous srcx was even
++dstx;
buffer.iscp[dstx] = (isr1 + 11 * isr0) * 4;
}
else
{
buffer.iscp[dstx] = (isr1 + 6 * isr0 + isrp + (isrp >> 2)) * 4;
}
}
evenY = !evenY;
}
}
// Last Rows
{
if (!evenY)
{
for (dstx = 1, dx = dy; dstx < (dstWidth + 1); ++dstx, ++dx)
*dx = DivideBy256<compensation>(buffer.isc1[dstx] + 11 * buffer.isc0[dstx]);
}
else
{
for (dstx = 1, dx = dy; dstx < (dstWidth + 1); ++dstx, ++dx)
*dx = DivideBy256<compensation>(buffer.isc1[dstx] + 6 * buffer.isc0[dstx] + buffer.iscp[dstx] + (buffer.iscp[dstx] >> 2));
}
}
}
void ReduceGray5x5(const uint8_t *src, size_t srcWidth, size_t srcHeight, size_t srcStride,
uint8_t *dst, size_t dstWidth, size_t dstHeight, size_t dstStride, int compensation)
{
if (compensation)
ReduceGray5x5<true>(src, srcWidth, srcHeight, srcStride, dst, dstWidth, dstHeight, dstStride);
else
ReduceGray5x5<false>(src, srcWidth, srcHeight, srcStride, dst, dstWidth, dstHeight, dstStride);
}
}
}
|