1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __SimdExp_h__
#define __SimdExp_h__
#include "Simd/SimdMath.h"
namespace Simd
{
namespace Base
{
SIMD_INLINE float Exp(float value)
{
return ::expf(value);
}
SIMD_INLINE float Log(float value)
{
return ::logf(value);
}
}
#ifdef SIMD_SSE41_ENABLE
namespace Sse41
{
class Exp
{
__m128i _exponent, _mantissa, _127;
__m128 _1_0, _0_5, _min, _max, _exp0, _exp1, _exp2, _exp3, _exp4, _exp5, _k;
SIMD_INLINE __m128 Poly5(__m128 x) const
{
__m128 p = _exp5;
p = _mm_add_ps(_mm_mul_ps(x, p), _exp4);
p = _mm_add_ps(_mm_mul_ps(x, p), _exp3);
p = _mm_add_ps(_mm_mul_ps(x, p), _exp2);
p = _mm_add_ps(_mm_mul_ps(x, p), _exp1);
p = _mm_add_ps(_mm_mul_ps(x, p), _exp0);
return p;
}
SIMD_INLINE __m128 Exp2(__m128 x) const
{
x = _mm_max_ps(_mm_min_ps(x, _max), _min);
__m128i ipart = _mm_cvtps_epi32(_mm_sub_ps(x, _0_5));
__m128 fpart = _mm_sub_ps(x, _mm_cvtepi32_ps(ipart));
__m128 expipart = _mm_castsi128_ps(_mm_slli_epi32(_mm_add_epi32(ipart, _127), 23));
__m128 expfpart = Poly5(fpart);
return _mm_mul_ps(expipart, expfpart);
}
public:
SIMD_INLINE Exp(float k = 1.0f)
{
_exponent = _mm_set1_epi32(0x7F800000);
_mantissa = _mm_set1_epi32(0x007FFFFF);
_127 = _mm_set1_epi32(127);
_1_0 = _mm_set1_ps(1.0f);
_0_5 = _mm_set1_ps(0.5f);
_min = _mm_set1_ps(-126.99999f);
_max = _mm_set1_ps(126.99999f);
_exp0 = _mm_set1_ps(9.9999994e-1f);
_exp1 = _mm_set1_ps(6.9315308e-1f);
_exp2 = _mm_set1_ps(2.4015361e-1f);
_exp3 = _mm_set1_ps(5.5826318e-2f);
_exp4 = _mm_set1_ps(8.9893397e-3f);
_exp5 = _mm_set1_ps(1.8775767e-3f);
_k = _mm_set1_ps(k / 0.69314718056f);
}
SIMD_INLINE __m128 Exponent(__m128 value) const
{
return Exp2(_mm_mul_ps(_k, value));
}
SIMD_INLINE __m128 Sigmoid(__m128 value) const
{
__m128 exp = Exp2(_mm_mul_ps(_k, value));
return _mm_div_ps(_1_0, _mm_add_ps(_1_0, exp));
}
SIMD_INLINE __m128 Tanh(__m128 value) const
{
__m128 exp = Exp2(_mm_mul_ps(_k, value));
return _mm_div_ps(_mm_sub_ps(_1_0, exp), _mm_add_ps(_1_0, exp));
}
SIMD_INLINE __m128 Elu(__m128 value, __m128 alpha) const
{
__m128 exp = Exp2(_mm_mul_ps(_k, value));
__m128 neg = _mm_mul_ps(alpha, _mm_sub_ps(exp, _1_0));
__m128 mask = _mm_cmpgt_ps(_mm_setzero_ps(), value);
return Combine(mask, neg, value);
}
};
namespace Detail
{
SIMD_INLINE __m128 Poly5(__m128 x, float a, float b, float c, float d, float e, float f)
{
__m128 p = _mm_set1_ps(f);
p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(e));
p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(d));
p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(c));
p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(b));
p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(a));
return p;
}
SIMD_INLINE __m128 Exp2(__m128 x)
{
x = _mm_max_ps(_mm_min_ps(x, _mm_set1_ps(126.99999f)), _mm_set1_ps(-126.99999f));
__m128i ipart = _mm_cvtps_epi32(_mm_sub_ps(x, _mm_set1_ps(0.5f)));
__m128 fpart = _mm_sub_ps(x, _mm_cvtepi32_ps(ipart));
__m128 expipart = _mm_castsi128_ps(_mm_slli_epi32(_mm_add_epi32(ipart, _mm_set1_epi32(127)), 23));
__m128 expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
return _mm_mul_ps(expipart, expfpart);
}
SIMD_INLINE __m128 Log2(__m128 x)
{
__m128 _1 = _mm_set1_ps(1.0f);
__m128i i = _mm_castps_si128(x);
__m128 e = _mm_cvtepi32_ps(_mm_sub_epi32(_mm_srli_epi32(_mm_and_si128(i, _mm_set1_epi32(0x7F800000)), 23), _mm_set1_epi32(127)));
__m128 m = _mm_or_ps(_mm_castsi128_ps(_mm_and_si128(i, _mm_set1_epi32(0x007FFFFF))), _1);
__m128 p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
return _mm_add_ps(_mm_mul_ps(p, _mm_sub_ps(m, _1)), e);
}
}
SIMD_INLINE __m128 Exponent(__m128 value)
{
return Detail::Exp2(_mm_mul_ps(_mm_set1_ps(1.44269504f), value));
}
SIMD_INLINE __m128 Elu(__m128 value, __m128 alpha)
{
__m128 exp = Exponent(value);
__m128 neg = _mm_mul_ps(alpha, _mm_sub_ps(exp, _mm_set1_ps(1.0f)));
__m128 mask = _mm_cmpgt_ps(_mm_setzero_ps(), value);
return Combine(mask, neg, value);
}
SIMD_INLINE __m128 Logarithm(__m128 value)
{
return _mm_mul_ps(_mm_set1_ps(0.693147181f), Detail::Log2(value));
}
SIMD_INLINE __m128 Mish(__m128 value, __m128 threshold)
{
__m128 _1 = _mm_set1_ps(1.0f);
__m128 mish = _mm_add_ps(Exponent(value), _1);
mish = _mm_add_ps(_mm_mul_ps(mish, mish), _1);
mish = _mm_mul_ps(value, _mm_sub_ps(_1, _mm_div_ps(_mm_set1_ps(2.0f), mish)));
return Combine(_mm_cmpgt_ps(threshold, value), mish, value);
}
SIMD_INLINE __m128 Softplus(__m128 value, __m128 beta, __m128 threshold)
{
__m128 exp = Exponent(_mm_mul_ps(value, beta));
__m128 log = Logarithm(_mm_add_ps(_mm_set1_ps(1.0f), exp));
__m128 mask = _mm_cmpgt_ps(threshold, value);
return Combine(mask, _mm_div_ps(log, beta), value);
}
SIMD_INLINE __m128 Tanh(__m128 value)
{
__m128 _1 = _mm_set1_ps(1.0f);
__m128 exp = Detail::Exp2(_mm_mul_ps(_mm_set1_ps(2.88539008f), value));
return _mm_div_ps(_mm_sub_ps(exp, _1), _mm_add_ps(_1, exp));
}
}
#endif //SIMD_SSE41_ENABLE
#ifdef SIMD_AVX2_ENABLE
namespace Avx2
{
class Exp
{
__m256i _exponent, _mantissa, _127;
__m256 _1_0, _0_5, _min, _max, _exp0, _exp1, _exp2, _exp3, _exp4, _exp5, _k;
SIMD_INLINE __m256 Poly5(__m256 x) const
{
__m256 p = _exp5;
p = _mm256_fmadd_ps(x, p, _exp4);
p = _mm256_fmadd_ps(x, p, _exp3);
p = _mm256_fmadd_ps(x, p, _exp2);
p = _mm256_fmadd_ps(x, p, _exp1);
p = _mm256_fmadd_ps(x, p, _exp0);
return p;
}
SIMD_INLINE __m256 Exp2(__m256 x) const
{
x = _mm256_max_ps(_mm256_min_ps(x, _max), _min);
__m256i ipart = _mm256_cvtps_epi32(_mm256_sub_ps(x, _0_5));
__m256 fpart = _mm256_sub_ps(x, _mm256_cvtepi32_ps(ipart));
__m256 expipart = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_add_epi32(ipart, _127), 23));
__m256 expfpart = Poly5(fpart);
return _mm256_mul_ps(expipart, expfpart);
}
public:
SIMD_INLINE Exp(float k = 1.0f)
{
_exponent = _mm256_set1_epi32(0x7F800000);
_mantissa = _mm256_set1_epi32(0x007FFFFF);
_127 = _mm256_set1_epi32(127);
_1_0 = _mm256_set1_ps(1.0f);
_0_5 = _mm256_set1_ps(0.5f);
_min = _mm256_set1_ps(-126.99999f);
_max = _mm256_set1_ps(126.99999f);
_exp0 = _mm256_set1_ps(9.9999994e-1f);
_exp1 = _mm256_set1_ps(6.9315308e-1f);
_exp2 = _mm256_set1_ps(2.4015361e-1f);
_exp3 = _mm256_set1_ps(5.5826318e-2f);
_exp4 = _mm256_set1_ps(8.9893397e-3f);
_exp5 = _mm256_set1_ps(1.8775767e-3f);
_k = _mm256_set1_ps(k / 0.69314718056f);
}
SIMD_INLINE __m256 Exponent(__m256 value) const
{
return Exp2(_mm256_mul_ps(_k, value));
}
SIMD_INLINE __m256 Sigmoid(__m256 value) const
{
__m256 exp = Exp2(_mm256_mul_ps(_k, value));
return _mm256_div_ps(_1_0, _mm256_add_ps(_1_0, exp));
}
SIMD_INLINE __m256 Tanh(__m256 value) const
{
__m256 exp = Exp2(_mm256_mul_ps(_k, value));
return _mm256_div_ps(_mm256_sub_ps(_1_0, exp), _mm256_add_ps(_1_0, exp));
}
SIMD_INLINE __m256 Elu(__m256 value, __m256 alpha) const
{
__m256 exp = Exp2(_mm256_mul_ps(_k, value));
__m256 neg = _mm256_mul_ps(alpha, _mm256_sub_ps(exp, _1_0));
__m256 mask = _mm256_cmp_ps(_mm256_setzero_ps(), value, _CMP_GT_OS);
return _mm256_blendv_ps(value, neg, mask);
}
};
namespace Detail
{
SIMD_INLINE __m256 Poly5(__m256 x, float a, float b, float c, float d, float e, float f)
{
__m256 p = _mm256_set1_ps(f);
p = _mm256_add_ps(_mm256_mul_ps(x, p), _mm256_set1_ps(e));
p = _mm256_add_ps(_mm256_mul_ps(x, p), _mm256_set1_ps(d));
p = _mm256_add_ps(_mm256_mul_ps(x, p), _mm256_set1_ps(c));
p = _mm256_add_ps(_mm256_mul_ps(x, p), _mm256_set1_ps(b));
p = _mm256_add_ps(_mm256_mul_ps(x, p), _mm256_set1_ps(a));
return p;
}
SIMD_INLINE __m256 Exp2(__m256 x)
{
x = _mm256_max_ps(_mm256_min_ps(x, _mm256_set1_ps(126.99999f)), _mm256_set1_ps(-126.99999f));
__m256i ipart = _mm256_cvtps_epi32(_mm256_sub_ps(x, _mm256_set1_ps(0.5f)));
__m256 fpart = _mm256_sub_ps(x, _mm256_cvtepi32_ps(ipart));
__m256 expipart = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_add_epi32(ipart, _mm256_set1_epi32(127)), 23));
__m256 expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
return _mm256_mul_ps(expipart, expfpart);
}
SIMD_INLINE __m256 Log2(__m256 x)
{
__m256 _1 = _mm256_set1_ps(1.0f);
__m256i i = _mm256_castps_si256(x);
__m256 e = _mm256_cvtepi32_ps(_mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(i, _mm256_set1_epi32(0x7F800000)), 23), _mm256_set1_epi32(127)));
__m256 m = _mm256_or_ps(_mm256_castsi256_ps(_mm256_and_si256(i, _mm256_set1_epi32(0x007FFFFF))), _1);
__m256 p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
return _mm256_add_ps(_mm256_mul_ps(p, _mm256_sub_ps(m, _1)), e);
}
}
SIMD_INLINE __m256 Exponent(__m256 value)
{
return Detail::Exp2(_mm256_mul_ps(_mm256_set1_ps(1.44269504f), value));
}
SIMD_INLINE __m256 Elu(__m256 value, __m256 alpha)
{
__m256 exp = Exponent(value);
__m256 neg = _mm256_mul_ps(alpha, _mm256_sub_ps(exp, _mm256_set1_ps(1.0f)));
__m256 mask = _mm256_cmp_ps(_mm256_setzero_ps(), value, _CMP_GT_OS);
return _mm256_blendv_ps(value, neg, mask);
}
SIMD_INLINE __m256 Logarithm(__m256 value)
{
return _mm256_mul_ps(_mm256_set1_ps(0.693147181f), Detail::Log2(value));
}
SIMD_INLINE __m256 Mish(__m256 value, __m256 threshold)
{
__m256 _1 = _mm256_set1_ps(1.0f);
__m256 mish = _mm256_add_ps(Exponent(value), _1);
mish = Fmadd<true>(mish, mish, _1);
mish = _mm256_mul_ps(value, _mm256_sub_ps(_1, _mm256_div_ps(_mm256_set1_ps(2.0f), mish)));
return _mm256_blendv_ps(value, mish, _mm256_cmp_ps(threshold, value, _CMP_GT_OS));
}
SIMD_INLINE __m256 Softplus(__m256 value, __m256 beta, __m256 threshold)
{
__m256 exp = Exponent(_mm256_mul_ps(value, beta));
__m256 log = Logarithm(_mm256_add_ps(_mm256_set1_ps(1.0f), exp));
__m256 mask = _mm256_cmp_ps(threshold, value, _CMP_GT_OS);
return _mm256_blendv_ps(value, _mm256_div_ps(log, beta), mask);
}
SIMD_INLINE __m256 Tanh(__m256 value)
{
__m256 _1 = _mm256_set1_ps(1.0f);
__m256 exp = Detail::Exp2(_mm256_mul_ps(_mm256_set1_ps(2.88539008f), value));
return _mm256_div_ps(_mm256_sub_ps(exp, _1), _mm256_add_ps(_1, exp));
}
}
#endif //SIMD_AVX2_ENABLE
#ifdef SIMD_NEON_ENABLE
namespace Neon
{
class Exp
{
int32x4_t _exponent, _mantissa, _127;
float32x4_t _1_0, _0_5, _min, _max, _exp0, _exp1, _exp2, _exp3, _exp4, _exp5, _k;
SIMD_INLINE float32x4_t Poly5(float32x4_t x) const
{
float32x4_t p = _exp5;
p = vmlaq_f32(_exp4, x, p);
p = vmlaq_f32(_exp3, x, p);
p = vmlaq_f32(_exp2, x, p);
p = vmlaq_f32(_exp1, x, p);
p = vmlaq_f32(_exp0, x, p);
return p;
}
SIMD_INLINE float32x4_t Exp2(float32x4_t x) const
{
x = vmaxq_f32(vminq_f32(x, _max), _min);
int32x4_t ipart = vcvtq_s32_f32(vsubq_f32(x, _0_5));
float32x4_t fpart = vsubq_f32(x, vcvtq_f32_s32(ipart));
float32x4_t expipart = vreinterpretq_f32_s32(vshlq_n_s32(vaddq_s32(ipart, _127), 23));
float32x4_t expfpart = Poly5(fpart);
return vmulq_f32(expipart, expfpart);
}
public:
SIMD_INLINE Exp(float k = 1.0f)
{
_exponent = vdupq_n_s32(0x7F800000);
_mantissa = vdupq_n_s32(0x007FFFFF);
_127 = vdupq_n_s32(127);
_1_0 = vdupq_n_f32(1.0f);
_0_5 = vdupq_n_f32(0.5f);
_min = vdupq_n_f32(-126.99999f);
_max = vdupq_n_f32(126.99999f);
_exp0 = vdupq_n_f32(9.9999994e-1f);
_exp1 = vdupq_n_f32(6.9315308e-1f);
_exp2 = vdupq_n_f32(2.4015361e-1f);
_exp3 = vdupq_n_f32(5.5826318e-2f);
_exp4 = vdupq_n_f32(8.9893397e-3f);
_exp5 = vdupq_n_f32(1.8775767e-3f);
_k = vdupq_n_f32(k / 0.69314718056f);
}
SIMD_INLINE float32x4_t Exponent(float32x4_t value) const
{
return Exp2(vmulq_f32(_k, value));
}
template<int iter> SIMD_INLINE float32x4_t Sigmoid(float32x4_t value) const
{
float32x4_t exp = Exp2(vmulq_f32(_k, value));
return Reciprocal<iter>(vaddq_f32(_1_0, exp));
}
template<int iter> SIMD_INLINE float32x4_t Tanh(float32x4_t value) const
{
float32x4_t exp = Exp2(vmulq_f32(_k, value));
return Div<iter>(vsubq_f32(_1_0, exp), vaddq_f32(_1_0, exp));
}
SIMD_INLINE float32x4_t Elu(float32x4_t value, float32x4_t alpha) const
{
float32x4_t exp = Exp2(vmulq_f32(_k, value));
float32x4_t neg = vmulq_f32(alpha, vsubq_f32(exp, _1_0));
uint32x4_t mask = vcgtq_f32(vdupq_n_f32(0.0f), value);
return vbslq_f32(mask, neg, value);
}
};
namespace Detail
{
SIMD_INLINE float32x4_t Poly5(float32x4_t x, float a, float b, float c, float d, float e, float f)
{
float32x4_t p = vdupq_n_f32(f);
p = vmlaq_f32(vdupq_n_f32(e), x, p);
p = vmlaq_f32(vdupq_n_f32(d), x, p);
p = vmlaq_f32(vdupq_n_f32(c), x, p);
p = vmlaq_f32(vdupq_n_f32(b), x, p);
p = vmlaq_f32(vdupq_n_f32(a), x, p);
return p;
}
SIMD_INLINE float32x4_t Exp2(float32x4_t x)
{
x = vmaxq_f32(vminq_f32(x, vdupq_n_f32(126.99999f)), vdupq_n_f32(-126.99999f));
int32x4_t ipart = vcvtq_s32_f32(vsubq_f32(x, vdupq_n_f32(0.5f)));
float32x4_t fpart = vsubq_f32(x, vcvtq_f32_s32(ipart));
float32x4_t expipart = vreinterpretq_f32_s32(vshlq_n_s32(vaddq_s32(ipart, vdupq_n_s32(127)), 23));
float32x4_t expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
return vmulq_f32(expipart, expfpart);
}
SIMD_INLINE float32x4_t Log2(float32x4_t x)
{
float32x4_t _1 = vdupq_n_f32(1.0f);
int32x4_t i = vreinterpretq_s32_f32(x);
float32x4_t e = vcvtq_f32_s32(vsubq_s32(vshrq_n_s32(vandq_s32(i, vdupq_n_s32(0x7F800000)), 23), vdupq_n_s32(127)));
float32x4_t m = Or(vreinterpretq_f32_s32(vandq_s32(i, vdupq_n_s32(0x007FFFFF))), _1);
float32x4_t p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
return vaddq_f32(vmulq_f32(p, vsubq_f32(m, _1)), e);
}
}
SIMD_INLINE float32x4_t Exponent(float32x4_t value)
{
return Detail::Exp2(vmulq_f32(vdupq_n_f32(1.44269504f), value));
}
SIMD_INLINE float32x4_t Elu(float32x4_t value, float32x4_t alpha)
{
float32x4_t exp = Exponent(value);
float32x4_t neg = vmulq_f32(alpha, vsubq_f32(exp, vdupq_n_f32(1.0f)));
uint32x4_t mask = vcgtq_f32(vdupq_n_f32(0.0f), value);
return vbslq_f32(mask, neg, value);
}
SIMD_INLINE float32x4_t Logarithm(float32x4_t value)
{
return vmulq_f32(vdupq_n_f32(0.693147181f), Detail::Log2(value));
}
template<int iter> SIMD_INLINE float32x4_t Mish(float32x4_t value, float32x4_t threshold)
{
float32x4_t _1 = vdupq_n_f32(1.0f);
float32x4_t mish = vaddq_f32(Exponent(value), _1);
mish = Fmadd<true>(mish, mish, _1);
mish = vmulq_f32(value, vsubq_f32(_1, Div<iter>(vdupq_n_f32(2.0f), mish)));
return vbslq_f32(vcgtq_f32(threshold, value), mish, value);
}
template<int iter> SIMD_INLINE float32x4_t Softplus(float32x4_t value, float32x4_t beta, float32x4_t threshold)
{
float32x4_t exp = Exponent(vmulq_f32(value, beta));
float32x4_t log = Logarithm(vaddq_f32(vdupq_n_f32(1.0f), exp));
uint32x4_t mask = vcgtq_f32(threshold, value);
return vbslq_f32(mask, Div<iter>(log, beta), value);
}
template<int iter> SIMD_INLINE float32x4_t Tanh(float32x4_t value)
{
float32x4_t _1 = vdupq_n_f32(1.0f);
float32x4_t exp = Detail::Exp2(vmulq_f32(vdupq_n_f32(2.88539008f), value));
return Div<iter>(vsubq_f32(exp, _1), vaddq_f32(_1, exp));
}
}
#endif //SIMD_NEON_ENABLE
}
#endif//__SimdExp_h__
|