File: SimdExp.h

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (504 lines) | stat: -rwxr-xr-x 21,097 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __SimdExp_h__
#define __SimdExp_h__

#include "Simd/SimdMath.h"

namespace Simd
{
    namespace Base
    {
        SIMD_INLINE float Exp(float value)
        {
            return ::expf(value);
        }

        SIMD_INLINE float Log(float value)
        {
            return ::logf(value);
        }
    }

#ifdef SIMD_SSE41_ENABLE    
    namespace Sse41
    {
        class Exp
        {
            __m128i _exponent, _mantissa, _127;
            __m128 _1_0, _0_5, _min, _max, _exp0, _exp1, _exp2, _exp3, _exp4, _exp5, _k;

            SIMD_INLINE __m128 Poly5(__m128 x) const
            {
                __m128 p = _exp5;
                p = _mm_add_ps(_mm_mul_ps(x, p), _exp4);
                p = _mm_add_ps(_mm_mul_ps(x, p), _exp3);
                p = _mm_add_ps(_mm_mul_ps(x, p), _exp2);
                p = _mm_add_ps(_mm_mul_ps(x, p), _exp1);
                p = _mm_add_ps(_mm_mul_ps(x, p), _exp0);
                return p;
            }

            SIMD_INLINE __m128 Exp2(__m128 x) const
            {
                x = _mm_max_ps(_mm_min_ps(x, _max), _min);
                __m128i ipart = _mm_cvtps_epi32(_mm_sub_ps(x, _0_5));
                __m128 fpart = _mm_sub_ps(x, _mm_cvtepi32_ps(ipart));
                __m128 expipart = _mm_castsi128_ps(_mm_slli_epi32(_mm_add_epi32(ipart, _127), 23));
                __m128 expfpart = Poly5(fpart);
                return _mm_mul_ps(expipart, expfpart);
            }

        public:

            SIMD_INLINE Exp(float k = 1.0f)
            {
                _exponent = _mm_set1_epi32(0x7F800000);
                _mantissa = _mm_set1_epi32(0x007FFFFF);
                _127 = _mm_set1_epi32(127);
                _1_0 = _mm_set1_ps(1.0f);
                _0_5 = _mm_set1_ps(0.5f);
                _min = _mm_set1_ps(-126.99999f);
                _max = _mm_set1_ps(126.99999f);
                _exp0 = _mm_set1_ps(9.9999994e-1f);
                _exp1 = _mm_set1_ps(6.9315308e-1f);
                _exp2 = _mm_set1_ps(2.4015361e-1f);
                _exp3 = _mm_set1_ps(5.5826318e-2f);
                _exp4 = _mm_set1_ps(8.9893397e-3f);
                _exp5 = _mm_set1_ps(1.8775767e-3f);
                _k = _mm_set1_ps(k / 0.69314718056f);
            }

            SIMD_INLINE __m128 Exponent(__m128 value) const
            {
                return Exp2(_mm_mul_ps(_k, value));
            }

            SIMD_INLINE __m128 Sigmoid(__m128 value) const
            {
                __m128 exp = Exp2(_mm_mul_ps(_k, value));
                return _mm_div_ps(_1_0, _mm_add_ps(_1_0, exp));
            }

            SIMD_INLINE __m128 Tanh(__m128 value) const
            {
                __m128 exp = Exp2(_mm_mul_ps(_k, value));
                return _mm_div_ps(_mm_sub_ps(_1_0, exp), _mm_add_ps(_1_0, exp));
            }

            SIMD_INLINE __m128 Elu(__m128 value, __m128 alpha) const
            {
                __m128 exp = Exp2(_mm_mul_ps(_k, value));
                __m128 neg = _mm_mul_ps(alpha, _mm_sub_ps(exp, _1_0));
                __m128 mask = _mm_cmpgt_ps(_mm_setzero_ps(), value);
                return Combine(mask, neg, value);
            }
        };

        namespace Detail
        {
            SIMD_INLINE __m128 Poly5(__m128 x, float a, float b, float c, float d, float e, float f)
            {
                __m128 p = _mm_set1_ps(f);
                p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(e));
                p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(d));
                p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(c));
                p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(b));
                p = _mm_add_ps(_mm_mul_ps(x, p), _mm_set1_ps(a));
                return p;
            }

            SIMD_INLINE __m128 Exp2(__m128 x)
            {
                x = _mm_max_ps(_mm_min_ps(x, _mm_set1_ps(126.99999f)), _mm_set1_ps(-126.99999f));
                __m128i ipart = _mm_cvtps_epi32(_mm_sub_ps(x, _mm_set1_ps(0.5f)));
                __m128 fpart = _mm_sub_ps(x, _mm_cvtepi32_ps(ipart));
                __m128 expipart = _mm_castsi128_ps(_mm_slli_epi32(_mm_add_epi32(ipart, _mm_set1_epi32(127)), 23));
                __m128 expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
                return _mm_mul_ps(expipart, expfpart);
            }

            SIMD_INLINE __m128 Log2(__m128 x)
            {
                __m128 _1 = _mm_set1_ps(1.0f);
                __m128i i = _mm_castps_si128(x);
                __m128 e = _mm_cvtepi32_ps(_mm_sub_epi32(_mm_srli_epi32(_mm_and_si128(i, _mm_set1_epi32(0x7F800000)), 23), _mm_set1_epi32(127)));
                __m128 m = _mm_or_ps(_mm_castsi128_ps(_mm_and_si128(i, _mm_set1_epi32(0x007FFFFF))), _1);
                __m128 p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
                return _mm_add_ps(_mm_mul_ps(p, _mm_sub_ps(m, _1)), e);
            }
        }

        SIMD_INLINE __m128 Exponent(__m128 value)
        {
            return Detail::Exp2(_mm_mul_ps(_mm_set1_ps(1.44269504f), value));
        }

        SIMD_INLINE __m128 Elu(__m128 value, __m128 alpha)
        {
            __m128 exp = Exponent(value);
            __m128 neg = _mm_mul_ps(alpha, _mm_sub_ps(exp, _mm_set1_ps(1.0f)));
            __m128 mask = _mm_cmpgt_ps(_mm_setzero_ps(), value);
            return Combine(mask, neg, value);
        }

        SIMD_INLINE __m128 Logarithm(__m128 value)
        {
            return _mm_mul_ps(_mm_set1_ps(0.693147181f), Detail::Log2(value));
        }

        SIMD_INLINE __m128 Mish(__m128 value, __m128 threshold)
        {
            __m128 _1 = _mm_set1_ps(1.0f);
            __m128 mish = _mm_add_ps(Exponent(value), _1);
            mish = _mm_add_ps(_mm_mul_ps(mish, mish), _1);
            mish = _mm_mul_ps(value, _mm_sub_ps(_1, _mm_div_ps(_mm_set1_ps(2.0f), mish)));
            return Combine(_mm_cmpgt_ps(threshold, value), mish, value);
        }

        SIMD_INLINE __m128 Softplus(__m128 value, __m128 beta, __m128 threshold)
        {
            __m128 exp = Exponent(_mm_mul_ps(value, beta));
            __m128 log = Logarithm(_mm_add_ps(_mm_set1_ps(1.0f), exp));
            __m128 mask = _mm_cmpgt_ps(threshold, value);
            return Combine(mask, _mm_div_ps(log, beta), value);
        }

        SIMD_INLINE __m128 Tanh(__m128 value)
        {
            __m128 _1 = _mm_set1_ps(1.0f);
            __m128 exp = Detail::Exp2(_mm_mul_ps(_mm_set1_ps(2.88539008f), value));
            return _mm_div_ps(_mm_sub_ps(exp, _1), _mm_add_ps(_1, exp));
        }
    }
#endif //SIMD_SSE41_ENABLE

#ifdef SIMD_AVX2_ENABLE
    namespace Avx2
    {
        class Exp
        {
            __m256i _exponent, _mantissa, _127;
            __m256 _1_0, _0_5, _min, _max, _exp0, _exp1, _exp2, _exp3, _exp4, _exp5, _k;

            SIMD_INLINE __m256 Poly5(__m256 x) const
            {
                __m256 p = _exp5;
                p = _mm256_fmadd_ps(x, p, _exp4);
                p = _mm256_fmadd_ps(x, p, _exp3);
                p = _mm256_fmadd_ps(x, p, _exp2);
                p = _mm256_fmadd_ps(x, p, _exp1);
                p = _mm256_fmadd_ps(x, p, _exp0);
                return p;
            }

            SIMD_INLINE __m256 Exp2(__m256 x) const
            {
                x = _mm256_max_ps(_mm256_min_ps(x, _max), _min);
                __m256i ipart = _mm256_cvtps_epi32(_mm256_sub_ps(x, _0_5));
                __m256 fpart = _mm256_sub_ps(x, _mm256_cvtepi32_ps(ipart));
                __m256 expipart = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_add_epi32(ipart, _127), 23));
                __m256 expfpart = Poly5(fpart);
                return _mm256_mul_ps(expipart, expfpart);
            }

        public:

            SIMD_INLINE Exp(float k = 1.0f)
            {
                _exponent = _mm256_set1_epi32(0x7F800000);
                _mantissa = _mm256_set1_epi32(0x007FFFFF);
                _127 = _mm256_set1_epi32(127);
                _1_0 = _mm256_set1_ps(1.0f);
                _0_5 = _mm256_set1_ps(0.5f);
                _min = _mm256_set1_ps(-126.99999f);
                _max = _mm256_set1_ps(126.99999f);
                _exp0 = _mm256_set1_ps(9.9999994e-1f);
                _exp1 = _mm256_set1_ps(6.9315308e-1f);
                _exp2 = _mm256_set1_ps(2.4015361e-1f);
                _exp3 = _mm256_set1_ps(5.5826318e-2f);
                _exp4 = _mm256_set1_ps(8.9893397e-3f);
                _exp5 = _mm256_set1_ps(1.8775767e-3f);
                _k = _mm256_set1_ps(k / 0.69314718056f);
            }

            SIMD_INLINE __m256 Exponent(__m256 value) const
            {
                return Exp2(_mm256_mul_ps(_k, value));
            }

            SIMD_INLINE __m256 Sigmoid(__m256 value) const
            {
                __m256 exp = Exp2(_mm256_mul_ps(_k, value));
                return _mm256_div_ps(_1_0, _mm256_add_ps(_1_0, exp));
            }

            SIMD_INLINE __m256 Tanh(__m256 value) const
            {
                __m256 exp = Exp2(_mm256_mul_ps(_k, value));
                return _mm256_div_ps(_mm256_sub_ps(_1_0, exp), _mm256_add_ps(_1_0, exp));
            }

            SIMD_INLINE __m256 Elu(__m256 value, __m256 alpha) const
            {
                __m256 exp = Exp2(_mm256_mul_ps(_k, value));
                __m256 neg = _mm256_mul_ps(alpha, _mm256_sub_ps(exp, _1_0));
                __m256 mask = _mm256_cmp_ps(_mm256_setzero_ps(), value, _CMP_GT_OS);
                return _mm256_blendv_ps(value, neg, mask);
            }
        };

        namespace Detail
        {
            SIMD_INLINE __m256 Poly5(__m256 x, float a, float b, float c, float d, float e, float f)
            {
                __m256 p = _mm256_set1_ps(f);
                p = _mm256_add_ps(_mm256_mul_ps(x, p), _mm256_set1_ps(e));
                p = _mm256_add_ps(_mm256_mul_ps(x, p), _mm256_set1_ps(d));
                p = _mm256_add_ps(_mm256_mul_ps(x, p), _mm256_set1_ps(c));
                p = _mm256_add_ps(_mm256_mul_ps(x, p), _mm256_set1_ps(b));
                p = _mm256_add_ps(_mm256_mul_ps(x, p), _mm256_set1_ps(a));
                return p;
            }

            SIMD_INLINE __m256 Exp2(__m256 x)
            {
                x = _mm256_max_ps(_mm256_min_ps(x, _mm256_set1_ps(126.99999f)), _mm256_set1_ps(-126.99999f));
                __m256i ipart = _mm256_cvtps_epi32(_mm256_sub_ps(x, _mm256_set1_ps(0.5f)));
                __m256 fpart = _mm256_sub_ps(x, _mm256_cvtepi32_ps(ipart));
                __m256 expipart = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_add_epi32(ipart, _mm256_set1_epi32(127)), 23));
                __m256 expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
                return _mm256_mul_ps(expipart, expfpart);
            }

            SIMD_INLINE __m256 Log2(__m256 x)
            {
                __m256 _1 = _mm256_set1_ps(1.0f);
                __m256i i = _mm256_castps_si256(x);
                __m256 e = _mm256_cvtepi32_ps(_mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(i, _mm256_set1_epi32(0x7F800000)), 23), _mm256_set1_epi32(127)));
                __m256 m = _mm256_or_ps(_mm256_castsi256_ps(_mm256_and_si256(i, _mm256_set1_epi32(0x007FFFFF))), _1);
                __m256 p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
                return _mm256_add_ps(_mm256_mul_ps(p, _mm256_sub_ps(m, _1)), e);
            }
        }

        SIMD_INLINE __m256 Exponent(__m256 value)
        {
            return Detail::Exp2(_mm256_mul_ps(_mm256_set1_ps(1.44269504f), value));
        }

        SIMD_INLINE __m256 Elu(__m256 value, __m256 alpha)
        {
            __m256 exp = Exponent(value);
            __m256 neg = _mm256_mul_ps(alpha, _mm256_sub_ps(exp, _mm256_set1_ps(1.0f)));
            __m256 mask = _mm256_cmp_ps(_mm256_setzero_ps(), value, _CMP_GT_OS);
            return _mm256_blendv_ps(value, neg, mask);
        }

        SIMD_INLINE __m256 Logarithm(__m256 value)
        {
            return _mm256_mul_ps(_mm256_set1_ps(0.693147181f), Detail::Log2(value));
        }

        SIMD_INLINE __m256 Mish(__m256 value, __m256 threshold)
        {
            __m256 _1 = _mm256_set1_ps(1.0f);
            __m256 mish = _mm256_add_ps(Exponent(value), _1);
            mish = Fmadd<true>(mish, mish, _1);
            mish = _mm256_mul_ps(value, _mm256_sub_ps(_1, _mm256_div_ps(_mm256_set1_ps(2.0f), mish)));
            return _mm256_blendv_ps(value, mish, _mm256_cmp_ps(threshold, value, _CMP_GT_OS));
        }

        SIMD_INLINE __m256 Softplus(__m256 value, __m256 beta, __m256 threshold)
        {
            __m256 exp = Exponent(_mm256_mul_ps(value, beta));
            __m256 log = Logarithm(_mm256_add_ps(_mm256_set1_ps(1.0f), exp));
            __m256 mask = _mm256_cmp_ps(threshold, value, _CMP_GT_OS);
            return _mm256_blendv_ps(value, _mm256_div_ps(log, beta), mask);
        }

        SIMD_INLINE __m256 Tanh(__m256 value)
        {
            __m256 _1 = _mm256_set1_ps(1.0f);
            __m256 exp = Detail::Exp2(_mm256_mul_ps(_mm256_set1_ps(2.88539008f), value));
            return _mm256_div_ps(_mm256_sub_ps(exp, _1), _mm256_add_ps(_1, exp));
        }
    }
#endif //SIMD_AVX2_ENABLE

#ifdef SIMD_NEON_ENABLE
    namespace Neon
    {
        class Exp
        {
            int32x4_t _exponent, _mantissa, _127;
            float32x4_t _1_0, _0_5, _min, _max, _exp0, _exp1, _exp2, _exp3, _exp4, _exp5, _k;

            SIMD_INLINE float32x4_t Poly5(float32x4_t x) const
            {
                float32x4_t p = _exp5;
                p = vmlaq_f32(_exp4, x, p);
                p = vmlaq_f32(_exp3, x, p);
                p = vmlaq_f32(_exp2, x, p);
                p = vmlaq_f32(_exp1, x, p);
                p = vmlaq_f32(_exp0, x, p);
                return p;
            }

            SIMD_INLINE float32x4_t Exp2(float32x4_t x) const
            {
                x = vmaxq_f32(vminq_f32(x, _max), _min);
                int32x4_t ipart = vcvtq_s32_f32(vsubq_f32(x, _0_5));
                float32x4_t fpart = vsubq_f32(x, vcvtq_f32_s32(ipart));
                float32x4_t expipart = vreinterpretq_f32_s32(vshlq_n_s32(vaddq_s32(ipart, _127), 23));
                float32x4_t expfpart = Poly5(fpart);
                return vmulq_f32(expipart, expfpart);
            }

        public:

            SIMD_INLINE Exp(float k = 1.0f)
            {
                _exponent = vdupq_n_s32(0x7F800000);
                _mantissa = vdupq_n_s32(0x007FFFFF);
                _127 = vdupq_n_s32(127);
                _1_0 = vdupq_n_f32(1.0f);
                _0_5 = vdupq_n_f32(0.5f);
                _min = vdupq_n_f32(-126.99999f);
                _max = vdupq_n_f32(126.99999f);
                _exp0 = vdupq_n_f32(9.9999994e-1f);
                _exp1 = vdupq_n_f32(6.9315308e-1f);
                _exp2 = vdupq_n_f32(2.4015361e-1f);
                _exp3 = vdupq_n_f32(5.5826318e-2f);
                _exp4 = vdupq_n_f32(8.9893397e-3f);
                _exp5 = vdupq_n_f32(1.8775767e-3f);
                _k = vdupq_n_f32(k / 0.69314718056f);
            }

            SIMD_INLINE float32x4_t Exponent(float32x4_t value) const
            {
                return Exp2(vmulq_f32(_k, value));
            }

            template<int iter> SIMD_INLINE float32x4_t Sigmoid(float32x4_t value) const
            {
                float32x4_t exp = Exp2(vmulq_f32(_k, value));
                return Reciprocal<iter>(vaddq_f32(_1_0, exp));
            }

            template<int iter> SIMD_INLINE float32x4_t Tanh(float32x4_t value) const
            {
                float32x4_t exp = Exp2(vmulq_f32(_k, value));
                return Div<iter>(vsubq_f32(_1_0, exp), vaddq_f32(_1_0, exp));
            }

            SIMD_INLINE float32x4_t Elu(float32x4_t value, float32x4_t alpha) const
            {
                float32x4_t exp = Exp2(vmulq_f32(_k, value));
                float32x4_t neg = vmulq_f32(alpha, vsubq_f32(exp, _1_0));
                uint32x4_t mask = vcgtq_f32(vdupq_n_f32(0.0f), value);
                return vbslq_f32(mask, neg, value);
            }
        };

        namespace Detail
        {
            SIMD_INLINE float32x4_t Poly5(float32x4_t x, float a, float b, float c, float d, float e, float f)
            {
                float32x4_t p = vdupq_n_f32(f);
                p = vmlaq_f32(vdupq_n_f32(e), x, p);
                p = vmlaq_f32(vdupq_n_f32(d), x, p);
                p = vmlaq_f32(vdupq_n_f32(c), x, p);
                p = vmlaq_f32(vdupq_n_f32(b), x, p);
                p = vmlaq_f32(vdupq_n_f32(a), x, p);
                return p;
            }

            SIMD_INLINE float32x4_t Exp2(float32x4_t x)
            {
                x = vmaxq_f32(vminq_f32(x, vdupq_n_f32(126.99999f)), vdupq_n_f32(-126.99999f));
                int32x4_t ipart = vcvtq_s32_f32(vsubq_f32(x, vdupq_n_f32(0.5f)));
                float32x4_t fpart = vsubq_f32(x, vcvtq_f32_s32(ipart));
                float32x4_t expipart = vreinterpretq_f32_s32(vshlq_n_s32(vaddq_s32(ipart, vdupq_n_s32(127)), 23));
                float32x4_t expfpart = Poly5(fpart, 9.9999994e-1f, 6.9315308e-1f, 2.4015361e-1f, 5.5826318e-2f, 8.9893397e-3f, 1.8775767e-3f);
                return vmulq_f32(expipart, expfpart);
            }

            SIMD_INLINE float32x4_t Log2(float32x4_t x)
            {
                float32x4_t _1 = vdupq_n_f32(1.0f);
                int32x4_t i = vreinterpretq_s32_f32(x);
                float32x4_t e = vcvtq_f32_s32(vsubq_s32(vshrq_n_s32(vandq_s32(i, vdupq_n_s32(0x7F800000)), 23), vdupq_n_s32(127)));
                float32x4_t m = Or(vreinterpretq_f32_s32(vandq_s32(i, vdupq_n_s32(0x007FFFFF))), _1);
                float32x4_t p = Poly5(m, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f, 3.1821337e-1f, -3.4436006e-2f);
                return vaddq_f32(vmulq_f32(p, vsubq_f32(m, _1)), e);
            }
        }

        SIMD_INLINE float32x4_t Exponent(float32x4_t value)
        {
            return Detail::Exp2(vmulq_f32(vdupq_n_f32(1.44269504f), value));
        }

        SIMD_INLINE float32x4_t Elu(float32x4_t value, float32x4_t alpha)
        {
            float32x4_t exp = Exponent(value);
            float32x4_t neg = vmulq_f32(alpha, vsubq_f32(exp, vdupq_n_f32(1.0f)));
            uint32x4_t mask = vcgtq_f32(vdupq_n_f32(0.0f), value);
            return vbslq_f32(mask, neg, value);
        }

        SIMD_INLINE float32x4_t Logarithm(float32x4_t value)
        {
            return vmulq_f32(vdupq_n_f32(0.693147181f), Detail::Log2(value));
        }

        template<int iter> SIMD_INLINE float32x4_t Mish(float32x4_t value, float32x4_t threshold)
        {
            float32x4_t _1 = vdupq_n_f32(1.0f);
            float32x4_t mish = vaddq_f32(Exponent(value), _1);
            mish = Fmadd<true>(mish, mish, _1);
            mish = vmulq_f32(value, vsubq_f32(_1, Div<iter>(vdupq_n_f32(2.0f), mish)));
            return vbslq_f32(vcgtq_f32(threshold, value), mish, value);
        }

        template<int iter> SIMD_INLINE float32x4_t Softplus(float32x4_t value, float32x4_t beta, float32x4_t threshold)
        {
            float32x4_t exp = Exponent(vmulq_f32(value, beta));
            float32x4_t log = Logarithm(vaddq_f32(vdupq_n_f32(1.0f), exp));
            uint32x4_t mask = vcgtq_f32(threshold, value);
            return vbslq_f32(mask, Div<iter>(log, beta), value);
        }

        template<int iter> SIMD_INLINE float32x4_t Tanh(float32x4_t value)
        {
            float32x4_t _1 = vdupq_n_f32(1.0f);
            float32x4_t exp = Detail::Exp2(vmulq_f32(vdupq_n_f32(2.88539008f), value));
            return Div<iter>(vsubq_f32(exp, _1), vaddq_f32(_1, exp));
        }
    }
#endif //SIMD_NEON_ENABLE
}

#endif//__SimdExp_h__