1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __SimdResizerCommon_h__
#define __SimdResizerCommon_h__
#include "Simd/SimdLoad.h"
#include "Simd/SimdUpdate.h"
namespace Simd
{
namespace Base
{
template<int N, int F, int L> SIMD_INLINE int32_t CubicSumX(const uint8_t* src, const int8_t* ax)
{
return (int)ax[0] * src[F * N] + (int)ax[1] * src[0 * N] + (int)ax[2] * src[1 * N] + (int)ax[3] * src[L * N];
}
template<int N, int F, int L> SIMD_INLINE void BicubicInt(const uint8_t* src0, const uint8_t* src1,
const uint8_t* src2, const uint8_t* src3, size_t sx, const int8_t* ax, const int32_t* ay, uint8_t* dst)
{
for (size_t c = 0; c < N; ++c)
{
int32_t rs0 = CubicSumX<N, F, L>(src0 + sx + c, ax);
int32_t rs1 = CubicSumX<N, F, L>(src1 + sx + c, ax);
int32_t rs2 = CubicSumX<N, F, L>(src2 + sx + c, ax);
int32_t rs3 = CubicSumX<N, F, L>(src3 + sx + c, ax);
int32_t sum = ay[0] * rs0 + ay[1] * rs1 + ay[2] * rs2 + ay[3] * rs3;
dst[c] = Base::RestrictRange((sum + Base::BICUBIC_ROUND) >> Base::BICUBIC_SHIFT, 0, 255);
}
}
template<int N, int F, int L> SIMD_INLINE void PixelCubicSumX(const uint8_t* src, const int8_t* ax, int32_t* dst)
{
for (size_t c = 0; c < N; ++c)
dst[c] = CubicSumX<N, F, L>(src + c, ax);
}
//---------------------------------------------------------------------------------------------
template<size_t N> SIMD_INLINE void ResizerByteAreaSet(const int32_t* src, int32_t value, int32_t* dst)
{
for (size_t c = 0; c < N; ++c)
dst[c] = src[c] * value;
}
template<size_t N> SIMD_INLINE void ResizerByteAreaAdd(const int32_t* src, int32_t value, int32_t* dst)
{
for (size_t c = 0; c < N; ++c)
dst[c] += src[c] * value;
}
template<size_t N> SIMD_INLINE void ResizerByteAreaRes(const int32_t* src, uint8_t* dst)
{
for (size_t c = 0; c < N; ++c)
dst[c] = uint8_t((src[c] + Base::AREA_ROUND) >> Base::AREA_SHIFT);
}
template<size_t N> SIMD_INLINE void ResizerByteAreaResult(const int32_t* src, size_t count, int32_t curr, int32_t zero, int32_t next, uint8_t* dst)
{
int32_t sum[N];
ResizerByteAreaSet<N>(src, curr, sum);
for (size_t i = 0; i < count; ++i)
src += N, ResizerByteAreaAdd<N>(src, zero, sum);
ResizerByteAreaAdd<N>(src, -next, sum);
ResizerByteAreaRes<N>(sum, dst);
}
//---------------------------------------------------------------------------------------------
template<size_t N, size_t S, UpdateType update> SIMD_INLINE void ResizerByteArea2x2RowUpdate(const uint8_t* src0, const uint8_t* src1, int32_t val, int32_t* dst)
{
for (size_t c = 0; c < N; ++c)
Update<update>(dst + c, ((int)src0[0 + c] + (int)src0[S + c] + (int)src1[0 + c] + (int)src1[S + c]) * val);
}
}
#ifdef SIMD_SSE41_ENABLE
namespace Sse41
{
const __m128i RSB_1_0 = SIMD_MM_SETR_EPI8(0x0, 0x1, -1, -1, 0x4, 0x5, -1, -1, 0x8, 0x9, -1, -1, 0xC, 0xD, -1, -1);
const __m128i RSB_1_1 = SIMD_MM_SETR_EPI8(0x2, 0x3, -1, -1, 0x6, 0x7, -1, -1, 0xA, 0xB, -1, -1, 0xE, 0xF, -1, -1);
SIMD_INLINE __m128 BilColS1(const uint16_t* src, const int32_t* idx, __m128 fx0, __m128 fx1)
{
__m128i s = _mm_setr_epi32(
*(uint32_t*)(src + idx[0]), *(uint32_t*)(src + idx[1]),
*(uint32_t*)(src + idx[2]), *(uint32_t*)(src + idx[3]));
__m128 m0 = _mm_mul_ps(fx0, _mm_cvtepi32_ps(_mm_shuffle_epi8(s, RSB_1_0)));
__m128 m1 = _mm_mul_ps(fx1, _mm_cvtepi32_ps(_mm_shuffle_epi8(s, RSB_1_1)));
return _mm_add_ps(m0, m1);
}
const __m128i RSB_2_0 = SIMD_MM_SETR_EPI8(0x0, 0x1, -1, -1, 0x2, 0x3, -1, -1, 0x8, 0x9, -1, -1, 0xA, 0xB, -1, -1);
const __m128i RSB_2_1 = SIMD_MM_SETR_EPI8(0x4, 0x5, -1, -1, 0x6, 0x7, -1, -1, 0xC, 0xD, -1, -1, 0xE, 0xF, -1, -1);
SIMD_INLINE __m128 BilColS2(const uint16_t* src, const int32_t* idx, __m128 fx0, __m128 fx1)
{
__m128i s = Load((__m128i*)(src + idx[0]), (__m128i*)(src + idx[2]));
__m128 m0 = _mm_mul_ps(fx0, _mm_cvtepi32_ps(_mm_shuffle_epi8(s, RSB_2_0)));
__m128 m1 = _mm_mul_ps(fx1, _mm_cvtepi32_ps(_mm_shuffle_epi8(s, RSB_2_1)));
return _mm_add_ps(m0, m1);
}
const __m128i RSB_3_0 = SIMD_MM_SETR_EPI8(0x0, 0x1, -1, -1, 0x2, 0x3, -1, -1, 0x4, 0x5, -1, -1, -1, -1, -1, -1);
const __m128i RSB_3_1 = SIMD_MM_SETR_EPI8(0x6, 0x7, -1, -1, 0x8, 0x9, -1, -1, 0xA, 0xB, -1, -1, -1, -1, -1, -1);
SIMD_INLINE __m128 BilColS3(const uint16_t* src, __m128 fx0, __m128 fx1)
{
__m128i s = _mm_loadu_si128((__m128i*)src);
__m128 m0 = _mm_mul_ps(fx0, _mm_cvtepi32_ps(_mm_shuffle_epi8(s, RSB_3_0)));
__m128 m1 = _mm_mul_ps(fx1, _mm_cvtepi32_ps(_mm_shuffle_epi8(s, RSB_3_1)));
return _mm_add_ps(m0, m1);
}
const __m128i RSB_4_0 = SIMD_MM_SETR_EPI8(0x0, 0x1, -1, -1, 0x2, 0x3, -1, -1, 0x4, 0x5, -1, -1, 0x6, 0x7, -1, -1);
const __m128i RSB_4_1 = SIMD_MM_SETR_EPI8(0x8, 0x9, -1, -1, 0xA, 0xB, -1, -1, 0xC, 0xD, -1, -1, 0xE, 0xF, -1, -1);
SIMD_INLINE __m128 BilColS4(const uint16_t* src, __m128 fx0, __m128 fx1)
{
__m128i s = _mm_loadu_si128((__m128i*)src);
__m128 m0 = _mm_mul_ps(fx0, _mm_cvtepi32_ps(_mm_shuffle_epi8(s, RSB_4_0)));
__m128 m1 = _mm_mul_ps(fx1, _mm_cvtepi32_ps(_mm_shuffle_epi8(s, RSB_4_1)));
return _mm_add_ps(m0, m1);
}
const __m128i RSB_3_P = SIMD_MM_SETR_EPI8(0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, -1, -1, -1, -1);
//---------------------------------------------------------------------------------------------
template<size_t N> SIMD_INLINE void ResizerByteAreaResult(const int32_t* src, size_t count, int32_t curr, int32_t zero, int32_t next, uint8_t* dst)
{
int32_t sum[N];
Base::ResizerByteAreaSet<N>(src, curr, sum);
for (size_t i = 0; i < count; ++i)
src += N, Base::ResizerByteAreaAdd<N>(src, zero, sum);
Base::ResizerByteAreaAdd<N>(src, -next, sum);
Base::ResizerByteAreaRes<N>(sum, dst);
}
template<size_t N> SIMD_INLINE void ResizerByteAreaResult34(const int32_t* src, size_t count, int32_t curr, int32_t zero, int32_t next, uint8_t* dst)
{
__m128i sum = _mm_mullo_epi32(_mm_loadu_si128((__m128i*)src), _mm_set1_epi32(curr));
for (size_t i = 0; i < count; ++i)
src += N, sum = _mm_add_epi32(sum, _mm_mullo_epi32(_mm_loadu_si128((__m128i*)src), _mm_set1_epi32(zero)));
sum = _mm_add_epi32(sum, _mm_mullo_epi32(_mm_loadu_si128((__m128i*)src), _mm_set1_epi32(-next)));
__m128i res = _mm_srai_epi32(_mm_add_epi32(sum, _mm_set1_epi32(Base::AREA_ROUND)), Base::AREA_SHIFT);
*(int32_t*)dst = _mm_cvtsi128_si32(_mm_packus_epi16(_mm_packus_epi32(res, K_ZERO), K_ZERO));
}
template<> SIMD_INLINE void ResizerByteAreaResult<4>(const int32_t* src, size_t count, int32_t curr, int32_t zero, int32_t next, uint8_t* dst)
{
ResizerByteAreaResult34<4>(src, count, curr, zero, next, dst);
}
template<> SIMD_INLINE void ResizerByteAreaResult<3>(const int32_t* src, size_t count, int32_t curr, int32_t zero, int32_t next, uint8_t* dst)
{
ResizerByteAreaResult34<3>(src, count, curr, zero, next, dst);
}
}
#endif //SIMD_SSE41_ENABLE
#ifdef SIMD_AVX2_ENABLE
namespace Avx2
{
template <class Idx> SIMD_INLINE void ResizerByteBilinearLoadGrayInterpolated(const uint8_t * src, const Idx & index, const uint8_t * alpha, uint8_t * dst)
{
__m256i _src = _mm256_loadu_si256((__m256i*)(src + index.src));
__m256i _shuffle = _mm256_loadu_si256((__m256i*)&index.shuffle);
__m256i _alpha = _mm256_loadu_si256((__m256i*)(alpha + index.dst));
_mm256_storeu_si256((__m256i*)(dst + index.dst), _mm256_maddubs_epi16(Avx2::Shuffle(_src, _shuffle), _alpha));
}
}
#endif //SIMD_AVX2_ENABLE
}
#endif//__SimdResizerCommon_h__
|