1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
/*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Simd/SimdMemory.h"
#include "Simd/SimdBase.h"
#include "Simd/SimdStore.h"
namespace Simd
{
#ifdef SIMD_SSE41_ENABLE
namespace Sse41
{
void ImageErosion(uint8_t * img, const uint8_t * buff, size_t width, size_t height, SimdImageConnexityType connexityType)
{
const size_t buffWidth = width + 2;
const size_t alignedSize = Simd::AlignLo(width, A);
if (connexityType == SimdImageConnexity4) {
size_t offset[5] = {1, buffWidth, buffWidth + 1, buffWidth + 2, buffWidth * 2 + 1};
for (size_t i = 0; i < height; i++) {
const uint8_t *ptr_buff = buff + i * buffWidth;
uint8_t *ptr_img = img + i * width;
for (size_t j = 0; j < alignedSize; j += A) {
__m128i m = _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[0]));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[1])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[2])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[3])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[4])));
_mm_storeu_si128(reinterpret_cast<__m128i *>(ptr_img + j), m);
}
if (alignedSize != width) {
__m128i m = _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[0]));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[1])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[2])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[3])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[4])));
_mm_storeu_si128(reinterpret_cast<__m128i *>(ptr_img + (width - A)), m);
}
}
} else {
size_t offset[9] = { 0,
1,
2,
buffWidth,
buffWidth + 1,
buffWidth + 2,
buffWidth * 2,
buffWidth * 2 + 1,
buffWidth * 2 + 2 };
for (size_t i = 0; i < height; i++) {
const uint8_t *ptr_buff = buff + i * buffWidth;
uint8_t *ptr_img = img + i * width;
for (size_t j = 0; j < alignedSize; j += A) {
__m128i m = _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[0]));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[1])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[2])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[3])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[4])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[5])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[6])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[7])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[8])));
_mm_storeu_si128(reinterpret_cast<__m128i *>(ptr_img + j), m);
}
if (alignedSize != width) {
__m128i m = _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[0]));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[1])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[2])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[3])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[4])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[5])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[6])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[7])));
m = _mm_min_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[8])));
_mm_storeu_si128(reinterpret_cast<__m128i *>(ptr_img + (width - A)), m);
}
}
}
}
void ImageDilatation(uint8_t * img, const uint8_t * buff, size_t width, size_t height, SimdImageConnexityType connexityType)
{
const size_t buffWidth = width + 2;
const size_t alignedSize = Simd::AlignLo(width, A);
if (connexityType == SimdImageConnexity4) {
size_t offset[5] = {1, buffWidth, buffWidth + 1, buffWidth + 2, buffWidth * 2 + 1};
for (size_t i = 0; i < height; i++) {
const uint8_t *ptr_buff = buff + i * buffWidth;
uint8_t *ptr_img = img + i * width;
for (size_t j = 0; j < alignedSize; j += A) {
__m128i m = _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[0]));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[1])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[2])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[3])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[4])));
_mm_storeu_si128(reinterpret_cast<__m128i *>(ptr_img + j), m);
}
if (alignedSize != width) {
__m128i m = _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[0]));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[1])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[2])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[3])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[4])));
_mm_storeu_si128(reinterpret_cast<__m128i *>(ptr_img + (width - A)), m);
}
}
} else {
size_t offset[9] = { 0,
1,
2,
buffWidth,
buffWidth + 1,
buffWidth + 2,
buffWidth * 2,
buffWidth * 2 + 1,
buffWidth * 2 + 2 };
for (size_t i = 0; i < height; i++) {
const uint8_t *ptr_buff = buff + i * buffWidth;
uint8_t *ptr_img = img + i * width;
for (size_t j = 0; j < alignedSize; j += A) {
__m128i m = _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[0]));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[1])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[2])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[3])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[4])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[5])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[6])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[7])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + j + offset[8])));
_mm_storeu_si128(reinterpret_cast<__m128i *>(ptr_img + j), m);
}
if (alignedSize != width) {
__m128i m = _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[0]));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[1])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[2])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[3])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[4])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[5])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[6])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[7])));
m = _mm_max_epu8(m, _mm_loadu_si128(reinterpret_cast<const __m128i *>(ptr_buff + (width - A) + offset[8])));
_mm_storeu_si128(reinterpret_cast<__m128i *>(ptr_img + (width - A)), m);
}
}
}
}
double SimdVectorSum(const double * vec, size_t size)
{
__m128d v_sum1 = _mm_setzero_pd(), v_sum2 = _mm_setzero_pd();
size_t i = 0;
for (; i <= size - 4; i += 4) {
v_sum1 = _mm_add_pd(_mm_loadu_pd(vec + i), v_sum1);
v_sum2 = _mm_add_pd(_mm_loadu_pd(vec + i + 2), v_sum2);
}
__m128d v_sum = _mm_add_pd(v_sum1, v_sum2);
double res[2];
_mm_storeu_pd(res, v_sum);
double sum = res[0] + res[1];
// tail processing
for (; i < size; i++) {
sum += vec[i];
}
return sum;
}
double SimdVectorSumSquare(const double * vec, size_t size)
{
double sum_square = 0.0;
size_t i = 0;
__m128d v_mul1, v_mul2;
__m128d v_sum = _mm_setzero_pd();
for (; i <= size - 4; i += 4) {
v_mul1 = _mm_mul_pd(_mm_loadu_pd(vec + i), _mm_loadu_pd(vec + i));
v_mul2 = _mm_mul_pd(_mm_loadu_pd(vec + i + 2), _mm_loadu_pd(vec + i + 2));
v_sum = _mm_add_pd(v_mul1, v_sum);
v_sum = _mm_add_pd(v_mul2, v_sum);
}
double res[2];
_mm_storeu_pd(res, v_sum);
sum_square = res[0] + res[1];
for (; i < size; i++) {
sum_square += vec[i] * vec[i];
}
return sum_square;
}
double SimdVectorStdev(const double * vec, size_t size, bool useBesselCorrection)
{
double mean_value = SimdVectorSum(vec, size) / size;
double sum_squared_diff = 0.0;
size_t i = 0;
__m128d v_sub, v_mul, v_sum = _mm_setzero_pd();
__m128d v_mean = _mm_set1_pd(mean_value);
for (; i <= size - 4; i += 4) {
v_sub = _mm_sub_pd(_mm_loadu_pd(vec + i), v_mean);
v_mul = _mm_mul_pd(v_sub, v_sub);
v_sum = _mm_add_pd(v_mul, v_sum);
v_sub = _mm_sub_pd(_mm_loadu_pd(vec + i + 2), v_mean);
v_mul = _mm_mul_pd(v_sub, v_sub);
v_sum = _mm_add_pd(v_mul, v_sum);
}
double res[2];
_mm_storeu_pd(res, v_sum);
sum_squared_diff = res[0] + res[1];
for (; i < size; i++) {
sum_squared_diff += (vec[i] - mean_value) * (vec[i] - mean_value);
}
double divisor = (double)size;
if (useBesselCorrection) {
divisor = divisor - 1;
}
return std::sqrt(sum_squared_diff / divisor);
}
void SimdVectorHadamard(const double * src1, const double * src2, size_t size, double * dst)
{
size_t i = 0;
for (; i <= size - 2; i += 2) {
__m128d vout = _mm_mul_pd(_mm_loadu_pd(src1 + i), _mm_loadu_pd(src2 + i));
_mm_storeu_pd(dst + i, vout);
}
for (; i < size; i++) {
dst[i] = src1[i] * src2[i];
}
}
void SimdMatMulTwist(const double * mat, size_t rows, const double * twist, double * dst)
{
// Transpose twist matrix
double transpose[36];
for (size_t i = 0; i < 6; i++) {
for (size_t j = 0; j < 6; j++) {
transpose[i*6 + j] = twist[j*6 + i];
}
}
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < 6; j++) {
__m128d v_mul = _mm_setzero_pd();
for (size_t k = 0; k < 6; k += 2) {
v_mul = _mm_add_pd(v_mul, _mm_mul_pd(_mm_loadu_pd(&mat[i*6 + k]), _mm_loadu_pd(&transpose[j*6 + k])));
}
double v_tmp[2];
_mm_storeu_pd(v_tmp, v_mul);
dst[i*6 + j] = v_tmp[0] + v_tmp[1];
}
}
}
void SimdNormalizedCorrelation(const double * img1, double mean1, const double * img2, double mean2, size_t size,
double& a2, double& b2, double& ab)
{
const __m128d v_mean_a = _mm_set1_pd(mean1);
const __m128d v_mean_b = _mm_set1_pd(mean2);
__m128d v_ab = _mm_setzero_pd();
__m128d v_a2 = _mm_setzero_pd();
__m128d v_b2 = _mm_setzero_pd();
size_t cpt = 0;
for (; cpt <= size - 2; cpt += 2, img1 += 2, img2 += 2) {
const __m128d v1 = _mm_loadu_pd(img1);
const __m128d v2 = _mm_loadu_pd(img2);
const __m128d norm_a = _mm_sub_pd(v1, v_mean_a);
const __m128d norm_b = _mm_sub_pd(v2, v_mean_b);
v_ab = _mm_add_pd(v_ab, _mm_mul_pd(norm_a, norm_b));
v_a2 = _mm_add_pd(v_a2, _mm_mul_pd(norm_a, norm_a));
v_b2 = _mm_add_pd(v_b2, _mm_mul_pd(norm_b, norm_b));
}
double v_res_ab[2], v_res_a2[2], v_res_b2[2];
_mm_storeu_pd(v_res_ab, v_ab);
_mm_storeu_pd(v_res_a2, v_a2);
_mm_storeu_pd(v_res_b2, v_b2);
ab = v_res_ab[0] + v_res_ab[1];
a2 = v_res_a2[0] + v_res_a2[1];
b2 = v_res_b2[0] + v_res_b2[1];
for (; cpt < size; cpt++) {
ab += (img1[cpt] - mean1) * (img2[cpt] - mean2);
a2 += (img1[cpt] - mean1) * (img1[cpt] - mean1);
b2 += (img2[cpt] - mean2) * (img2[cpt] - mean2);
}
}
void SimdNormalizedCorrelation2(const double * img1_, size_t width1, const double * img2,
size_t width2, size_t height2, size_t i0, size_t j0, double& ab)
{
const double *img1 = img1_;
__m128d v_ab = _mm_setzero_pd();
for (size_t i = 0; i < height2; i++) {
size_t j = 0;
img1 = &img1_[(i0 + i) * width1 + j0];
for (; j <= width2 - 2; j += 2, img1 += 2, img2 += 2) {
const __m128d v1 = _mm_loadu_pd(img1);
const __m128d v2 = _mm_loadu_pd(img2);
v_ab = _mm_add_pd(v_ab, _mm_mul_pd(v1, v2));
}
for (; j < width2; j++) {
ab += img1[(i0 + i)*width1 + j0 + j] * img2[i*width2 + j];
}
}
double v_res_ab[2];
_mm_storeu_pd(v_res_ab, v_ab);
ab += v_res_ab[0] + v_res_ab[1];
}
void SimdRemap(const unsigned char * src, size_t channels, size_t width, size_t height, size_t offset,
const int * mapU, const int * mapV, const float * mapDu, const float * mapDv, unsigned char * dst)
{
for (size_t j = 0; j < width; j++) {
int u_round = mapU[offset + j];
int v_round = mapV[offset + j];
const __m128 vdu = _mm_set1_ps(mapDu[offset + j]);
const __m128 vdv = _mm_set1_ps(mapDv[offset + j]);
if (0 <= u_round && 0 <= v_round && u_round < static_cast<int>(width) - 1
&& v_round < static_cast<int>(height) - 1) {
#define VLERP(va, vb, vt) _mm_add_ps(va, _mm_mul_ps(_mm_sub_ps(vb, va), vt))
// process interpolation
const __m128 vdata1 =
_mm_set_ps(static_cast<float>(src[(v_round*width + u_round)*channels + 3]), static_cast<float>(src[(v_round*width + u_round)*channels + 2]),
static_cast<float>(src[(v_round*width + u_round)*channels + 1]), static_cast<float>(src[(v_round*width + u_round)*channels] + 0));
const __m128 vdata2 =
_mm_set_ps(static_cast<float>(src[(v_round*width + u_round + 1)*channels + 3]), static_cast<float>(src[(v_round*width + u_round + 1)*channels + 2]),
static_cast<float>(src[(v_round*width + u_round + 1)*channels + 1]), static_cast<float>(src[(v_round*width + u_round + 1)*channels + 0]));
const __m128 vdata3 =
_mm_set_ps(static_cast<float>(src[((v_round + 1)*width + u_round)*channels + 3]), static_cast<float>(src[((v_round + 1)*width + u_round)*channels + 2]),
static_cast<float>(src[((v_round + 1)*width + u_round)*channels + 1]), static_cast<float>(src[((v_round + 1)*width + u_round)*channels + 0]));
const __m128 vdata4 = _mm_set_ps(
static_cast<float>(src[((v_round + 1)*width + u_round + 1)*channels + 3]), static_cast<float>(src[((v_round + 1)*width + u_round + 1)*channels + 2]),
static_cast<float>(src[((v_round + 1)*width + u_round + 1)*channels + 1]), static_cast<float>(src[((v_round + 1)*width + u_round + 1)*channels + 0]));
const __m128 vcol0 = VLERP(vdata1, vdata2, vdu);
const __m128 vcol1 = VLERP(vdata3, vdata4, vdu);
const __m128 vvalue = VLERP(vcol0, vcol1, vdv);
#undef VLERP
float values[4];
_mm_storeu_ps(values, vvalue);
dst[(offset + j)*channels + 0] = static_cast<unsigned char>(values[0]);
dst[(offset + j)*channels + 1] = static_cast<unsigned char>(values[1]);
dst[(offset + j)*channels + 2] = static_cast<unsigned char>(values[2]);
dst[(offset + j)*channels + 3] = static_cast<unsigned char>(values[3]);
} else {
for (size_t c = 0; c < channels; c++) {
dst[(offset + j)*channels + c] = 0;
}
}
}
}
void SimdComputeJtR(const double * J, size_t rows, const double * R, double * dst)
{
__m128d v_JTR_0_1 = _mm_setzero_pd();
__m128d v_JTR_2_3 = _mm_setzero_pd();
__m128d v_JTR_4_5 = _mm_setzero_pd();
for (size_t i = 0; i < rows; i++) {
const __m128d v_error = _mm_set1_pd(R[i]);
__m128d v_interaction = _mm_loadu_pd(&J[i*6]);
v_JTR_0_1 = _mm_add_pd(v_JTR_0_1, _mm_mul_pd(v_interaction, v_error));
v_interaction = _mm_loadu_pd(&J[i*6 + 2]);
v_JTR_2_3 = _mm_add_pd(v_JTR_2_3, _mm_mul_pd(v_interaction, v_error));
v_interaction = _mm_loadu_pd(&J[i*6 + 4]);
v_JTR_4_5 = _mm_add_pd(v_JTR_4_5, _mm_mul_pd(v_interaction, v_error));
}
_mm_storeu_pd(dst, v_JTR_0_1);
_mm_storeu_pd(dst + 2, v_JTR_2_3);
_mm_storeu_pd(dst + 4, v_JTR_4_5);
}
void SimdImageDifference(const unsigned char * img1, const unsigned char * img2, size_t size, unsigned char * imgDiff)
{
const __m128i mask1 = _mm_set_epi8(-1, 14, -1, 12, -1, 10, -1, 8, -1, 6, -1, 4, -1, 2, -1, 0);
const __m128i mask2 = _mm_set_epi8(-1, 15, -1, 13, -1, 11, -1, 9, -1, 7, -1, 5, -1, 3, -1, 1);
const __m128i mask_out2 = _mm_set_epi8(14, -1, 12, -1, 10, -1, 8, -1, 6, -1, 4, -1, 2, -1, 0, -1);
size_t i = 0;
for (; i <= size-16; i+= 16) {
const __m128i vdata1 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(img1 + i));
const __m128i vdata2 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(img2 + i));
__m128i vdata1_reorg = _mm_shuffle_epi8(vdata1, mask1);
__m128i vdata2_reorg = _mm_shuffle_epi8(vdata2, mask1);
const __m128i vshift = _mm_set1_epi16(128);
__m128i vdata_diff = _mm_add_epi16(_mm_sub_epi16(vdata1_reorg, vdata2_reorg), vshift);
const __m128i v255 = _mm_set1_epi16(255);
const __m128i vzero = _mm_setzero_si128();
const __m128i vdata_diff_min_max1 = _mm_max_epi16(_mm_min_epi16(vdata_diff, v255), vzero);
vdata1_reorg = _mm_shuffle_epi8(vdata1, mask2);
vdata2_reorg = _mm_shuffle_epi8(vdata2, mask2);
vdata_diff = _mm_add_epi16(_mm_sub_epi16(vdata1_reorg, vdata2_reorg), vshift);
const __m128i vdata_diff_min_max2 = _mm_max_epi16(_mm_min_epi16(vdata_diff, v255), vzero);
_mm_storeu_si128(reinterpret_cast<__m128i *>(imgDiff + i), _mm_or_si128(_mm_shuffle_epi8(vdata_diff_min_max1, mask1),
_mm_shuffle_epi8(vdata_diff_min_max2, mask_out2)));
}
if (i < size) {
Base::SimdImageDifference(img1 + i, img2 + i, size - i, imgDiff + i);
}
}
}
#endif// SIMD_SSE41_ENABLE
}
|