File: SimdSse41ImageLoadPng.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (1806 lines) | stat: -rw-r--r-- 78,475 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Simd/SimdImageLoad.h"
#include "Simd/SimdArray.h"
#include "Simd/SimdCpu.h"
#include "Simd/SimdBase.h"
#include "Simd/SimdSse41.h"

namespace Simd
{
#if defined(SIMD_SSE41_ENABLE) 
    namespace Sse41
    {
        typedef unsigned char png_uc;
        typedef unsigned short png_us;

        typedef uint16_t png__uint16;
        typedef uint32_t png__uint32;

#define png_inline SIMD_INLINE
#define PNG_ASSERT assert
#define PNG_MALLOC(sz)           malloc(sz)
#define PNG_REALLOC(p,newsz)     realloc(p,newsz)
#define PNG_FREE(p)              free(p)
#define PNG_REALLOC_SIZED(p,oldsz,newsz) PNG_REALLOC(p,newsz)
#define STBIDEF static

#ifdef _MSC_VER
#define PNG_NOTUSED(v)  (void)(v)
#else
#define PNG_NOTUSED(v)  (void)sizeof(v)
#endif

#define PNG__BYTECAST(x)  ((png_uc) ((x) & 255))  // truncate int to byte without warnings
#define PNG_MAX_DIMENSIONS (1 << 24)

        static int png__err(const char* str, const char* stub)
        {
            return 0;
        }

#define png__errpuc(x,y)  ((unsigned char *)(size_t) (png__err(x,y)?NULL:NULL))

        static void* png__malloc(size_t size)
        {
            return PNG_MALLOC(size);
        }

        typedef struct
        {
            int      (*read)  (void* user, char* data, int size);   // fill 'data' with 'size' bytes.  return number of bytes actually read
            void     (*skip)  (void* user, int n);                 // skip the next 'n' bytes, or 'unget' the last -n bytes if negative
            int      (*eof)   (void* user);                       // returns nonzero if we are at end of file/data
        } png_io_callbacks;

        typedef struct
        {
            png__uint32 img_x, img_y;
            int img_n, img_out_n;

            png_io_callbacks io;
            void* io_user_data;

            int read_from_callbacks;
            int buflen;
            png_uc buffer_start[128];
            int callback_already_read;

            png_uc* img_buffer, * img_buffer_end;
            png_uc* img_buffer_original, * img_buffer_original_end;
        } png__context;

        typedef struct
        {
            int bits_per_channel;
            int num_channels;
            int channel_order;
        } png__result_info;

        enum
        {
            PNG__SCAN_load = 0,
            PNG__SCAN_type,
            PNG__SCAN_header
        };

        enum
        {
            PNG_ORDER_RGB,
            PNG_ORDER_BGR
        };

        static void png__rewind(png__context* s)
        {
            // conceptually rewind SHOULD rewind to the beginning of the stream,
            // but we just rewind to the beginning of the initial buffer, because
            // we only use it after doing 'test', which only ever looks at at most 92 bytes
            s->img_buffer = s->img_buffer_original;
            s->img_buffer_end = s->img_buffer_original_end;
        }

        static void png__refill_buffer(png__context* s)
        {
            int n = (s->io.read)(s->io_user_data, (char*)s->buffer_start, s->buflen);
            s->callback_already_read += (int)(s->img_buffer - s->img_buffer_original);
            if (n == 0) {
                // at end of file, treat same as if from memory, but need to handle case
                // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file
                s->read_from_callbacks = 0;
                s->img_buffer = s->buffer_start;
                s->img_buffer_end = s->buffer_start + 1;
                *s->img_buffer = 0;
            }
            else {
                s->img_buffer = s->buffer_start;
                s->img_buffer_end = s->buffer_start + n;
            }
        }

        png_inline static png_uc png__get8(png__context* s)
        {
            if (s->img_buffer < s->img_buffer_end)
                return *s->img_buffer++;
            if (s->read_from_callbacks) {
                png__refill_buffer(s);
                return *s->img_buffer++;
            }
            return 0;
        }

        static int png__get16be(png__context* s)
        {
            int z = png__get8(s);
            return (z << 8) + png__get8(s);
        }

        static png__uint32 png__get32be(png__context* s)
        {
            png__uint32 z = png__get16be(s);
            return (z << 16) + png__get16be(s);
        }

        png_inline static int png__at_eof(png__context* s)
        {
            if (s->io.read) {
                if (!(s->io.eof)(s->io_user_data)) return 0;
                // if feof() is true, check if buffer = end
                // special case: we've only got the special 0 character at the end
                if (s->read_from_callbacks == 0) return 1;
            }

            return s->img_buffer >= s->img_buffer_end;
        }

        static void png__skip(png__context* s, int n)
        {
            if (n == 0) return;  // already there!
            if (n < 0) {
                s->img_buffer = s->img_buffer_end;
                return;
            }
            if (s->io.read) {
                int blen = (int)(s->img_buffer_end - s->img_buffer);
                if (blen < n) {
                    s->img_buffer = s->img_buffer_end;
                    (s->io.skip)(s->io_user_data, n - blen);
                    return;
                }
            }
            s->img_buffer += n;
        }

        static int png__getn(png__context* s, png_uc* buffer, int n)
        {
            if (s->io.read) {
                int blen = (int)(s->img_buffer_end - s->img_buffer);
                if (blen < n) {
                    int res, count;

                    memcpy(buffer, s->img_buffer, blen);

                    count = (s->io.read)(s->io_user_data, (char*)buffer + blen, n - blen);
                    res = (count == (n - blen));
                    s->img_buffer = s->img_buffer_end;
                    return res;
                }
            }

            if (s->img_buffer + n <= s->img_buffer_end) {
                memcpy(buffer, s->img_buffer, n);
                s->img_buffer += n;
                return 1;
            }
            else
                return 0;
        }

        static int png__addsizes_valid(int a, int b)
        {
            if (b < 0) return 0;
            // now 0 <= b <= INT_MAX, hence also
            // 0 <= INT_MAX - b <= INTMAX.
            // And "a + b <= INT_MAX" (which might overflow) is the
            // same as a <= INT_MAX - b (no overflow)
            return a <= INT_MAX - b;
        }

        // returns 1 if the product is valid, 0 on overflow.
        // negative factors are considered invalid.
        static int png__mul2sizes_valid(int a, int b)
        {
            if (a < 0 || b < 0) return 0;
            if (b == 0) return 1; // mul-by-0 is always safe
            // portable way to check for no overflows in a*b
            return a <= INT_MAX / b;
        }

        // returns 1 if "a*b + add" has no negative terms/factors and doesn't overflow
        static int png__mad2sizes_valid(int a, int b, int add)
        {
            return png__mul2sizes_valid(a, b) && png__addsizes_valid(a * b, add);
        }

        // returns 1 if "a*b*c + add" has no negative terms/factors and doesn't overflow
        static int png__mad3sizes_valid(int a, int b, int c, int add)
        {
            return png__mul2sizes_valid(a, b) && png__mul2sizes_valid(a * b, c) &&
                png__addsizes_valid(a * b * c, add);
        }

        // returns 1 if "a*b*c*d + add" has no negative terms/factors and doesn't overflow
        static int png__mad4sizes_valid(int a, int b, int c, int d, int add)
        {
            return png__mul2sizes_valid(a, b) && png__mul2sizes_valid(a * b, c) &&
                png__mul2sizes_valid(a * b * c, d) && png__addsizes_valid(a * b * c * d, add);
        }

        // mallocs with size overflow checking
        static void* png__malloc_mad2(int a, int b, int add)
        {
            if (!png__mad2sizes_valid(a, b, add)) return NULL;
            return png__malloc(a * b + add);
        }

        static void* png__malloc_mad3(int a, int b, int c, int add)
        {
            if (!png__mad3sizes_valid(a, b, c, add)) return NULL;
            return png__malloc(a * b * c + add);
        }

        static void* png__malloc_mad4(int a, int b, int c, int d, int add)
        {
            if (!png__mad4sizes_valid(a, b, c, d, add)) return NULL;
            return png__malloc(a * b * c * d + add);
        }

        static png_uc png__compute_y(int r, int g, int b)
        {
            return (png_uc)(((r * 77) + (g * 150) + (29 * b)) >> 8);
        }

        static unsigned char* png__convert_format(unsigned char* data, int img_n, int req_comp, unsigned int x, unsigned int y)
        {
            int i, j;
            unsigned char* good;

            if (req_comp == img_n) return data;
            PNG_ASSERT(req_comp >= 1 && req_comp <= 4);

            good = (unsigned char*)png__malloc_mad3(req_comp, x, y, 0);
            if (good == NULL) {
                PNG_FREE(data);
                return png__errpuc("outofmem", "Out of memory");
            }

            for (j = 0; j < (int)y; ++j) {
                unsigned char* src = data + j * x * img_n;
                unsigned char* dest = good + j * x * req_comp;

#define PNG__COMBO(a,b)  ((a)*8+(b))
#define PNG__CASE(a,b)   case PNG__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
                // convert source image with img_n components to one with req_comp components;
                // avoid switch per pixel, so use switch per scanline and massive macros
                switch (PNG__COMBO(img_n, req_comp)) {
                    PNG__CASE(1, 2) { dest[0] = src[0]; dest[1] = 255; } break;
                    PNG__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
                    PNG__CASE(1, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = 255; } break;
                    PNG__CASE(2, 1) { dest[0] = src[0]; } break;
                    PNG__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
                    PNG__CASE(2, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = src[1]; } break;
                    PNG__CASE(3, 4) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = 255; } break;
                    PNG__CASE(3, 1) { dest[0] = png__compute_y(src[0], src[1], src[2]); } break;
                    PNG__CASE(3, 2) { dest[0] = png__compute_y(src[0], src[1], src[2]); dest[1] = 255; } break;
                    PNG__CASE(4, 1) { dest[0] = png__compute_y(src[0], src[1], src[2]); } break;
                    PNG__CASE(4, 2) { dest[0] = png__compute_y(src[0], src[1], src[2]); dest[1] = src[3]; } break;
                    PNG__CASE(4, 3) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; } break;
                default: PNG_ASSERT(0); PNG_FREE(data); PNG_FREE(good); return png__errpuc("unsupported", "Unsupported format conversion");
                }
#undef PNG__CASE
            }

            PNG_FREE(data);
            return good;
        }

        static png__uint16 png__compute_y_16(int r, int g, int b)
        {
            return (png__uint16)(((r * 77) + (g * 150) + (29 * b)) >> 8);
        }

        static png__uint16* png__convert_format16(png__uint16* data, int img_n, int req_comp, unsigned int x, unsigned int y)
        {
            int i, j;
            png__uint16* good;

            if (req_comp == img_n) return data;
            PNG_ASSERT(req_comp >= 1 && req_comp <= 4);

            good = (png__uint16*)png__malloc(req_comp * x * y * 2);
            if (good == NULL) {
                PNG_FREE(data);
                return (png__uint16*)png__errpuc("outofmem", "Out of memory");
            }

            for (j = 0; j < (int)y; ++j) {
                png__uint16* src = data + j * x * img_n;
                png__uint16* dest = good + j * x * req_comp;

#define PNG__COMBO(a,b)  ((a)*8+(b))
#define PNG__CASE(a,b)   case PNG__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
                // convert source image with img_n components to one with req_comp components;
                // avoid switch per pixel, so use switch per scanline and massive macros
                switch (PNG__COMBO(img_n, req_comp)) {
                    PNG__CASE(1, 2) { dest[0] = src[0]; dest[1] = 0xffff; } break;
                    PNG__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
                    PNG__CASE(1, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = 0xffff; } break;
                    PNG__CASE(2, 1) { dest[0] = src[0]; } break;
                    PNG__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
                    PNG__CASE(2, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = src[1]; } break;
                    PNG__CASE(3, 4) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = 0xffff; } break;
                    PNG__CASE(3, 1) { dest[0] = png__compute_y_16(src[0], src[1], src[2]); } break;
                    PNG__CASE(3, 2) { dest[0] = png__compute_y_16(src[0], src[1], src[2]); dest[1] = 0xffff; } break;
                    PNG__CASE(4, 1) { dest[0] = png__compute_y_16(src[0], src[1], src[2]); } break;
                    PNG__CASE(4, 2) { dest[0] = png__compute_y_16(src[0], src[1], src[2]); dest[1] = src[3]; } break;
                    PNG__CASE(4, 3) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; } break;
                default: PNG_ASSERT(0); PNG_FREE(data); PNG_FREE(good); return (png__uint16*)png__errpuc("unsupported", "Unsupported format conversion");
                }
#undef PNG__CASE
            }

            PNG_FREE(data);
            return good;
        }

        // fast-way is faster to check than jpeg huffman, but slow way is slower
#define PNG__ZFAST_BITS  9 // accelerate all cases in default tables
#define PNG__ZFAST_MASK  ((1 << PNG__ZFAST_BITS) - 1)

// zlib-style huffman encoding
// (jpegs packs from left, zlib from right, so can't share code)
        typedef struct
        {
            png__uint16 fast[1 << PNG__ZFAST_BITS];
            png__uint16 firstcode[16];
            int maxcode[17];
            png__uint16 firstsymbol[16];
            png_uc  size[288];
            png__uint16 value[288];
        } png__zhuffman;

        png_inline static int png__bitreverse16(int n)
        {
            n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1);
            n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2);
            n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4);
            n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8);
            return n;
        }

        png_inline static int png__bit_reverse(int v, int bits)
        {
            PNG_ASSERT(bits <= 16);
            // to bit reverse n bits, reverse 16 and shift
            // e.g. 11 bits, bit reverse and shift away 5
            return png__bitreverse16(v) >> (16 - bits);
        }

        static int png__zbuild_huffman(png__zhuffman* z, const png_uc* sizelist, int num)
        {
            int i, k = 0;
            int code, next_code[16], sizes[17];

            // DEFLATE spec for generating codes
            memset(sizes, 0, sizeof(sizes));
            memset(z->fast, 0, sizeof(z->fast));
            for (i = 0; i < num; ++i)
                ++sizes[sizelist[i]];
            sizes[0] = 0;
            for (i = 1; i < 16; ++i)
                if (sizes[i] > (1 << i))
                    return png__err("bad sizes", "Corrupt PNG");
            code = 0;
            for (i = 1; i < 16; ++i) {
                next_code[i] = code;
                z->firstcode[i] = (png__uint16)code;
                z->firstsymbol[i] = (png__uint16)k;
                code = (code + sizes[i]);
                if (sizes[i])
                    if (code - 1 >= (1 << i)) return png__err("bad codelengths", "Corrupt PNG");
                z->maxcode[i] = code << (16 - i); // preshift for inner loop
                code <<= 1;
                k += sizes[i];
            }
            z->maxcode[16] = 0x10000; // sentinel
            for (i = 0; i < num; ++i) {
                int s = sizelist[i];
                if (s) {
                    int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s];
                    png__uint16 fastv = (png__uint16)((s << 9) | i);
                    z->size[c] = (png_uc)s;
                    z->value[c] = (png__uint16)i;
                    if (s <= PNG__ZFAST_BITS) {
                        int j = png__bit_reverse(next_code[s], s);
                        while (j < (1 << PNG__ZFAST_BITS)) {
                            z->fast[j] = fastv;
                            j += (1 << s);
                        }
                    }
                    ++next_code[s];
                }
            }
            return 1;
        }

        // zlib-from-memory implementation for PNG reading
        //    because PNG allows splitting the zlib stream arbitrarily,
        //    and it's annoying structurally to have PNG call ZLIB call PNG,
        //    we require PNG read all the IDATs and combine them into a single
        //    memory buffer

        typedef struct
        {
            png_uc* zbuffer, * zbuffer_end;
            int num_bits;
            png__uint32 code_buffer;

            char* zout;
            char* zout_start;
            char* zout_end;
            int   z_expandable;

            png__zhuffman z_length, z_distance;
        } png__zbuf;

        png_inline static int png__zeof(png__zbuf* z)
        {
            return (z->zbuffer >= z->zbuffer_end);
        }

        png_inline static png_uc png__zget8(png__zbuf* z)
        {
            return png__zeof(z) ? 0 : *z->zbuffer++;
        }

        static void png__fill_bits(png__zbuf* z)
        {
            do {
                if (z->code_buffer >= (1U << z->num_bits)) {
                    z->zbuffer = z->zbuffer_end;  /* treat this as EOF so we fail. */
                    return;
                }
                z->code_buffer |= (unsigned int)png__zget8(z) << z->num_bits;
                z->num_bits += 8;
            } while (z->num_bits <= 24);
        }

        png_inline static unsigned int png__zreceive(png__zbuf* z, int n)
        {
            unsigned int k;
            if (z->num_bits < n) png__fill_bits(z);
            k = z->code_buffer & ((1 << n) - 1);
            z->code_buffer >>= n;
            z->num_bits -= n;
            return k;
        }

        static int png__zhuffman_decode_slowpath(png__zbuf* a, png__zhuffman* z)
        {
            int b, s, k;
            // not resolved by fast table, so compute it the slow way
            // use jpeg approach, which requires MSbits at top
            k = png__bit_reverse(a->code_buffer, 16);
            for (s = PNG__ZFAST_BITS + 1; ; ++s)
                if (k < z->maxcode[s])
                    break;
            if (s >= 16) return -1; // invalid code!
            // code size is s, so:
            b = (k >> (16 - s)) - z->firstcode[s] + z->firstsymbol[s];
            if (b >= sizeof(z->size)) return -1; // some data was corrupt somewhere!
            if (z->size[b] != s) return -1;  // was originally an assert, but report failure instead.
            a->code_buffer >>= s;
            a->num_bits -= s;
            return z->value[b];
        }

        png_inline static int png__zhuffman_decode(png__zbuf* a, png__zhuffman* z)
        {
            int b, s;
            if (a->num_bits < 16) {
                if (png__zeof(a)) {
                    return -1;   /* report error for unexpected end of data. */
                }
                png__fill_bits(a);
            }
            b = z->fast[a->code_buffer & PNG__ZFAST_MASK];
            if (b) {
                s = b >> 9;
                a->code_buffer >>= s;
                a->num_bits -= s;
                return b & 511;
            }
            return png__zhuffman_decode_slowpath(a, z);
        }

        static int png__zexpand(png__zbuf* z, char* zout, int n)  // need to make room for n bytes
        {
            char* q;
            unsigned int cur, limit, old_limit;
            z->zout = zout;
            if (!z->z_expandable) return png__err("output buffer limit", "Corrupt PNG");
            cur = (unsigned int)(z->zout - z->zout_start);
            limit = old_limit = (unsigned)(z->zout_end - z->zout_start);
            if (UINT_MAX - cur < (unsigned)n) return png__err("outofmem", "Out of memory");
            while (cur + n > limit) {
                if (limit > UINT_MAX / 2) return png__err("outofmem", "Out of memory");
                limit *= 2;
            }
            q = (char*)PNG_REALLOC_SIZED(z->zout_start, old_limit, limit);
            PNG_NOTUSED(old_limit);
            if (q == NULL) return png__err("outofmem", "Out of memory");
            z->zout_start = q;
            z->zout = q + cur;
            z->zout_end = q + limit;
            return 1;
        }

        static const int png__zlength_base[31] = {
           3,4,5,6,7,8,9,10,11,13,
           15,17,19,23,27,31,35,43,51,59,
           67,83,99,115,131,163,195,227,258,0,0 };

        static const int png__zlength_extra[31] =
        { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };

        static const int png__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,
        257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0 };

        static const int png__zdist_extra[32] =
        { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };

        static int png__parse_huffman_block(png__zbuf* a)
        {
            SIMD_PERF_FUNC();

            char* zout = a->zout;
            for (;;) {
                int z = png__zhuffman_decode(a, &a->z_length);
                if (z < 256) {
                    if (z < 0) return png__err("bad huffman code", "Corrupt PNG"); // error in huffman codes
                    if (zout >= a->zout_end) {
                        if (!png__zexpand(a, zout, 1)) return 0;
                        zout = a->zout;
                    }
                    *zout++ = (char)z;
                }
                else {
                    png_uc* p;
                    int len, dist;
                    if (z == 256) {
                        a->zout = zout;
                        return 1;
                    }
                    z -= 257;
                    len = png__zlength_base[z];
                    if (png__zlength_extra[z]) len += png__zreceive(a, png__zlength_extra[z]);
                    z = png__zhuffman_decode(a, &a->z_distance);
                    if (z < 0) return png__err("bad huffman code", "Corrupt PNG");
                    dist = png__zdist_base[z];
                    if (png__zdist_extra[z]) dist += png__zreceive(a, png__zdist_extra[z]);
                    if (zout - a->zout_start < dist) return png__err("bad dist", "Corrupt PNG");
                    if (zout + len > a->zout_end) {
                        if (!png__zexpand(a, zout, len)) return 0;
                        zout = a->zout;
                    }
                    p = (png_uc*)(zout - dist);
                    if (dist == 1) { // run of one byte; common in images.
                        png_uc v = *p;
                        if (len) { do *zout++ = v; while (--len); }
                    }
                    else {
                        if (len) { do *zout++ = *p++; while (--len); }
                    }
                }
            }
        }

        static int png__compute_huffman_codes(png__zbuf* a)
        {
            static const png_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
            png__zhuffman z_codelength;
            png_uc lencodes[286 + 32 + 137];//padding for maximum single op
            png_uc codelength_sizes[19];
            int i, n;

            int hlit = png__zreceive(a, 5) + 257;
            int hdist = png__zreceive(a, 5) + 1;
            int hclen = png__zreceive(a, 4) + 4;
            int ntot = hlit + hdist;

            memset(codelength_sizes, 0, sizeof(codelength_sizes));
            for (i = 0; i < hclen; ++i) {
                int s = png__zreceive(a, 3);
                codelength_sizes[length_dezigzag[i]] = (png_uc)s;
            }
            if (!png__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0;

            n = 0;
            while (n < ntot) {
                int c = png__zhuffman_decode(a, &z_codelength);
                if (c < 0 || c >= 19) return png__err("bad codelengths", "Corrupt PNG");
                if (c < 16)
                    lencodes[n++] = (png_uc)c;
                else {
                    png_uc fill = 0;
                    if (c == 16) {
                        c = png__zreceive(a, 2) + 3;
                        if (n == 0) return png__err("bad codelengths", "Corrupt PNG");
                        fill = lencodes[n - 1];
                    }
                    else if (c == 17) {
                        c = png__zreceive(a, 3) + 3;
                    }
                    else if (c == 18) {
                        c = png__zreceive(a, 7) + 11;
                    }
                    else {
                        return png__err("bad codelengths", "Corrupt PNG");
                    }
                    if (ntot - n < c) return png__err("bad codelengths", "Corrupt PNG");
                    memset(lencodes + n, fill, c);
                    n += c;
                }
            }
            if (n != ntot) return png__err("bad codelengths", "Corrupt PNG");
            if (!png__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0;
            if (!png__zbuild_huffman(&a->z_distance, lencodes + hlit, hdist)) return 0;
            return 1;
        }

        static int png__parse_uncompressed_block(png__zbuf* a)
        {
            png_uc header[4];
            int len, nlen, k;
            if (a->num_bits & 7)
                png__zreceive(a, a->num_bits & 7); // discard
             // drain the bit-packed data into header
            k = 0;
            while (a->num_bits > 0) {
                header[k++] = (png_uc)(a->code_buffer & 255); // suppress MSVC run-time check
                a->code_buffer >>= 8;
                a->num_bits -= 8;
            }
            if (a->num_bits < 0) return png__err("zlib corrupt", "Corrupt PNG");
            // now fill header the normal way
            while (k < 4)
                header[k++] = png__zget8(a);
            len = header[1] * 256 + header[0];
            nlen = header[3] * 256 + header[2];
            if (nlen != (len ^ 0xffff)) return png__err("zlib corrupt", "Corrupt PNG");
            if (a->zbuffer + len > a->zbuffer_end) return png__err("read past buffer", "Corrupt PNG");
            if (a->zout + len > a->zout_end)
                if (!png__zexpand(a, a->zout, len)) return 0;
            memcpy(a->zout, a->zbuffer, len);
            a->zbuffer += len;
            a->zout += len;
            return 1;
        }

        static int png__parse_zlib_header(png__zbuf* a)
        {
            int cmf = png__zget8(a);
            int cm = cmf & 15;
            /* int cinfo = cmf >> 4; */
            int flg = png__zget8(a);
            if (png__zeof(a)) return png__err("bad zlib header", "Corrupt PNG"); // zlib spec
            if ((cmf * 256 + flg) % 31 != 0) return png__err("bad zlib header", "Corrupt PNG"); // zlib spec
            if (flg & 32) return png__err("no preset dict", "Corrupt PNG"); // preset dictionary not allowed in png
            if (cm != 8) return png__err("bad compression", "Corrupt PNG"); // DEFLATE required for png
            // window = 1 << (8 + cinfo)... but who cares, we fully buffer output
            return 1;
        }

        static const png_uc png__zdefault_length[288] =
        {
           8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
           8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
           8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
           8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
           8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
           9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
           9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
           9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
           7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8
        };
        static const png_uc png__zdefault_distance[32] =
        {
           5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
        };
        /*
        Init algorithm:
        {
           int i;   // use <= to match clearly with spec
           for (i=0; i <= 143; ++i)     png__zdefault_length[i]   = 8;
           for (   ; i <= 255; ++i)     png__zdefault_length[i]   = 9;
           for (   ; i <= 279; ++i)     png__zdefault_length[i]   = 7;
           for (   ; i <= 287; ++i)     png__zdefault_length[i]   = 8;

           for (i=0; i <=  31; ++i)     png__zdefault_distance[i] = 5;
        }
        */

        static int png__parse_zlib(png__zbuf* a, int parse_header)
        {
            int final, type;
            if (parse_header)
                if (!png__parse_zlib_header(a)) return 0;
            a->num_bits = 0;
            a->code_buffer = 0;
            do {
                final = png__zreceive(a, 1);
                type = png__zreceive(a, 2);
                if (type == 0) {
                    if (!png__parse_uncompressed_block(a)) return 0;
                }
                else if (type == 3) {
                    return 0;
                }
                else {
                    if (type == 1) {
                        // use fixed code lengths
                        if (!png__zbuild_huffman(&a->z_length, png__zdefault_length, 288)) return 0;
                        if (!png__zbuild_huffman(&a->z_distance, png__zdefault_distance, 32)) return 0;
                    }
                    else {
                        if (!png__compute_huffman_codes(a)) return 0;
                    }
                    if (!png__parse_huffman_block(a)) return 0;
                }
            } while (!final);
            return 1;
        }

        static int png__do_zlib(png__zbuf* a, char* obuf, int olen, int exp, int parse_header)
        {
            a->zout_start = obuf;
            a->zout = obuf;
            a->zout_end = obuf + olen;
            a->z_expandable = exp;

            return png__parse_zlib(a, parse_header);
        }

        STBIDEF char* png_zlib_decode_malloc_guesssize(const char* buffer, int len, int initial_size, int* outlen)
        {
            png__zbuf a;
            char* p = (char*)png__malloc(initial_size);
            if (p == NULL) return NULL;
            a.zbuffer = (png_uc*)buffer;
            a.zbuffer_end = (png_uc*)buffer + len;
            if (png__do_zlib(&a, p, initial_size, 1, 1)) {
                if (outlen) *outlen = (int)(a.zout - a.zout_start);
                return a.zout_start;
            }
            else {
                PNG_FREE(a.zout_start);
                return NULL;
            }
        }

        STBIDEF char* png_zlib_decode_malloc(char const* buffer, int len, int* outlen)
        {
            return png_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen);
        }

        STBIDEF char* png_zlib_decode_malloc_guesssize_headerflag(const char* buffer, int len, int initial_size, int* outlen, int parse_header)
        {
            png__zbuf a;
            char* p = (char*)png__malloc(initial_size);
            if (p == NULL) return NULL;
            a.zbuffer = (png_uc*)buffer;
            a.zbuffer_end = (png_uc*)buffer + len;
            if (png__do_zlib(&a, p, initial_size, 1, parse_header)) {
                if (outlen) *outlen = (int)(a.zout - a.zout_start);
                return a.zout_start;
            }
            else {
                PNG_FREE(a.zout_start);
                return NULL;
            }
        }

        STBIDEF int png_zlib_decode_buffer(char* obuffer, int olen, char const* ibuffer, int ilen)
        {
            png__zbuf a;
            a.zbuffer = (png_uc*)ibuffer;
            a.zbuffer_end = (png_uc*)ibuffer + ilen;
            if (png__do_zlib(&a, obuffer, olen, 0, 1))
                return (int)(a.zout - a.zout_start);
            else
                return -1;
        }

        STBIDEF char* png_zlib_decode_noheader_malloc(char const* buffer, int len, int* outlen)
        {
            png__zbuf a;
            char* p = (char*)png__malloc(16384);
            if (p == NULL) return NULL;
            a.zbuffer = (png_uc*)buffer;
            a.zbuffer_end = (png_uc*)buffer + len;
            if (png__do_zlib(&a, p, 16384, 1, 0)) {
                if (outlen) *outlen = (int)(a.zout - a.zout_start);
                return a.zout_start;
            }
            else {
                PNG_FREE(a.zout_start);
                return NULL;
            }
        }

        STBIDEF int png_zlib_decode_noheader_buffer(char* obuffer, int olen, const char* ibuffer, int ilen)
        {
            png__zbuf a;
            a.zbuffer = (png_uc*)ibuffer;
            a.zbuffer_end = (png_uc*)ibuffer + ilen;
            if (png__do_zlib(&a, obuffer, olen, 0, 0))
                return (int)(a.zout - a.zout_start);
            else
                return -1;
        }


        // public domain "baseline" PNG decoder   v0.10  Sean Barrett 2006-11-18
        //    simple implementation
        //      - only 8-bit samples
        //      - no CRC checking
        //      - allocates lots of intermediate memory
        //        - avoids problem of streaming data between subsystems
        //        - avoids explicit window management
        //    performance
        //      - uses stb_zlib, a PD zlib implementation with fast huffman decoding

        typedef struct
        {
            png__uint32 length;
            png__uint32 type;
        } png__pngchunk;

        static png__pngchunk png__get_chunk_header(png__context* s)
        {
            png__pngchunk c;
            c.length = png__get32be(s);
            c.type = png__get32be(s);
            return c;
        }

        static int png__check_png_header(png__context* s)
        {
            static const png_uc png_sig[8] = { 137,80,78,71,13,10,26,10 };
            int i;
            for (i = 0; i < 8; ++i)
                if (png__get8(s) != png_sig[i]) return png__err("bad png sig", "Not a PNG");
            return 1;
        }

        typedef struct
        {
            png__context* s;
            png_uc* idata, * expanded, * out;
            int depth;
        } png__png;


        enum {
            PNG__F_none = 0,
            PNG__F_sub = 1,
            PNG__F_up = 2,
            PNG__F_avg = 3,
            PNG__F_paeth = 4,
            // synthetic filters used for first scanline to avoid needing a dummy row of 0s
            PNG__F_avg_first,
            PNG__F_paeth_first
        };

        static png_uc first_row_filter[5] =
        {
           PNG__F_none,
           PNG__F_sub,
           PNG__F_none,
           PNG__F_avg_first,
           PNG__F_paeth_first
        };

        static int png__paeth(int a, int b, int c)
        {
            int p = a + b - c;
            int pa = abs(p - a);
            int pb = abs(p - b);
            int pc = abs(p - c);
            if (pa <= pb && pa <= pc) return a;
            if (pb <= pc) return b;
            return c;
        }

        static const png_uc png__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 };

        // create the png data from post-deflated data
        static int png__create_png_image_raw(png__png* a, png_uc* raw, png__uint32 raw_len, int out_n, png__uint32 x, png__uint32 y, int depth, int color)
        {
            int bytes = (depth == 16 ? 2 : 1);
            png__context* s = a->s;
            png__uint32 i, j, stride = x * out_n * bytes;
            png__uint32 img_len, img_width_bytes;
            int k;
            int img_n = s->img_n; // copy it into a local for later

            int output_bytes = out_n * bytes;
            int filter_bytes = img_n * bytes;
            int width = x;

            PNG_ASSERT(out_n == s->img_n || out_n == s->img_n + 1);
            a->out = (png_uc*)png__malloc_mad3(x, y, output_bytes, 0); // extra bytes to write off the end into
            if (!a->out) return png__err("outofmem", "Out of memory");

            if (!png__mad3sizes_valid(img_n, x, depth, 7)) return png__err("too large", "Corrupt PNG");
            img_width_bytes = (((img_n * x * depth) + 7) >> 3);
            img_len = (img_width_bytes + 1) * y;

            // we used to check for exact match between raw_len and img_len on non-interlaced PNGs,
            // but issue #276 reported a PNG in the wild that had extra data at the end (all zeros),
            // so just check for raw_len < img_len always.
            if (raw_len < img_len) return png__err("not enough pixels", "Corrupt PNG");

            for (j = 0; j < y; ++j) {
                png_uc* cur = a->out + stride * j;
                png_uc* prior;
                int filter = *raw++;

                if (filter > 4)
                    return png__err("invalid filter", "Corrupt PNG");

                if (depth < 8) {
                    if (img_width_bytes > x) return png__err("invalid width", "Corrupt PNG");
                    cur += x * out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place
                    filter_bytes = 1;
                    width = img_width_bytes;
                }
                prior = cur - stride; // bugfix: need to compute this after 'cur +=' computation above

                // if first row, use special filter that doesn't sample previous row
                if (j == 0) filter = first_row_filter[filter];

                // handle first byte explicitly
                for (k = 0; k < filter_bytes; ++k) {
                    switch (filter) {
                    case PNG__F_none: cur[k] = raw[k]; break;
                    case PNG__F_sub: cur[k] = raw[k]; break;
                    case PNG__F_up: cur[k] = PNG__BYTECAST(raw[k] + prior[k]); break;
                    case PNG__F_avg: cur[k] = PNG__BYTECAST(raw[k] + (prior[k] >> 1)); break;
                    case PNG__F_paeth: cur[k] = PNG__BYTECAST(raw[k] + png__paeth(0, prior[k], 0)); break;
                    case PNG__F_avg_first: cur[k] = raw[k]; break;
                    case PNG__F_paeth_first: cur[k] = raw[k]; break;
                    }
                }

                if (depth == 8) {
                    if (img_n != out_n)
                        cur[img_n] = 255; // first pixel
                    raw += img_n;
                    cur += out_n;
                    prior += out_n;
                }
                else if (depth == 16) {
                    if (img_n != out_n) {
                        cur[filter_bytes] = 255; // first pixel top byte
                        cur[filter_bytes + 1] = 255; // first pixel bottom byte
                    }
                    raw += filter_bytes;
                    cur += output_bytes;
                    prior += output_bytes;
                }
                else {
                    raw += 1;
                    cur += 1;
                    prior += 1;
                }

                // this is a little gross, so that we don't switch per-pixel or per-component
                if (depth < 8 || img_n == out_n) {
                    int nk = (width - 1) * filter_bytes;
#define PNG__CASE(f) \
             case f:     \
                for (k=0; k < nk; ++k)
                    switch (filter) {
                        // "none" filter turns into a memcpy here; make that explicit.
                    case PNG__F_none:         memcpy(cur, raw, nk); break;
                        PNG__CASE(PNG__F_sub) { cur[k] = PNG__BYTECAST(raw[k] + cur[k - filter_bytes]); } break;
                        PNG__CASE(PNG__F_up) { cur[k] = PNG__BYTECAST(raw[k] + prior[k]); } break;
                        PNG__CASE(PNG__F_avg) { cur[k] = PNG__BYTECAST(raw[k] + ((prior[k] + cur[k - filter_bytes]) >> 1)); } break;
                        PNG__CASE(PNG__F_paeth) { cur[k] = PNG__BYTECAST(raw[k] + png__paeth(cur[k - filter_bytes], prior[k], prior[k - filter_bytes])); } break;
                        PNG__CASE(PNG__F_avg_first) { cur[k] = PNG__BYTECAST(raw[k] + (cur[k - filter_bytes] >> 1)); } break;
                        PNG__CASE(PNG__F_paeth_first) { cur[k] = PNG__BYTECAST(raw[k] + png__paeth(cur[k - filter_bytes], 0, 0)); } break;
                    }
#undef PNG__CASE
                    raw += nk;
                }
                else {
                    PNG_ASSERT(img_n + 1 == out_n);
#define PNG__CASE(f) \
             case f:     \
                for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \
                   for (k=0; k < filter_bytes; ++k)
                    switch (filter) {
                        PNG__CASE(PNG__F_none) { cur[k] = raw[k]; } break;
                        PNG__CASE(PNG__F_sub) { cur[k] = PNG__BYTECAST(raw[k] + cur[k - output_bytes]); } break;
                        PNG__CASE(PNG__F_up) { cur[k] = PNG__BYTECAST(raw[k] + prior[k]); } break;
                        PNG__CASE(PNG__F_avg) { cur[k] = PNG__BYTECAST(raw[k] + ((prior[k] + cur[k - output_bytes]) >> 1)); } break;
                        PNG__CASE(PNG__F_paeth) { cur[k] = PNG__BYTECAST(raw[k] + png__paeth(cur[k - output_bytes], prior[k], prior[k - output_bytes])); } break;
                        PNG__CASE(PNG__F_avg_first) { cur[k] = PNG__BYTECAST(raw[k] + (cur[k - output_bytes] >> 1)); } break;
                        PNG__CASE(PNG__F_paeth_first) { cur[k] = PNG__BYTECAST(raw[k] + png__paeth(cur[k - output_bytes], 0, 0)); } break;
                    }
#undef PNG__CASE

                    // the loop above sets the high byte of the pixels' alpha, but for
                    // 16 bit png files we also need the low byte set. we'll do that here.
                    if (depth == 16) {
                        cur = a->out + stride * j; // start at the beginning of the row again
                        for (i = 0; i < x; ++i, cur += output_bytes) {
                            cur[filter_bytes + 1] = 255;
                        }
                    }
                }
            }

            // we make a separate pass to expand bits to pixels; for performance,
            // this could run two scanlines behind the above code, so it won't
            // intefere with filtering but will still be in the cache.
            if (depth < 8) {
                for (j = 0; j < y; ++j) {
                    png_uc* cur = a->out + stride * j;
                    png_uc* in = a->out + stride * j + x * out_n - img_width_bytes;
                    // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit
                    // png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop
                    png_uc scale = (color == 0) ? png__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range

                    // note that the final byte might overshoot and write more data than desired.
                    // we can allocate enough data that this never writes out of memory, but it
                    // could also overwrite the next scanline. can it overwrite non-empty data
                    // on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel.
                    // so we need to explicitly clamp the final ones

                    if (depth == 4) {
                        for (k = x * img_n; k >= 2; k -= 2, ++in) {
                            *cur++ = scale * ((*in >> 4));
                            *cur++ = scale * ((*in) & 0x0f);
                        }
                        if (k > 0) *cur++ = scale * ((*in >> 4));
                    }
                    else if (depth == 2) {
                        for (k = x * img_n; k >= 4; k -= 4, ++in) {
                            *cur++ = scale * ((*in >> 6));
                            *cur++ = scale * ((*in >> 4) & 0x03);
                            *cur++ = scale * ((*in >> 2) & 0x03);
                            *cur++ = scale * ((*in) & 0x03);
                        }
                        if (k > 0) *cur++ = scale * ((*in >> 6));
                        if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03);
                        if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03);
                    }
                    else if (depth == 1) {
                        for (k = x * img_n; k >= 8; k -= 8, ++in) {
                            *cur++ = scale * ((*in >> 7));
                            *cur++ = scale * ((*in >> 6) & 0x01);
                            *cur++ = scale * ((*in >> 5) & 0x01);
                            *cur++ = scale * ((*in >> 4) & 0x01);
                            *cur++ = scale * ((*in >> 3) & 0x01);
                            *cur++ = scale * ((*in >> 2) & 0x01);
                            *cur++ = scale * ((*in >> 1) & 0x01);
                            *cur++ = scale * ((*in) & 0x01);
                        }
                        if (k > 0) *cur++ = scale * ((*in >> 7));
                        if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01);
                        if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01);
                        if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01);
                        if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01);
                        if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01);
                        if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01);
                    }
                    if (img_n != out_n) {
                        int q;
                        // insert alpha = 255
                        cur = a->out + stride * j;
                        if (img_n == 1) {
                            for (q = x - 1; q >= 0; --q) {
                                cur[q * 2 + 1] = 255;
                                cur[q * 2 + 0] = cur[q];
                            }
                        }
                        else {
                            PNG_ASSERT(img_n == 3);
                            for (q = x - 1; q >= 0; --q) {
                                cur[q * 4 + 3] = 255;
                                cur[q * 4 + 2] = cur[q * 3 + 2];
                                cur[q * 4 + 1] = cur[q * 3 + 1];
                                cur[q * 4 + 0] = cur[q * 3 + 0];
                            }
                        }
                    }
                }
            }
            else if (depth == 16) {
                // force the image data from big-endian to platform-native.
                // this is done in a separate pass due to the decoding relying
                // on the data being untouched, but could probably be done
                // per-line during decode if care is taken.
                png_uc* cur = a->out;
                png__uint16* cur16 = (png__uint16*)cur;

                for (i = 0; i < x * y * out_n; ++i, cur16++, cur += 2) {
                    *cur16 = (cur[0] << 8) | cur[1];
                }
            }

            return 1;
        }

        static int png__create_png_image(png__png* a, png_uc* image_data, png__uint32 image_data_len, int out_n, int depth, int color, int interlaced)
        {
            int bytes = (depth == 16 ? 2 : 1);
            int out_bytes = out_n * bytes;
            png_uc* final;
            int p;
            if (!interlaced)
                return png__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color);

            // de-interlacing
            final = (png_uc*)png__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0);
            for (p = 0; p < 7; ++p) {
                int xorig[] = { 0,4,0,2,0,1,0 };
                int yorig[] = { 0,0,4,0,2,0,1 };
                int xspc[] = { 8,8,4,4,2,2,1 };
                int yspc[] = { 8,8,8,4,4,2,2 };
                int i, j, x, y;
                // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1
                x = (a->s->img_x - xorig[p] + xspc[p] - 1) / xspc[p];
                y = (a->s->img_y - yorig[p] + yspc[p] - 1) / yspc[p];
                if (x && y) {
                    png__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y;
                    if (!png__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) {
                        PNG_FREE(final);
                        return 0;
                    }
                    for (j = 0; j < y; ++j) {
                        for (i = 0; i < x; ++i) {
                            int out_y = j * yspc[p] + yorig[p];
                            int out_x = i * xspc[p] + xorig[p];
                            memcpy(final + out_y * a->s->img_x * out_bytes + out_x * out_bytes,
                                a->out + (j * x + i) * out_bytes, out_bytes);
                        }
                    }
                    PNG_FREE(a->out);
                    image_data += img_len;
                    image_data_len -= img_len;
                }
            }
            a->out = final;

            return 1;
        }

        static int png__compute_transparency(png__png* z, png_uc tc[3], int out_n)
        {
            png__context* s = z->s;
            png__uint32 i, pixel_count = s->img_x * s->img_y;
            png_uc* p = z->out;

            // compute color-based transparency, assuming we've
            // already got 255 as the alpha value in the output
            PNG_ASSERT(out_n == 2 || out_n == 4);

            if (out_n == 2) {
                for (i = 0; i < pixel_count; ++i) {
                    p[1] = (p[0] == tc[0] ? 0 : 255);
                    p += 2;
                }
            }
            else {
                for (i = 0; i < pixel_count; ++i) {
                    if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
                        p[3] = 0;
                    p += 4;
                }
            }
            return 1;
        }

        static int png__compute_transparency16(png__png* z, png__uint16 tc[3], int out_n)
        {
            png__context* s = z->s;
            png__uint32 i, pixel_count = s->img_x * s->img_y;
            png__uint16* p = (png__uint16*)z->out;

            // compute color-based transparency, assuming we've
            // already got 65535 as the alpha value in the output
            PNG_ASSERT(out_n == 2 || out_n == 4);

            if (out_n == 2) {
                for (i = 0; i < pixel_count; ++i) {
                    p[1] = (p[0] == tc[0] ? 0 : 65535);
                    p += 2;
                }
            }
            else {
                for (i = 0; i < pixel_count; ++i) {
                    if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
                        p[3] = 0;
                    p += 4;
                }
            }
            return 1;
        }

        static int png__expand_png_palette(png__png* a, png_uc* palette, int len, int pal_img_n)
        {
            png__uint32 i, pixel_count = a->s->img_x * a->s->img_y;
            png_uc* p, * temp_out, * orig = a->out;

            p = (png_uc*)png__malloc_mad2(pixel_count, pal_img_n, 0);
            if (p == NULL) return png__err("outofmem", "Out of memory");

            // between here and free(out) below, exitting would leak
            temp_out = p;

            if (pal_img_n == 3) {
                for (i = 0; i < pixel_count; ++i) {
                    int n = orig[i] * 4;
                    p[0] = palette[n];
                    p[1] = palette[n + 1];
                    p[2] = palette[n + 2];
                    p += 3;
                }
            }
            else {
                for (i = 0; i < pixel_count; ++i) {
                    int n = orig[i] * 4;
                    p[0] = palette[n];
                    p[1] = palette[n + 1];
                    p[2] = palette[n + 2];
                    p[3] = palette[n + 3];
                    p += 4;
                }
            }
            PNG_FREE(a->out);
            a->out = temp_out;

            PNG_NOTUSED(len);

            return 1;
        }

        static int png__unpremultiply_on_load = 0;
        static int png__de_iphone_flag = 0;

        STBIDEF void png_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply)
        {
            png__unpremultiply_on_load = flag_true_if_should_unpremultiply;
        }

        STBIDEF void png_convert_iphone_png_to_rgb(int flag_true_if_should_convert)
        {
            png__de_iphone_flag = flag_true_if_should_convert;
        }

        static void png__de_iphone(png__png* z)
        {
            png__context* s = z->s;
            png__uint32 i, pixel_count = s->img_x * s->img_y;
            png_uc* p = z->out;

            if (s->img_out_n == 3) {  // convert bgr to rgb
                for (i = 0; i < pixel_count; ++i) {
                    png_uc t = p[0];
                    p[0] = p[2];
                    p[2] = t;
                    p += 3;
                }
            }
            else {
                PNG_ASSERT(s->img_out_n == 4);
                if (png__unpremultiply_on_load) {
                    // convert bgr to rgb and unpremultiply
                    for (i = 0; i < pixel_count; ++i) {
                        png_uc a = p[3];
                        png_uc t = p[0];
                        if (a) {
                            png_uc half = a / 2;
                            p[0] = (p[2] * 255 + half) / a;
                            p[1] = (p[1] * 255 + half) / a;
                            p[2] = (t * 255 + half) / a;
                        }
                        else {
                            p[0] = p[2];
                            p[2] = t;
                        }
                        p += 4;
                    }
                }
                else {
                    // convert bgr to rgb
                    for (i = 0; i < pixel_count; ++i) {
                        png_uc t = p[0];
                        p[0] = p[2];
                        p[2] = t;
                        p += 4;
                    }
                }
            }
        }

#define PNG__PNG_TYPE(a,b,c,d)  (((unsigned) (a) << 24) + ((unsigned) (b) << 16) + ((unsigned) (c) << 8) + (unsigned) (d))

        static int png__parse_png_file(png__png* z, int scan, int req_comp)
        {
            png_uc palette[1024], pal_img_n = 0;
            png_uc has_trans = 0, tc[3] = { 0 };
            png__uint16 tc16[3];
            png__uint32 ioff = 0, idata_limit = 0, i, pal_len = 0;
            int first = 1, k, interlace = 0, color = 0, is_iphone = 0;
            png__context* s = z->s;

            z->expanded = NULL;
            z->idata = NULL;
            z->out = NULL;

            if (!png__check_png_header(s)) return 0;

            if (scan == PNG__SCAN_type) return 1;

            for (;;) {
                png__pngchunk c = png__get_chunk_header(s);
                switch (c.type) {
                case PNG__PNG_TYPE('C', 'g', 'B', 'I'):
                    is_iphone = 1;
                    png__skip(s, c.length);
                    break;
                case PNG__PNG_TYPE('I', 'H', 'D', 'R'): {
                    int comp, filter;
                    if (!first) return png__err("multiple IHDR", "Corrupt PNG");
                    first = 0;
                    if (c.length != 13) return png__err("bad IHDR len", "Corrupt PNG");
                    s->img_x = png__get32be(s);
                    s->img_y = png__get32be(s);
                    if (s->img_y > PNG_MAX_DIMENSIONS) return png__err("too large", "Very large image (corrupt?)");
                    if (s->img_x > PNG_MAX_DIMENSIONS) return png__err("too large", "Very large image (corrupt?)");
                    z->depth = png__get8(s);  if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16)  return png__err("1/2/4/8/16-bit only", "PNG not supported: 1/2/4/8/16-bit only");
                    color = png__get8(s);  if (color > 6)         return png__err("bad ctype", "Corrupt PNG");
                    if (color == 3 && z->depth == 16)                  return png__err("bad ctype", "Corrupt PNG");
                    if (color == 3) pal_img_n = 3; else if (color & 1) return png__err("bad ctype", "Corrupt PNG");
                    comp = png__get8(s);  if (comp) return png__err("bad comp method", "Corrupt PNG");
                    filter = png__get8(s);  if (filter) return png__err("bad filter method", "Corrupt PNG");
                    interlace = png__get8(s); if (interlace > 1) return png__err("bad interlace method", "Corrupt PNG");
                    if (!s->img_x || !s->img_y) return png__err("0-pixel image", "Corrupt PNG");
                    if (!pal_img_n) {
                        s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0);
                        if ((1 << 30) / s->img_x / s->img_n < s->img_y) return png__err("too large", "Image too large to decode");
                        if (scan == PNG__SCAN_header) return 1;
                    }
                    else {
                        // if paletted, then pal_n is our final components, and
                        // img_n is # components to decompress/filter.
                        s->img_n = 1;
                        if ((1 << 30) / s->img_x / 4 < s->img_y) return png__err("too large", "Corrupt PNG");
                        // if SCAN_header, have to scan to see if we have a tRNS
                    }
                    break;
                }

                case PNG__PNG_TYPE('P', 'L', 'T', 'E'): {
                    if (first) return png__err("first not IHDR", "Corrupt PNG");
                    if (c.length > 256 * 3) return png__err("invalid PLTE", "Corrupt PNG");
                    pal_len = c.length / 3;
                    if (pal_len * 3 != c.length) return png__err("invalid PLTE", "Corrupt PNG");
                    for (i = 0; i < pal_len; ++i) {
                        palette[i * 4 + 0] = png__get8(s);
                        palette[i * 4 + 1] = png__get8(s);
                        palette[i * 4 + 2] = png__get8(s);
                        palette[i * 4 + 3] = 255;
                    }
                    break;
                }

                case PNG__PNG_TYPE('t', 'R', 'N', 'S'): {
                    if (first) return png__err("first not IHDR", "Corrupt PNG");
                    if (z->idata) return png__err("tRNS after IDAT", "Corrupt PNG");
                    if (pal_img_n) {
                        if (scan == PNG__SCAN_header) { s->img_n = 4; return 1; }
                        if (pal_len == 0) return png__err("tRNS before PLTE", "Corrupt PNG");
                        if (c.length > pal_len) return png__err("bad tRNS len", "Corrupt PNG");
                        pal_img_n = 4;
                        for (i = 0; i < c.length; ++i)
                            palette[i * 4 + 3] = png__get8(s);
                    }
                    else {
                        if (!(s->img_n & 1)) return png__err("tRNS with alpha", "Corrupt PNG");
                        if (c.length != (png__uint32)s->img_n * 2) return png__err("bad tRNS len", "Corrupt PNG");
                        has_trans = 1;
                        if (z->depth == 16) {
                            for (k = 0; k < s->img_n; ++k) tc16[k] = (png__uint16)png__get16be(s); // copy the values as-is
                        }
                        else {
                            for (k = 0; k < s->img_n; ++k) tc[k] = (png_uc)(png__get16be(s) & 255) * png__depth_scale_table[z->depth]; // non 8-bit images will be larger
                        }
                    }
                    break;
                }

                case PNG__PNG_TYPE('I', 'D', 'A', 'T'): {
                    if (first) return png__err("first not IHDR", "Corrupt PNG");
                    if (pal_img_n && !pal_len) return png__err("no PLTE", "Corrupt PNG");
                    if (scan == PNG__SCAN_header) { s->img_n = pal_img_n; return 1; }
                    if ((int)(ioff + c.length) < (int)ioff) return 0;
                    if (ioff + c.length > idata_limit) {
                        png__uint32 idata_limit_old = idata_limit;
                        png_uc* p;
                        if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096;
                        while (ioff + c.length > idata_limit)
                            idata_limit *= 2;
                        PNG_NOTUSED(idata_limit_old);
                        p = (png_uc*)PNG_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return png__err("outofmem", "Out of memory");
                        z->idata = p;
                    }
                    if (!png__getn(s, z->idata + ioff, c.length)) return png__err("outofdata", "Corrupt PNG");
                    ioff += c.length;
                    break;
                }

                case PNG__PNG_TYPE('I', 'E', 'N', 'D'): {
                    png__uint32 raw_len, bpl;
                    if (first) return png__err("first not IHDR", "Corrupt PNG");
                    if (scan != PNG__SCAN_load) return 1;
                    if (z->idata == NULL) return png__err("no IDAT", "Corrupt PNG");
                    // initial guess for decoded data size to avoid unnecessary reallocs
                    bpl = (s->img_x * z->depth + 7) / 8; // bytes per line, per component
                    raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */;
                    z->expanded = (png_uc*)png_zlib_decode_malloc_guesssize_headerflag((char*)z->idata, ioff, raw_len, (int*)&raw_len, !is_iphone);
                    if (z->expanded == NULL) return 0; // zlib should set error
                    PNG_FREE(z->idata); z->idata = NULL;
                    if ((req_comp == s->img_n + 1 && req_comp != 3 && !pal_img_n) || has_trans)
                        s->img_out_n = s->img_n + 1;
                    else
                        s->img_out_n = s->img_n;
                    if (!png__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0;
                    if (has_trans) {
                        if (z->depth == 16) {
                            if (!png__compute_transparency16(z, tc16, s->img_out_n)) return 0;
                        }
                        else {
                            if (!png__compute_transparency(z, tc, s->img_out_n)) return 0;
                        }
                    }
                    if (is_iphone && png__de_iphone_flag && s->img_out_n > 2)
                        png__de_iphone(z);
                    if (pal_img_n) {
                        // pal_img_n == 3 or 4
                        s->img_n = pal_img_n; // record the actual colors we had
                        s->img_out_n = pal_img_n;
                        if (req_comp >= 3) s->img_out_n = req_comp;
                        if (!png__expand_png_palette(z, palette, pal_len, s->img_out_n))
                            return 0;
                    }
                    else if (has_trans) {
                        // non-paletted image with tRNS -> source image has (constant) alpha
                        ++s->img_n;
                    }
                    PNG_FREE(z->expanded); z->expanded = NULL;
                    // end of PNG chunk, read and skip CRC
                    png__get32be(s);
                    return 1;
                }

                default:
                    // if critical, fail
                    if (first) return png__err("first not IHDR", "Corrupt PNG");
                    if ((c.type & (1 << 29)) == 0) {
#ifndef PNG_NO_FAILURE_STRINGS
                        // not threadsafe
                        static char invalid_chunk[] = "XXXX PNG chunk not known";
                        invalid_chunk[0] = PNG__BYTECAST(c.type >> 24);
                        invalid_chunk[1] = PNG__BYTECAST(c.type >> 16);
                        invalid_chunk[2] = PNG__BYTECAST(c.type >> 8);
                        invalid_chunk[3] = PNG__BYTECAST(c.type >> 0);
#endif
                        return png__err(invalid_chunk, "PNG not supported: unknown PNG chunk type");
                    }
                    png__skip(s, c.length);
                    break;
                }
                // end of PNG chunk, read and skip CRC
                png__get32be(s);
            }
        }

        static void* png__do_png(png__png* p, int* x, int* y, int* n, int req_comp, png__result_info* ri)
        {
            void* result = NULL;
            if (req_comp < 0 || req_comp > 4) return png__errpuc("bad req_comp", "Internal error");
            if (png__parse_png_file(p, PNG__SCAN_load, req_comp)) {
                if (p->depth <= 8)
                    ri->bits_per_channel = 8;
                else if (p->depth == 16)
                    ri->bits_per_channel = 16;
                else
                    return png__errpuc("bad bits_per_channel", "PNG not supported: unsupported color depth");
                result = p->out;
                p->out = NULL;
                if (req_comp && req_comp != p->s->img_out_n) {
                    if (ri->bits_per_channel == 8)
                        result = png__convert_format((unsigned char*)result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
                    else
                        result = png__convert_format16((png__uint16*)result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
                    p->s->img_out_n = req_comp;
                    if (result == NULL) return result;
                }
                *x = p->s->img_x;
                *y = p->s->img_y;
                if (n) *n = p->s->img_n;
            }
            PNG_FREE(p->out);      p->out = NULL;
            PNG_FREE(p->expanded); p->expanded = NULL;
            PNG_FREE(p->idata);    p->idata = NULL;

            return result;
        }

        static void* png__png_load(png__context* s, int* x, int* y, int* comp, int req_comp, png__result_info* ri)
        {
            png__png p;
            p.s = s;
            return png__do_png(&p, x, y, comp, req_comp, ri);
        }

        static int png__png_test(png__context* s)
        {
            int r;
            r = png__check_png_header(s);
            png__rewind(s);
            return r;
        }

        static int png__png_info_raw(png__png* p, int* x, int* y, int* comp)
        {
            if (!png__parse_png_file(p, PNG__SCAN_header, 0)) {
                png__rewind(p->s);
                return 0;
            }
            if (x) *x = p->s->img_x;
            if (y) *y = p->s->img_y;
            if (comp) *comp = p->s->img_n;
            return 1;
        }

        static int png__png_info(png__context* s, int* x, int* y, int* comp)
        {
            png__png p;
            p.s = s;
            return png__png_info_raw(&p, x, y, comp);
        }

        static int png__png_is16(png__context* s)
        {
            png__png p;
            p.s = s;
            if (!png__png_info_raw(&p, NULL, NULL, NULL))
                return 0;
            if (p.depth != 16) {
                png__rewind(p.s);
                return 0;
            }
            return 1;
        }

        static void* png__load_main(png__context* s, int* x, int* y, int* comp, int req_comp, png__result_info* ri, int bpc)
        {
            memset(ri, 0, sizeof(*ri)); // make sure it's initialized if we add new fields
            ri->bits_per_channel = 8; // default is 8 so most paths don't have to be changed
            ri->channel_order = PNG_ORDER_RGB; // all current input & output are this, but this is here so we can add BGR order
            ri->num_channels = 0;

            if (png__png_test(s))  return png__png_load(s, x, y, comp, req_comp, ri);

            return png__errpuc("unknown image type", "Image not of any known type, or corrupt");
        }

        static png_uc* png__convert_16_to_8(png__uint16* orig, int w, int h, int channels)
        {
            int i;
            int img_len = w * h * channels;
            png_uc* reduced;

            reduced = (png_uc*)png__malloc(img_len);
            if (reduced == NULL) return png__errpuc("outofmem", "Out of memory");

            for (i = 0; i < img_len; ++i)
                reduced[i] = (png_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is sufficient approx of 16->8 bit scaling

            PNG_FREE(orig);
            return reduced;
        }

        static unsigned char* png__load_and_postprocess_8bit(png__context* s, int* x, int* y, int* comp, int req_comp)
        {
            png__result_info ri;
            void* result = png__load_main(s, x, y, comp, req_comp, &ri, 8);

            if (result == NULL)
                return NULL;

            // it is the responsibility of the loaders to make sure we get either 8 or 16 bit.
            PNG_ASSERT(ri.bits_per_channel == 8 || ri.bits_per_channel == 16);

            if (ri.bits_per_channel != 8) {
                result = png__convert_16_to_8((png__uint16*)result, *x, *y, req_comp == 0 ? *comp : req_comp);
                ri.bits_per_channel = 8;
            }

            // @TODO: move png__convert_format to here

            //if (png__vertically_flip_on_load) {
            //    int channels = req_comp ? req_comp : *comp;
            //    png__vertical_flip(result, *x, *y, channels * sizeof(png_uc));
            //}

            return (unsigned char*)result;
        }

        static void png__start_mem(png__context* s, png_uc const* buffer, int len)
        {
            s->io.read = NULL;
            s->read_from_callbacks = 0;
            s->callback_already_read = 0;
            s->img_buffer = s->img_buffer_original = (png_uc*)buffer;
            s->img_buffer_end = s->img_buffer_original_end = (png_uc*)buffer + len;
        }

        STBIDEF png_uc* png_load_from_memory(png_uc const* buffer, int len, int* x, int* y, int* comp, int req_comp)
        {
            png__context s;
            png__start_mem(&s, buffer, len);
            return png__load_and_postprocess_8bit(&s, x, y, comp, req_comp);
        }

        //------------------------------------------------------------------------

        static int png__stdio_read(void* user, char* data, int size)
        {
            InputMemoryStream* stream = (InputMemoryStream*)user;
            return (int)stream->Read(size, data);
        }

        static void png__stdio_skip(void* user, int n)
        {
            InputMemoryStream* stream = (InputMemoryStream*)user;
            stream->Skip(n);
        }

        static int png__stdio_eof(void* user)
        {
            InputMemoryStream* stream = (InputMemoryStream*)user;
            return stream->Pos() == stream->Size() ? 1 : 0;
        }


        //---------------------------------------------------------------------

        ImagePngLoader::ImagePngLoader(const ImageLoaderParam& param)
            : Base::ImagePngLoader(param)
        {
            if (_param.format == SimdPixelFormatNone)
                _param.format = SimdPixelFormatRgb24;
        }

        bool ImagePngLoader::FromStream()
        {
            const int req_comp = 4;
            int x, y, comp;
            png__context s;
            s.io.eof = png__stdio_eof;
            s.io.read = png__stdio_read;
            s.io.skip = png__stdio_skip;
            s.io_user_data = &_stream;
            s.buflen = sizeof(s.buffer_start);
            s.read_from_callbacks = 1;
            s.callback_already_read = 0;
            s.img_buffer = s.img_buffer_original = s.buffer_start;
            png__refill_buffer(&s);
            s.img_buffer_original_end = s.img_buffer_end;
            png__result_info ri;
            uint8_t* data = (uint8_t*)png__png_load(&s, &x, &y, &comp, req_comp, &ri);
            if (data)
            {
                if (ri.bits_per_channel == 16)
                {
                    const uint16_t* src = (uint16_t*)data;
                    size_t size = x * y * req_comp;
                    uint8_t* dst = (uint8_t*)PNG_MALLOC(size);
                    for (size_t i = 0; i < size; ++i)
                        dst[i] = uint8_t(src[i] >> 8);
                    PNG_FREE(data);
                    data = dst;
                }
                size_t stride = 4 * x;
                _image.Recreate(x, y, (Image::Format)_param.format);
                if (x < A)
                {
                    switch (_param.format)
                    {
                    case SimdPixelFormatGray8:
                        Base::RgbaToGray(data, x, y, stride, _image.data, _image.stride);
                        break;
                    case SimdPixelFormatBgr24:
                        Base::BgraToRgb(data, x, y, stride, _image.data, _image.stride);
                        break;
                    case SimdPixelFormatBgra32:
                        Base::BgraToRgba(data, x, y, stride, _image.data, _image.stride);
                        break;
                    case SimdPixelFormatRgb24:
                        Base::BgraToBgr(data, x, y, stride, _image.data, _image.stride);
                        break;
                    case SimdPixelFormatRgba32:
                        Base::Copy(data, stride, x, y, 4, _image.data, _image.stride);
                        break;
                    default:
                        break;
                    }
                }
                else
                {
                    switch (_param.format)
                    {
                    case SimdPixelFormatGray8:
                        Sse41::RgbaToGray(data, x, y, stride, _image.data, _image.stride);
                        break;
                    case SimdPixelFormatBgr24:
                        Sse41::BgraToRgb(data, x, y, stride, _image.data, _image.stride);
                        break;
                    case SimdPixelFormatBgra32:
                        Sse41::BgraToRgba(data, x, y, stride, _image.data, _image.stride);
                        break;
                    case SimdPixelFormatRgb24:
                        Sse41::BgraToBgr(data, x, y, stride, _image.data, _image.stride);
                        break;
                    case SimdPixelFormatRgba32:
                        Base::Copy(data, stride, x, y, 4, _image.data, _image.stride);
                        break;
                    default:
                        break;
                    }
                }
                PNG_FREE(data);
                return true;
            }
            return false;
        }
    }
#endif
}