1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Simd/SimdMemory.h"
#include "Simd/SimdStore.h"
#include "Simd/SimdResizer.h"
#include "Simd/SimdResizerCommon.h"
#include "Simd/SimdSet.h"
#include "Simd/SimdUpdate.h"
#include "Simd/SimdUnpack.h"
namespace Simd
{
#ifdef SIMD_SSE41_ENABLE
namespace Sse41
{
ResizerByteArea1x1::ResizerByteArea1x1(const ResParam & param)
: Base::ResizerByteArea1x1(param)
{
}
SIMD_INLINE __m128i SaveLoadTail(const uint8_t * ptr, size_t tail)
{
uint8_t buffer[DA];
_mm_storeu_si128((__m128i*)(buffer), _mm_loadu_si128((__m128i*)(ptr + tail - A)));
return _mm_loadu_si128((__m128i*)(buffer + A - tail));
}
template<UpdateType update> SIMD_INLINE void ResizerByteArea1x1RowUpdate(const uint8_t * src0, size_t size, int32_t a, int32_t * dst)
{
if (update == UpdateAdd && a == 0)
return;
__m128i alpha = SetInt16(a, a);
size_t sizeA = AlignLo(size, A);
size_t i = 0;
for (; i < sizeA; i += A, dst += A)
{
__m128i s0 = _mm_loadu_si128((__m128i*)(src0 + i));
__m128i i0 = UnpackU8<0>(s0);
__m128i i1 = UnpackU8<1>(s0);
Update<update, true>(dst + 0 * F, _mm_madd_epi16(alpha, UnpackU8<0>(i0)));
Update<update, true>(dst + 1 * F, _mm_madd_epi16(alpha, UnpackU8<1>(i0)));
Update<update, true>(dst + 2 * F, _mm_madd_epi16(alpha, UnpackU8<0>(i1)));
Update<update, true>(dst + 3 * F, _mm_madd_epi16(alpha, UnpackU8<1>(i1)));
}
if (i < size)
{
__m128i s0 = SaveLoadTail(src0 + i, size - i);
__m128i i0 = UnpackU8<0>(s0);
__m128i i1 = UnpackU8<1>(s0);
Update<update, true>(dst + 0 * F, _mm_madd_epi16(alpha, UnpackU8<0>(i0)));
Update<update, true>(dst + 1 * F, _mm_madd_epi16(alpha, UnpackU8<1>(i0)));
Update<update, true>(dst + 2 * F, _mm_madd_epi16(alpha, UnpackU8<0>(i1)));
Update<update, true>(dst + 3 * F, _mm_madd_epi16(alpha, UnpackU8<1>(i1)));
}
}
template<UpdateType update> SIMD_INLINE void ResizerByteArea1x1RowUpdate(const uint8_t * src0, size_t stride, size_t size, int32_t a0, int32_t a1, int32_t * dst)
{
__m128i alpha = SetInt16(a0, a1);
const uint8_t * src1 = src0 + stride;
size_t sizeA = AlignLo(size, A);
size_t i = 0;
for (; i < sizeA; i += A, dst += A)
{
__m128i s0 = _mm_loadu_si128((__m128i*)(src0 + i));
__m128i s1 = _mm_loadu_si128((__m128i*)(src1 + i));
__m128i i0 = UnpackU8<0>(s0, s1);
__m128i i1 = UnpackU8<1>(s0, s1);
Update<update, true>(dst + 0 * F, _mm_madd_epi16(alpha, UnpackU8<0>(i0)));
Update<update, true>(dst + 1 * F, _mm_madd_epi16(alpha, UnpackU8<1>(i0)));
Update<update, true>(dst + 2 * F, _mm_madd_epi16(alpha, UnpackU8<0>(i1)));
Update<update, true>(dst + 3 * F, _mm_madd_epi16(alpha, UnpackU8<1>(i1)));
}
if (i < size)
{
__m128i s0 = _mm_loadu_si128((__m128i*)(src0 + i));
__m128i s1 = SaveLoadTail(src1 + i, size - i);
__m128i i0 = UnpackU8<0>(s0, s1);
__m128i i1 = UnpackU8<1>(s0, s1);
Update<update, true>(dst + 0 * F, _mm_madd_epi16(alpha, UnpackU8<0>(i0)));
Update<update, true>(dst + 1 * F, _mm_madd_epi16(alpha, UnpackU8<1>(i0)));
Update<update, true>(dst + 2 * F, _mm_madd_epi16(alpha, UnpackU8<0>(i1)));
Update<update, true>(dst + 3 * F, _mm_madd_epi16(alpha, UnpackU8<1>(i1)));
}
}
SIMD_INLINE void ResizerByteArea1x1RowSum(const uint8_t * src, size_t stride, size_t count, size_t size, int32_t curr, int32_t zero, int32_t next, int32_t * dst)
{
if (count)
{
size_t i = 0;
ResizerByteArea1x1RowUpdate<UpdateSet>(src, stride, size, curr, count == 1 ? zero - next : zero, dst), src += 2 * stride, i +=2;
for (; i < count; i += 2, src += 2 * stride)
ResizerByteArea1x1RowUpdate<UpdateAdd>(src, stride, size, zero, i == count - 1 ? zero - next : zero, dst);
if (i == count)
ResizerByteArea1x1RowUpdate<UpdateAdd>(src, size, zero - next, dst);
}
else
ResizerByteArea1x1RowUpdate<UpdateSet>(src, size, curr - next, dst);
}
template<size_t N> void ResizerByteArea1x1::Run(const uint8_t * src, size_t srcStride, uint8_t * dst, size_t dstStride)
{
size_t bodyW = _param.dstW - (N == 3 ? 1 : 0), rowSize = _param.srcW * N, rowRest = dstStride - _param.dstW * N;
const int32_t * iy = _iy.data, * ix = _ix.data, * ay = _ay.data, * ax = _ax.data;
int32_t ay0 = ay[0], ax0 = ax[0];
for (size_t dy = 0; dy < _param.dstH; dy++, dst += rowRest)
{
int32_t * buf = _by.data;
size_t yn = iy[dy + 1] - iy[dy];
ResizerByteArea1x1RowSum(src, srcStride, yn, rowSize, ay[dy], ay0, ay[dy + 1], buf), src += yn * srcStride;
size_t dx = 0;
for (; dx < bodyW; dx++, dst += N)
{
size_t xn = ix[dx + 1] - ix[dx];
Sse41::ResizerByteAreaResult<N>(buf, xn, ax[dx], ax0, ax[dx + 1], dst), buf += xn * N;
}
for (; dx < _param.dstW; dx++, dst += N)
{
size_t xn = ix[dx + 1] - ix[dx];
Base::ResizerByteAreaResult<N>(buf, xn, ax[dx], ax0, ax[dx + 1], dst), buf += xn * N;
}
}
}
void ResizerByteArea1x1::Run(const uint8_t * src, size_t srcStride, uint8_t * dst, size_t dstStride)
{
switch (_param.channels)
{
case 1: Run<1>(src, srcStride, dst, dstStride); return;
case 2: Run<2>(src, srcStride, dst, dstStride); return;
case 3: Run<3>(src, srcStride, dst, dstStride); return;
case 4: Run<4>(src, srcStride, dst, dstStride); return;
default:
assert(0);
}
}
//---------------------------------------------------------------------------------------------
ResizerByteArea2x2::ResizerByteArea2x2(const ResParam& param)
: Base::ResizerByteArea2x2(param)
{
}
template<size_t N> SIMD_INLINE __m128i ShuffleColor(__m128i val)
{
return val;
}
template<> SIMD_INLINE __m128i ShuffleColor<2>(__m128i val)
{
static const __m128i IDX = SIMD_MM_SETR_EPI8(0x0, 0x2, 0x1, 0x3, 0x4, 0x6, 0x5, 0x7, 0x8, 0xA, 0x9, 0xB, 0xC, 0xE, 0xD, 0xF);
return _mm_shuffle_epi8(val, IDX);
}
template<> SIMD_INLINE __m128i ShuffleColor<4>(__m128i val)
{
static const __m128i IDX = SIMD_MM_SETR_EPI8(0x0, 0x4, 0x1, 0x5, 0x2, 0x6, 0x3, 0x7, 0x8, 0xC, 0x9, 0xD, 0xA, 0xE, 0xB, 0xF);
return _mm_shuffle_epi8(val, IDX);
}
template<size_t N> SIMD_INLINE __m128i SaveLoadTail2x2(const uint8_t* ptr, size_t tail)
{
uint8_t buffer[DA];
_mm_storeu_si128((__m128i*)(buffer), LoadAfterLast<N>(_mm_loadu_si128((__m128i*)(ptr + tail - A))));
return _mm_loadu_si128((__m128i*)(buffer + A - tail - N));
}
template<size_t N, UpdateType update> SIMD_INLINE void ResizerByteArea2x2RowUpdateColor(const uint8_t* src0, const uint8_t* src1, size_t size, int32_t val, int32_t* dst)
{
if (update == UpdateAdd && val == 0)
return;
size_t size4F = AlignLoAny(size, 4 * F);
__m128i _val = _mm_set1_epi16(val);
size_t i = 0;
for (; i < size4F; i += 4 * F, dst += 2 * F)
{
__m128i s0 = _mm_maddubs_epi16(ShuffleColor<N>(_mm_loadu_si128((__m128i*)(src0 + i))), K8_01);
__m128i s1 = _mm_maddubs_epi16(ShuffleColor<N>(_mm_loadu_si128((__m128i*)(src1 + i))), K8_01);
Update<update, false>(dst + 0, _mm_madd_epi16(_mm_unpacklo_epi16(s0, s1), _val));
Update<update, false>(dst + F, _mm_madd_epi16(_mm_unpackhi_epi16(s0, s1), _val));
}
if (i < size)
{
size_t tail = size - i;
__m128i s0 = _mm_maddubs_epi16(ShuffleColor<N>(SaveLoadTail2x2<N>(src0 + i, tail)), K8_01);
__m128i s1 = _mm_maddubs_epi16(ShuffleColor<N>(SaveLoadTail2x2<N>(src1 + i, tail)), K8_01);
Update<update, false>(dst + 0, _mm_madd_epi16(_mm_unpacklo_epi16(s0, s1), _val));
Update<update, false>(dst + F, _mm_madd_epi16(_mm_unpackhi_epi16(s0, s1), _val));
}
}
template<size_t N> SIMD_INLINE void ResizerByteArea2x2RowSum(const uint8_t* src, size_t stride, size_t count, size_t size, int32_t curr, int32_t zero, int32_t next, bool tail, int32_t* dst)
{
size_t c = 0;
if (count)
{
ResizerByteArea2x2RowUpdateColor<N, UpdateSet>(src, src + stride, size, curr, dst), src += 2 * stride, c += 2;
for (; c < count; c += 2, src += 2 * stride)
ResizerByteArea2x2RowUpdateColor<N, UpdateAdd>(src, src + stride, size, zero, dst);
ResizerByteArea2x2RowUpdateColor<N, UpdateAdd>(src, tail ? src : src + stride, size, zero - next, dst);
}
else
ResizerByteArea2x2RowUpdateColor<N, UpdateSet>(src, tail ? src : src + stride, size, curr - next, dst);
}
SIMD_INLINE void SaveLoadTailBgr2x2(const uint8_t* ptr, size_t tail, __m128i * val)
{
uint8_t buffer[3 * A] = { 0 };
_mm_storeu_si128((__m128i*)(buffer + 0), _mm_loadu_si128((__m128i*)(ptr + tail - 24)));
_mm_storeu_si128((__m128i*)(buffer + 11), LoadAfterLast<3>(_mm_loadu_si128((__m128i*)(ptr + tail - 16))));
val[0] = _mm_loadu_si128((__m128i*)(buffer + 24 - tail));
val[1] = _mm_loadu_si128((__m128i*)(buffer + 32 - tail));
}
template<UpdateType update> SIMD_INLINE void ResizerByteArea2x2RowUpdateBgr(const uint8_t* src0, const uint8_t* src1, size_t size, int32_t val, int32_t* dst)
{
if (update == UpdateAdd && val == 0)
return;
size_t i = 0;
__m128i _val = _mm_set1_epi32(val);
static const __m128i K8_BGR0 = SIMD_MM_SETR_EPI8(0x0, 0x3, 0x1, 0x4, 0x2, 0x5, 0x6, 0x9, -1, -1, -1, -1, 0x7, 0xA, 0x8, 0xB);
static const __m128i K8_BGR1 = SIMD_MM_SETR_EPI8(0x4, 0x7, 0x5, 0x8, -1, -1, -1, -1, 0x6, 0x9, 0xA, 0xD, 0xB, 0xE, 0xC, 0xF);
size_t size24 = AlignLoAny(size, 24);
for (; i < size24; i += 24, dst += 12)
{
__m128i s00 = _mm_maddubs_epi16(_mm_shuffle_epi8(Load<false>((__m128i*)(src0 + i + 0)), K8_BGR0), K8_01);
__m128i s01 = _mm_maddubs_epi16(_mm_shuffle_epi8(Load<false>((__m128i*)(src0 + i + 8)), K8_BGR1), K8_01);
__m128i s10 = _mm_maddubs_epi16(_mm_shuffle_epi8(Load<false>((__m128i*)(src1 + i + 0)), K8_BGR0), K8_01);
__m128i s11 = _mm_maddubs_epi16(_mm_shuffle_epi8(Load<false>((__m128i*)(src1 + i + 8)), K8_BGR1), K8_01);
__m128i s0 = _mm_add_epi16(s00, s10);
__m128i s1 = _mm_add_epi16(s01, s11);
Update<update, false>(dst + 0 * F, _mm_madd_epi16(_mm_cvtepi16_epi32(s0), _val));
Update<update, false>(dst + 1 * F, _mm_madd_epi16(_mm_cvtepi16_epi32(_mm_alignr_epi8(s1, s0, 12)), _val));
Update<update, false>(dst + 2 * F, _mm_madd_epi16(_mm_cvtepi16_epi32(_mm_srli_si128(s1, 8)), _val));
}
if (i < size)
{
size_t tail = size - i;
__m128i s[4];
SaveLoadTailBgr2x2(src0 + i, tail, s + 0);
SaveLoadTailBgr2x2(src1 + i, tail, s + 2);
__m128i s0 = _mm_add_epi16(
_mm_maddubs_epi16(_mm_shuffle_epi8(s[0], K8_BGR0), K8_01),
_mm_maddubs_epi16(_mm_shuffle_epi8(s[2], K8_BGR0), K8_01));
__m128i s1 = _mm_add_epi16(
_mm_maddubs_epi16(_mm_shuffle_epi8(s[1], K8_BGR1), K8_01),
_mm_maddubs_epi16(_mm_shuffle_epi8(s[3], K8_BGR1), K8_01));
Update<update, false>(dst + 0 * F, _mm_madd_epi16(_mm_cvtepi16_epi32(s0), _val));
Update<update, false>(dst + 1 * F, _mm_madd_epi16(_mm_cvtepi16_epi32(_mm_alignr_epi8(s1, s0, 12)), _val));
Update<update, false>(dst + 2 * F, _mm_madd_epi16(_mm_cvtepi16_epi32(_mm_srli_si128(s1, 8)), _val));
}
}
template<> SIMD_INLINE void ResizerByteArea2x2RowSum<3>(const uint8_t* src, size_t stride, size_t count, size_t size, int32_t curr, int32_t zero, int32_t next, bool tail, int32_t* dst)
{
size_t c = 0;
if (count)
{
ResizerByteArea2x2RowUpdateBgr<UpdateSet>(src, src + stride, size, curr, dst), src += 2 * stride, c += 2;
for (; c < count; c += 2, src += 2 * stride)
ResizerByteArea2x2RowUpdateBgr<UpdateAdd>(src, src + stride, size, zero, dst);
ResizerByteArea2x2RowUpdateBgr<UpdateAdd>(src, tail ? src : src + stride, size, zero - next, dst);
}
else
ResizerByteArea2x2RowUpdateBgr<UpdateSet>(src, tail ? src : src + stride, size, curr - next, dst);
}
template<size_t N> void ResizerByteArea2x2::Run(const uint8_t* src, size_t srcStride, uint8_t* dst, size_t dstStride)
{
size_t bodyW = _param.dstW - (N == 3 ? 1 : 0), rowSize = _param.srcW * N, rowRest = dstStride - _param.dstW * N;
const int32_t* iy = _iy.data, * ix = _ix.data, * ay = _ay.data, * ax = _ax.data;
int32_t ay0 = ay[0], ax0 = ax[0];
for (size_t dy = 0; dy < _param.dstH; dy++, dst += rowRest)
{
int32_t* buf = _by.data;
size_t yn = (iy[dy + 1] - iy[dy]) * 2;
bool tail = (dy == _param.dstH - 1) && (_param.srcH & 1);
ResizerByteArea2x2RowSum<N>(src, srcStride, yn, rowSize, ay[dy], ay0, ay[dy + 1], tail, buf), src += yn * srcStride;
size_t dx = 0;
for (; dx < bodyW; dx++, dst += N)
{
size_t xn = ix[dx + 1] - ix[dx];
Sse41::ResizerByteAreaResult<N>(buf, xn, ax[dx], ax0, ax[dx + 1], dst), buf += xn * N;
}
for (; dx < _param.dstW; dx++, dst += N)
{
size_t xn = ix[dx + 1] - ix[dx];
Base::ResizerByteAreaResult<N>(buf, xn, ax[dx], ax0, ax[dx + 1], dst), buf += xn * N;
}
}
}
void ResizerByteArea2x2::Run(const uint8_t* src, size_t srcStride, uint8_t* dst, size_t dstStride)
{
switch (_param.channels)
{
case 1: Run<1>(src, srcStride, dst, dstStride); return;
case 2: Run<2>(src, srcStride, dst, dstStride); return;
case 3: Run<3>(src, srcStride, dst, dstStride); return;
case 4: Run<4>(src, srcStride, dst, dstStride); return;
default:
assert(0);
}
}
}
#endif
}
|