File: SimdSse41ResizerBicubic.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (412 lines) | stat: -rw-r--r-- 20,963 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Simd/SimdMemory.h"
#include "Simd/SimdStore.h"
#include "Simd/SimdResizer.h"
#include "Simd/SimdResizerCommon.h"
#include "Simd/SimdCopyPixel.h"

namespace Simd
{
#ifdef SIMD_SSE41_ENABLE
    namespace Sse41
    {
        ResizerByteBicubic::ResizerByteBicubic(const ResParam& param)
            : Base::ResizerByteBicubic(param)
        {
        }

        void ResizerByteBicubic::EstimateIndexAlphaY()
        {
            size_t sizeD = _param.dstH, sizeS = _param.srcH;
            _iy.Resize(sizeD);
            _ay.Resize(sizeD * 4);
            float scale = float(sizeS) / float(sizeD);
            size_t i = 0, sizeDF = AlignLo(sizeD, F);
            int32_t* ay = _ay.data;
            if (sizeDF)
            {
                __m128i _i = _mm_setr_epi32(0, 1, 2, 3);
                __m128 _scale = _mm_set1_ps(scale);
                __m128 _0 = _mm_set1_ps(0.0f);
                __m128 _05 = _mm_set1_ps(0.5f);
                __m128 _1 = _mm_set1_ps(1.0f);
                __m128 _2 = _mm_set1_ps(2.0f);
                __m128 _1_6 = _mm_set1_ps(1.0f / 6.0f);
                __m128 _max = _mm_set1_ps(float(sizeS - 2));
                __m128 _range = _mm_set1_ps(float(Base::BICUBIC_RANGE));

                for (; i < sizeDF; i += F, ay += 4 * F)
                {
                    __m128 _pos = _mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_cvtepi32_ps(_i), _05), _scale), _05);
                    __m128 idx = _mm_round_ps(_pos, _MM_FROUND_FLOOR);
                    __m128 d = _mm_sub_ps(_pos, idx);

                    __m128 minMask = _mm_cmplt_ps(idx, _0);
                    idx = _mm_blendv_ps(idx, _0, minMask);
                    d = _mm_blendv_ps(d, _0, minMask);

                    __m128 maxMask = _mm_cmpgt_ps(idx, _max);
                    idx = _mm_blendv_ps(idx, _max, maxMask);
                    d = _mm_blendv_ps(d, _1, maxMask);

                    _mm_storeu_si128((__m128i*)(_iy.data + i), _mm_cvtps_epi32(idx));

                    __m128i a0 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(_2, d), _mm_sub_ps(_1, d)), _mm_mul_ps(d, _1_6))));
                    __m128i a1 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(d, _2), _mm_add_ps(_1, d)), _mm_mul_ps(_mm_sub_ps(_1, d), _05))));
                    __m128i a2 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(d, _2), _mm_add_ps(_1, d)), _mm_mul_ps(d, _05))));
                    __m128i a3 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_add_ps(_1, d), _mm_sub_ps(_1, d)), _mm_mul_ps(d, _1_6))));
                    __m128i a00 = _mm_unpacklo_epi32(a0, a2);
                    __m128i a01 = _mm_unpacklo_epi32(a1, a3);
                    __m128i a10 = _mm_unpackhi_epi32(a0, a2);
                    __m128i a11 = _mm_unpackhi_epi32(a1, a3);
                    _mm_storeu_si128((__m128i*)ay + 0, _mm_unpacklo_epi32(a00, a01));
                    _mm_storeu_si128((__m128i*)ay + 1, _mm_unpackhi_epi32(a00, a01));
                    _mm_storeu_si128((__m128i*)ay + 2, _mm_unpacklo_epi32(a10, a11));
                    _mm_storeu_si128((__m128i*)ay + 3, _mm_unpackhi_epi32(a10, a11));

                    _i = _mm_add_epi32(_i, K32_00000004);
                }
            }
            for (; i < sizeD; ++i, ay += 4)
            {
                float pos = (float)((i + 0.5f) * scale - 0.5f);
                int idx = (int)::floor(pos);
                float d = pos - idx;
                if (idx < 0)
                {
                    idx = 0;
                    d = 0.0f;
                }
                if (idx > (int)sizeS - 2)
                {
                    idx = (int)sizeS - 2;
                    d = 1.0f;
                }
                _iy[i] = idx;
                ay[0] = Round(Base::BICUBIC_RANGE * (2.0f - d) * (1.0f - d) * d / 6.0f);
                ay[1] = Round(Base::BICUBIC_RANGE * (d - 2.0f) * (d + 1.0f) * (1.0f - d) / 2.0f);
                ay[2] = Round(Base::BICUBIC_RANGE * (d - 2.0f) * (d + 1.0f) * d / 2.0f);
                ay[3] = Round(Base::BICUBIC_RANGE * (1.0f + d) * (1.0f - d) * d / 6.0f);
            }
        }

        void ResizerByteBicubic::EstimateIndexAlphaX()
        {
            size_t sizeD = _param.dstW, sizeS = _param.srcW;
            _ix.Resize(sizeD);
            _ax.Resize(sizeD * 4);
            float scale = float(sizeS) / float(sizeD);
            size_t i = 0, sizeDF = AlignLo(sizeD, F);
            int8_t* ax = _ax.data;
            if (sizeDF)
            {
                static const __m128i _SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x4, 0x8, 0xC, 0x1, 0x5, 0x9, 0xD, 0x2, 0x6, 0xA, 0xE, 0x3, 0x7, 0xB, 0xF);
                __m128i _i = _mm_setr_epi32(0, 1, 2, 3);
                __m128 _scale = _mm_set1_ps(scale);
                __m128 _0 = _mm_set1_ps(0.0f);
                __m128 _05 = _mm_set1_ps(0.5f);
                __m128 _1 = _mm_set1_ps(1.0f);
                __m128 _2 = _mm_set1_ps(2.0f);
                __m128 _1_6 = _mm_set1_ps(1.0f / 6.0f);
                __m128 _max = _mm_set1_ps(float(sizeS - 2));
                __m128 _range = _mm_set1_ps(float(Base::BICUBIC_RANGE));
                __m128i _channels = _mm_set1_epi32((int)_param.channels);

                for (; i < sizeDF; i += F, ax += 4 * F)
                {
                    __m128 _pos = _mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_cvtepi32_ps(_i), _05), _scale), _05);
                    __m128 idx = _mm_round_ps(_pos, _MM_FROUND_FLOOR);
                    __m128 d = _mm_sub_ps(_pos, idx);

                    __m128 minMask = _mm_cmplt_ps(idx, _0);
                    idx = _mm_blendv_ps(idx, _0, minMask);
                    d = _mm_blendv_ps(d, _0, minMask);

                    __m128 maxMask = _mm_cmpgt_ps(idx, _max);
                    idx = _mm_blendv_ps(idx, _max, maxMask);
                    d = _mm_blendv_ps(d, _1, maxMask);

                    _mm_storeu_si128((__m128i*)(_ix.data + i), _mm_mullo_epi32(_mm_cvtps_epi32(idx), _channels));

                    __m128i a0 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(_2, d), _mm_sub_ps(_1, d)), _mm_mul_ps(d, _1_6))));
                    __m128i a1 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(d, _2), _mm_add_ps(_1, d)), _mm_mul_ps(_mm_sub_ps(_1, d), _05))));
                    __m128i a2 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(d, _2), _mm_add_ps(_1, d)), _mm_mul_ps(d, _05))));
                    __m128i a3 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_add_ps(_1, d), _mm_sub_ps(_1, d)), _mm_mul_ps(d, _1_6))));
                    _mm_storeu_si128((__m128i*)ax, _mm_shuffle_epi8(_mm_packs_epi16(_mm_packs_epi32(a0, a1), _mm_packs_epi32(a2, a3)), _SHUFFLE));

                    _i = _mm_add_epi32(_i, K32_00000004);
                }
            }
            for (; i < sizeD; ++i, ax += 4)
            {
                float pos = (float)((i + 0.5f) * scale - 0.5f);
                int idx = (int)::floor(pos);
                float d = pos - idx;
                if (idx < 0)
                {
                    idx = 0;
                    d = 0.0f;
                }
                if (idx > (int)sizeS - 2)
                {
                    idx = (int)sizeS - 2;
                    d = 1.0f;
                }
                _ix[i] = idx * (int)_param.channels;
                ax[0] = (int8_t)Round(Base::BICUBIC_RANGE * (2.0f - d) * (1.0f - d) * d / 6.0f);
                ax[1] = (int8_t)Round(Base::BICUBIC_RANGE * (d - 2.0f) * (d + 1.0f) * (1.0f - d) / 2.0f);
                ax[2] = (int8_t)Round(Base::BICUBIC_RANGE * (d - 2.0f) * (d + 1.0f) * d / 2.0f);
                ax[3] = (int8_t)Round(Base::BICUBIC_RANGE * (1.0f + d) * (1.0f - d) * d / 6.0f);
            }
        }

        void ResizerByteBicubic::ResizerByteBicubic::Init(bool sparse)
        {
            if (_iy.data)
                return;
            EstimateIndexAlphaY();
            EstimateIndexAlphaX();
            if (!sparse)
            {
                for (int i = 0; i < 4; ++i)
                    _bx[i].Resize(_param.dstW * _param.channels);
            }
            _sxl = (_param.srcW - 2) * _param.channels;
            for (_xn = 0; _ix[_xn] == 0; _xn++);
            for (_xt = _param.dstW; _ix[_xt - 1] == _sxl; _xt--);
        }

        template<int N> __m128i LoadAx(const int8_t* ax);

        template<> SIMD_INLINE __m128i LoadAx<1>(const int8_t* ax)
        {
            return _mm_loadu_si128((__m128i*)ax);
        }

        template<> SIMD_INLINE __m128i LoadAx<2>(const int8_t* ax)
        {
            return _mm_shuffle_epi32(_mm_loadl_epi64((__m128i*)ax), 0x50);
        }

        template<> SIMD_INLINE __m128i LoadAx<3>(const int8_t* ax)
        {
            return _mm_set1_epi32(*(int32_t*)ax);
        }

        template<> SIMD_INLINE __m128i LoadAx<4>(const int8_t* ax)
        {
            return _mm_set1_epi32(*(int32_t*)ax);
        }

        template<int N> __m128i CubicSumX(const uint8_t* src, const int32_t* ix, __m128i ax, __m128i ay);

        template<> SIMD_INLINE __m128i CubicSumX<1>(const uint8_t* src, const int32_t* ix, __m128i ax, __m128i ay)
        {
            __m128i _src = _mm_setr_epi32(*(int32_t*)(src + ix[0]), *(int32_t*)(src + ix[1]), *(int32_t*)(src + ix[2]), *(int32_t*)(src + ix[3]));
            return _mm_madd_epi16(_mm_maddubs_epi16(_src, ax), ay);
        }

        template<> SIMD_INLINE __m128i CubicSumX<2>(const uint8_t* src, const int32_t* ix, __m128i ax, __m128i ay)
        {
            static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x2, 0x4, 0x6, 0x1, 0x3, 0x5, 0x7, 0x8, 0xA, 0xC, 0xE, 0x9, 0xB, 0xD, 0xF);
            __m128i _src = _mm_shuffle_epi8(Load((__m128i*)(src + ix[0]), (__m128i*)(src + ix[1])), SHUFFLE);
            return _mm_madd_epi16(_mm_maddubs_epi16(_src, ax), ay);
        }

        template<> SIMD_INLINE __m128i CubicSumX<3>(const uint8_t* src, const int32_t* ix, __m128i ax, __m128i ay)
        {
            static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x3, 0x6, 0x9, 0x1, 0x4, 0x7, 0xA, 0x2, 0x5, 0x8, 0xB, -1, -1, -1, -1);
            __m128i _src = _mm_shuffle_epi8(_mm_loadu_si128((__m128i*)(src + ix[0])), SHUFFLE);
            return _mm_madd_epi16(_mm_maddubs_epi16(_src, ax), ay);
        }

        template<> SIMD_INLINE __m128i CubicSumX<4>(const uint8_t* src, const int32_t* ix, __m128i ax, __m128i ay)
        {
            static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x4, 0x8, 0xC, 0x1, 0x5, 0x9, 0xD, 0x2, 0x6, 0xA, 0xE, 0x3, 0x7, 0xB, 0xF);
            __m128i _src = _mm_shuffle_epi8(_mm_loadu_si128((__m128i*)(src + ix[0])), SHUFFLE);
            return _mm_madd_epi16(_mm_maddubs_epi16(_src, ax), ay);
        }

        template <int N> SIMD_INLINE void BicubicInt(const uint8_t* src0, const uint8_t* src1, const uint8_t* src2, const uint8_t* src3, const int32_t* ix, const int8_t* ax, const __m128i* ay, uint8_t* dst)
        {
            static const __m128i ROUND = SIMD_MM_SET1_EPI32(Base::BICUBIC_ROUND);
            __m128i _ax = LoadAx<N>(ax);
            __m128i say0 = CubicSumX<N>(src0 - N, ix, _ax, ay[0]);
            __m128i say1 = CubicSumX<N>(src1 - N, ix, _ax, ay[1]);
            __m128i say2 = CubicSumX<N>(src2 - N, ix, _ax, ay[2]);
            __m128i say3 = CubicSumX<N>(src3 - N, ix, _ax, ay[3]);
            __m128i sum = _mm_add_epi32(_mm_add_epi32(say0, say1), _mm_add_epi32(say2, say3));
            __m128i dst0 = _mm_srai_epi32(_mm_add_epi32(sum, ROUND), Base::BICUBIC_SHIFT);
            *((int32_t*)(dst)) = _mm_cvtsi128_si32(_mm_packus_epi16(_mm_packs_epi32(dst0, K_ZERO), K_ZERO));
        }

        template<int N> void ResizerByteBicubic::RunS(const uint8_t* src, size_t srcStride, uint8_t* dst, size_t dstStride)
        {
            assert(_xn == 0 && _xt == _param.dstW);
            size_t step = 4 / N;
            size_t body = AlignLoAny(_param.dstW - (N == 3 ? 1 : 0), step);
            for (size_t dy = 0; dy < _param.dstH; dy++, dst += dstStride)
            {
                size_t sy = _iy[dy];
                const uint8_t* src1 = src + sy * srcStride;
                const uint8_t* src2 = src1 + srcStride;
                const uint8_t* src0 = sy ? src1 - srcStride : src1;
                const uint8_t* src3 = sy < _param.srcH - 2 ? src2 + srcStride : src2;
                const int32_t* ay = _ay.data + dy * 4;
                __m128i ays[4];
                ays[0] = _mm_set1_epi16(ay[0]);
                ays[1] = _mm_set1_epi16(ay[1]);
                ays[2] = _mm_set1_epi16(ay[2]);
                ays[3] = _mm_set1_epi16(ay[3]);
                size_t dx = 0;
                for (; dx < body; dx += step)
                    BicubicInt<N>(src0, src1, src2, src3, _ix.data + dx, _ax.data + dx * 4, ays, dst + dx * N);
                for (; dx < _param.dstW; dx++)
                    Base::BicubicInt<N, -1, 2>(src0, src1, src2, src3, _ix[dx], _ax.data + dx * 4, ay, dst + dx * N);
            }
        }

        template<int F> SIMD_INLINE void PixelCubicSumX(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst);

        template<> SIMD_INLINE void PixelCubicSumX<1>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
        {
            __m128i _src = _mm_setr_epi32(*(int32_t*)(src + ix[0]), *(int32_t*)(src + ix[1]), *(int32_t*)(src + ix[2]), *(int32_t*)(src + ix[3]));
            __m128i _ax = _mm_loadu_si128((__m128i*)ax);
            _mm_storeu_si128((__m128i*)dst, _mm_madd_epi16(_mm_maddubs_epi16(_src, _ax), K16_0001));
        }

        template<> SIMD_INLINE void PixelCubicSumX<2>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
        {
            static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x2, 0x4, 0x6, 0x1, 0x3, 0x5, 0x7, 0x8, 0xA, 0xC, 0xE, 0x9, 0xB, 0xD, 0xF);
            __m128i _src = _mm_shuffle_epi8(Load((__m128i*)(src + ix[0]), (__m128i*)(src + ix[1])), SHUFFLE);
            __m128i _ax = _mm_shuffle_epi32(_mm_loadl_epi64((__m128i*)ax), 0x50);
            _mm_storeu_si128((__m128i*)dst, _mm_madd_epi16(_mm_maddubs_epi16(_src, _ax), K16_0001));
        }

        template<> SIMD_INLINE void PixelCubicSumX<3>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
        {
            static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x3, 0x6, 0x9, 0x1, 0x4, 0x7, 0xA, 0x2, 0x5, 0x8, 0xB, -1, -1, -1, -1);
            __m128i _src = _mm_shuffle_epi8(_mm_loadu_si128((__m128i*)(src + ix[0])), SHUFFLE);
            __m128i _ax = _mm_set1_epi32(*(int32_t*)ax);
            _mm_storeu_si128((__m128i*)dst, _mm_madd_epi16(_mm_maddubs_epi16(_src, _ax), K16_0001));
        }

        template<> SIMD_INLINE void PixelCubicSumX<4>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
        {
            static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x4, 0x8, 0xC, 0x1, 0x5, 0x9, 0xD, 0x2, 0x6, 0xA, 0xE, 0x3, 0x7, 0xB, 0xF);
            __m128i _src = _mm_shuffle_epi8(_mm_loadu_si128((__m128i*)(src + ix[0])), SHUFFLE);
            __m128i _ax = _mm_set1_epi32(*(int32_t*)ax);
            _mm_storeu_si128((__m128i*)dst, _mm_madd_epi16(_mm_maddubs_epi16(_src, _ax), K16_0001));
        }

        template<int N> SIMD_INLINE void RowCubicSumX(const uint8_t* src, size_t nose, size_t body, size_t tail, const int32_t* ix, const int8_t* ax, int32_t* dst)
        {
            size_t step = 4 / N;
            size_t bodyS = nose + AlignLoAny(body - nose, step);

            size_t dx = 0;
            for (; dx < nose; dx++, ax += 4, dst += N)
                Base::PixelCubicSumX<N, 0, 2>(src + ix[dx], ax, dst);
            for (; dx < bodyS; dx += step, ax += 4 * step, dst += N * step)
                PixelCubicSumX<N>(src - N, ix + dx, ax, dst);
            for (; dx < body; dx++, ax += 4, dst += N)
                Base::PixelCubicSumX<N, -1, 2>(src + ix[dx], ax, dst);
            for (; dx < tail; dx++, ax += 4, dst += N)
                Base::PixelCubicSumX<N, -1, 1>(src + ix[dx], ax, dst);
        }

        SIMD_INLINE void BicubicRowInt(const int32_t* src0, const int32_t* src1, const int32_t* src2, const int32_t* src3, size_t n, const int32_t* ay, uint8_t* dst)
        {
            size_t nF = AlignLo(n, F);
            size_t i = 0;
            if (nF)
            {
                static const __m128i ROUND = SIMD_MM_SET1_EPI32(Base::BICUBIC_ROUND);
                __m128i ay0 = _mm_set1_epi32(ay[0]);
                __m128i ay1 = _mm_set1_epi32(ay[1]);
                __m128i ay2 = _mm_set1_epi32(ay[2]);
                __m128i ay3 = _mm_set1_epi32(ay[3]);
                for (; i < nF; i += F)
                {
                    __m128i say0 = _mm_mullo_epi32(_mm_loadu_si128((__m128i*)(src0 + i)), ay0);
                    __m128i say1 = _mm_mullo_epi32(_mm_loadu_si128((__m128i*)(src1 + i)), ay1);
                    __m128i say2 = _mm_mullo_epi32(_mm_loadu_si128((__m128i*)(src2 + i)), ay2);
                    __m128i say3 = _mm_mullo_epi32(_mm_loadu_si128((__m128i*)(src3 + i)), ay3);
                    __m128i sum = _mm_add_epi32(_mm_add_epi32(say0, say1), _mm_add_epi32(say2, say3));
                    __m128i dst0 = _mm_srai_epi32(_mm_add_epi32(sum, ROUND), Base::BICUBIC_SHIFT);
                   *((int32_t*)(dst + i)) = _mm_cvtsi128_si32(_mm_packus_epi16(_mm_packs_epi32(dst0, K_ZERO), K_ZERO));
                }
            }
            for (; i < n; ++i)
            {
                int32_t sum = ay[0] * src0[i] + ay[1] * src1[i] + ay[2] * src2[i] + ay[3] * src3[i];
                dst[i] = Base::RestrictRange((sum + Base::BICUBIC_ROUND) >> Base::BICUBIC_SHIFT, 0, 255);
            }
        }

        template<int N> void ResizerByteBicubic::RunB(const uint8_t* src, size_t srcStride, uint8_t* dst, size_t dstStride)
        {
            int32_t prev = -1;
            for (size_t dy = 0; dy < _param.dstH; dy++, dst += dstStride)
            {
                int32_t sy = _iy[dy], next = prev;
                for (int32_t curr = sy - 1, end = sy + 3; curr < end; ++curr)
                {
                    if (curr < prev)
                        continue;
                    const uint8_t* ps = src + RestrictRange(curr, 0, (int)_param.srcH - 1) * srcStride;
                    int32_t* pb = _bx[(curr + 1) & 3].data;
                    RowCubicSumX<N>(ps, _xn, _xt, _param.dstW, _ix.data, _ax.data, pb);
                    next++;
                }
                prev = next;

                const int32_t* ay = _ay.data + dy * 4;
                int32_t* pb0 = _bx[(sy + 0) & 3].data;
                int32_t* pb1 = _bx[(sy + 1) & 3].data;
                int32_t* pb2 = _bx[(sy + 2) & 3].data;
                int32_t* pb3 = _bx[(sy + 3) & 3].data;
                BicubicRowInt(pb0, pb1, pb2, pb3, _bx[0].size, ay, dst);
            }
        }

        void ResizerByteBicubic::Run(const uint8_t* src, size_t srcStride, uint8_t* dst, size_t dstStride)
        {
            bool sparse = _param.dstH * 3.0 <= _param.srcH;
            Init(sparse);
            switch (_param.channels)
            {
            case 1: sparse ? RunS<1>(src, srcStride, dst, dstStride) : RunB<1>(src, srcStride, dst, dstStride); return;
            case 2: sparse ? RunS<2>(src, srcStride, dst, dstStride) : RunB<2>(src, srcStride, dst, dstStride); return;
            case 3: sparse ? RunS<3>(src, srcStride, dst, dstStride) : RunB<3>(src, srcStride, dst, dstStride); return;
            case 4: sparse ? RunS<4>(src, srcStride, dst, dstStride) : RunB<4>(src, srcStride, dst, dstStride); return;
            default:
                assert(0);
            }
        }
    }
#endif
}