1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
/*
* Simd Library (http://ermig1979.github.io/Simd).
*
* Copyright (c) 2011-2022 Yermalayeu Ihar.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Simd/SimdMemory.h"
#include "Simd/SimdStore.h"
#include "Simd/SimdResizer.h"
#include "Simd/SimdResizerCommon.h"
#include "Simd/SimdCopyPixel.h"
namespace Simd
{
#ifdef SIMD_SSE41_ENABLE
namespace Sse41
{
ResizerByteBicubic::ResizerByteBicubic(const ResParam& param)
: Base::ResizerByteBicubic(param)
{
}
void ResizerByteBicubic::EstimateIndexAlphaY()
{
size_t sizeD = _param.dstH, sizeS = _param.srcH;
_iy.Resize(sizeD);
_ay.Resize(sizeD * 4);
float scale = float(sizeS) / float(sizeD);
size_t i = 0, sizeDF = AlignLo(sizeD, F);
int32_t* ay = _ay.data;
if (sizeDF)
{
__m128i _i = _mm_setr_epi32(0, 1, 2, 3);
__m128 _scale = _mm_set1_ps(scale);
__m128 _0 = _mm_set1_ps(0.0f);
__m128 _05 = _mm_set1_ps(0.5f);
__m128 _1 = _mm_set1_ps(1.0f);
__m128 _2 = _mm_set1_ps(2.0f);
__m128 _1_6 = _mm_set1_ps(1.0f / 6.0f);
__m128 _max = _mm_set1_ps(float(sizeS - 2));
__m128 _range = _mm_set1_ps(float(Base::BICUBIC_RANGE));
for (; i < sizeDF; i += F, ay += 4 * F)
{
__m128 _pos = _mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_cvtepi32_ps(_i), _05), _scale), _05);
__m128 idx = _mm_round_ps(_pos, _MM_FROUND_FLOOR);
__m128 d = _mm_sub_ps(_pos, idx);
__m128 minMask = _mm_cmplt_ps(idx, _0);
idx = _mm_blendv_ps(idx, _0, minMask);
d = _mm_blendv_ps(d, _0, minMask);
__m128 maxMask = _mm_cmpgt_ps(idx, _max);
idx = _mm_blendv_ps(idx, _max, maxMask);
d = _mm_blendv_ps(d, _1, maxMask);
_mm_storeu_si128((__m128i*)(_iy.data + i), _mm_cvtps_epi32(idx));
__m128i a0 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(_2, d), _mm_sub_ps(_1, d)), _mm_mul_ps(d, _1_6))));
__m128i a1 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(d, _2), _mm_add_ps(_1, d)), _mm_mul_ps(_mm_sub_ps(_1, d), _05))));
__m128i a2 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(d, _2), _mm_add_ps(_1, d)), _mm_mul_ps(d, _05))));
__m128i a3 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_add_ps(_1, d), _mm_sub_ps(_1, d)), _mm_mul_ps(d, _1_6))));
__m128i a00 = _mm_unpacklo_epi32(a0, a2);
__m128i a01 = _mm_unpacklo_epi32(a1, a3);
__m128i a10 = _mm_unpackhi_epi32(a0, a2);
__m128i a11 = _mm_unpackhi_epi32(a1, a3);
_mm_storeu_si128((__m128i*)ay + 0, _mm_unpacklo_epi32(a00, a01));
_mm_storeu_si128((__m128i*)ay + 1, _mm_unpackhi_epi32(a00, a01));
_mm_storeu_si128((__m128i*)ay + 2, _mm_unpacklo_epi32(a10, a11));
_mm_storeu_si128((__m128i*)ay + 3, _mm_unpackhi_epi32(a10, a11));
_i = _mm_add_epi32(_i, K32_00000004);
}
}
for (; i < sizeD; ++i, ay += 4)
{
float pos = (float)((i + 0.5f) * scale - 0.5f);
int idx = (int)::floor(pos);
float d = pos - idx;
if (idx < 0)
{
idx = 0;
d = 0.0f;
}
if (idx > (int)sizeS - 2)
{
idx = (int)sizeS - 2;
d = 1.0f;
}
_iy[i] = idx;
ay[0] = Round(Base::BICUBIC_RANGE * (2.0f - d) * (1.0f - d) * d / 6.0f);
ay[1] = Round(Base::BICUBIC_RANGE * (d - 2.0f) * (d + 1.0f) * (1.0f - d) / 2.0f);
ay[2] = Round(Base::BICUBIC_RANGE * (d - 2.0f) * (d + 1.0f) * d / 2.0f);
ay[3] = Round(Base::BICUBIC_RANGE * (1.0f + d) * (1.0f - d) * d / 6.0f);
}
}
void ResizerByteBicubic::EstimateIndexAlphaX()
{
size_t sizeD = _param.dstW, sizeS = _param.srcW;
_ix.Resize(sizeD);
_ax.Resize(sizeD * 4);
float scale = float(sizeS) / float(sizeD);
size_t i = 0, sizeDF = AlignLo(sizeD, F);
int8_t* ax = _ax.data;
if (sizeDF)
{
static const __m128i _SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x4, 0x8, 0xC, 0x1, 0x5, 0x9, 0xD, 0x2, 0x6, 0xA, 0xE, 0x3, 0x7, 0xB, 0xF);
__m128i _i = _mm_setr_epi32(0, 1, 2, 3);
__m128 _scale = _mm_set1_ps(scale);
__m128 _0 = _mm_set1_ps(0.0f);
__m128 _05 = _mm_set1_ps(0.5f);
__m128 _1 = _mm_set1_ps(1.0f);
__m128 _2 = _mm_set1_ps(2.0f);
__m128 _1_6 = _mm_set1_ps(1.0f / 6.0f);
__m128 _max = _mm_set1_ps(float(sizeS - 2));
__m128 _range = _mm_set1_ps(float(Base::BICUBIC_RANGE));
__m128i _channels = _mm_set1_epi32((int)_param.channels);
for (; i < sizeDF; i += F, ax += 4 * F)
{
__m128 _pos = _mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_cvtepi32_ps(_i), _05), _scale), _05);
__m128 idx = _mm_round_ps(_pos, _MM_FROUND_FLOOR);
__m128 d = _mm_sub_ps(_pos, idx);
__m128 minMask = _mm_cmplt_ps(idx, _0);
idx = _mm_blendv_ps(idx, _0, minMask);
d = _mm_blendv_ps(d, _0, minMask);
__m128 maxMask = _mm_cmpgt_ps(idx, _max);
idx = _mm_blendv_ps(idx, _max, maxMask);
d = _mm_blendv_ps(d, _1, maxMask);
_mm_storeu_si128((__m128i*)(_ix.data + i), _mm_mullo_epi32(_mm_cvtps_epi32(idx), _channels));
__m128i a0 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(_2, d), _mm_sub_ps(_1, d)), _mm_mul_ps(d, _1_6))));
__m128i a1 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(d, _2), _mm_add_ps(_1, d)), _mm_mul_ps(_mm_sub_ps(_1, d), _05))));
__m128i a2 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_sub_ps(d, _2), _mm_add_ps(_1, d)), _mm_mul_ps(d, _05))));
__m128i a3 = _mm_cvtps_epi32(_mm_mul_ps(_range, _mm_mul_ps(_mm_mul_ps(_mm_add_ps(_1, d), _mm_sub_ps(_1, d)), _mm_mul_ps(d, _1_6))));
_mm_storeu_si128((__m128i*)ax, _mm_shuffle_epi8(_mm_packs_epi16(_mm_packs_epi32(a0, a1), _mm_packs_epi32(a2, a3)), _SHUFFLE));
_i = _mm_add_epi32(_i, K32_00000004);
}
}
for (; i < sizeD; ++i, ax += 4)
{
float pos = (float)((i + 0.5f) * scale - 0.5f);
int idx = (int)::floor(pos);
float d = pos - idx;
if (idx < 0)
{
idx = 0;
d = 0.0f;
}
if (idx > (int)sizeS - 2)
{
idx = (int)sizeS - 2;
d = 1.0f;
}
_ix[i] = idx * (int)_param.channels;
ax[0] = (int8_t)Round(Base::BICUBIC_RANGE * (2.0f - d) * (1.0f - d) * d / 6.0f);
ax[1] = (int8_t)Round(Base::BICUBIC_RANGE * (d - 2.0f) * (d + 1.0f) * (1.0f - d) / 2.0f);
ax[2] = (int8_t)Round(Base::BICUBIC_RANGE * (d - 2.0f) * (d + 1.0f) * d / 2.0f);
ax[3] = (int8_t)Round(Base::BICUBIC_RANGE * (1.0f + d) * (1.0f - d) * d / 6.0f);
}
}
void ResizerByteBicubic::ResizerByteBicubic::Init(bool sparse)
{
if (_iy.data)
return;
EstimateIndexAlphaY();
EstimateIndexAlphaX();
if (!sparse)
{
for (int i = 0; i < 4; ++i)
_bx[i].Resize(_param.dstW * _param.channels);
}
_sxl = (_param.srcW - 2) * _param.channels;
for (_xn = 0; _ix[_xn] == 0; _xn++);
for (_xt = _param.dstW; _ix[_xt - 1] == _sxl; _xt--);
}
template<int N> __m128i LoadAx(const int8_t* ax);
template<> SIMD_INLINE __m128i LoadAx<1>(const int8_t* ax)
{
return _mm_loadu_si128((__m128i*)ax);
}
template<> SIMD_INLINE __m128i LoadAx<2>(const int8_t* ax)
{
return _mm_shuffle_epi32(_mm_loadl_epi64((__m128i*)ax), 0x50);
}
template<> SIMD_INLINE __m128i LoadAx<3>(const int8_t* ax)
{
return _mm_set1_epi32(*(int32_t*)ax);
}
template<> SIMD_INLINE __m128i LoadAx<4>(const int8_t* ax)
{
return _mm_set1_epi32(*(int32_t*)ax);
}
template<int N> __m128i CubicSumX(const uint8_t* src, const int32_t* ix, __m128i ax, __m128i ay);
template<> SIMD_INLINE __m128i CubicSumX<1>(const uint8_t* src, const int32_t* ix, __m128i ax, __m128i ay)
{
__m128i _src = _mm_setr_epi32(*(int32_t*)(src + ix[0]), *(int32_t*)(src + ix[1]), *(int32_t*)(src + ix[2]), *(int32_t*)(src + ix[3]));
return _mm_madd_epi16(_mm_maddubs_epi16(_src, ax), ay);
}
template<> SIMD_INLINE __m128i CubicSumX<2>(const uint8_t* src, const int32_t* ix, __m128i ax, __m128i ay)
{
static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x2, 0x4, 0x6, 0x1, 0x3, 0x5, 0x7, 0x8, 0xA, 0xC, 0xE, 0x9, 0xB, 0xD, 0xF);
__m128i _src = _mm_shuffle_epi8(Load((__m128i*)(src + ix[0]), (__m128i*)(src + ix[1])), SHUFFLE);
return _mm_madd_epi16(_mm_maddubs_epi16(_src, ax), ay);
}
template<> SIMD_INLINE __m128i CubicSumX<3>(const uint8_t* src, const int32_t* ix, __m128i ax, __m128i ay)
{
static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x3, 0x6, 0x9, 0x1, 0x4, 0x7, 0xA, 0x2, 0x5, 0x8, 0xB, -1, -1, -1, -1);
__m128i _src = _mm_shuffle_epi8(_mm_loadu_si128((__m128i*)(src + ix[0])), SHUFFLE);
return _mm_madd_epi16(_mm_maddubs_epi16(_src, ax), ay);
}
template<> SIMD_INLINE __m128i CubicSumX<4>(const uint8_t* src, const int32_t* ix, __m128i ax, __m128i ay)
{
static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x4, 0x8, 0xC, 0x1, 0x5, 0x9, 0xD, 0x2, 0x6, 0xA, 0xE, 0x3, 0x7, 0xB, 0xF);
__m128i _src = _mm_shuffle_epi8(_mm_loadu_si128((__m128i*)(src + ix[0])), SHUFFLE);
return _mm_madd_epi16(_mm_maddubs_epi16(_src, ax), ay);
}
template <int N> SIMD_INLINE void BicubicInt(const uint8_t* src0, const uint8_t* src1, const uint8_t* src2, const uint8_t* src3, const int32_t* ix, const int8_t* ax, const __m128i* ay, uint8_t* dst)
{
static const __m128i ROUND = SIMD_MM_SET1_EPI32(Base::BICUBIC_ROUND);
__m128i _ax = LoadAx<N>(ax);
__m128i say0 = CubicSumX<N>(src0 - N, ix, _ax, ay[0]);
__m128i say1 = CubicSumX<N>(src1 - N, ix, _ax, ay[1]);
__m128i say2 = CubicSumX<N>(src2 - N, ix, _ax, ay[2]);
__m128i say3 = CubicSumX<N>(src3 - N, ix, _ax, ay[3]);
__m128i sum = _mm_add_epi32(_mm_add_epi32(say0, say1), _mm_add_epi32(say2, say3));
__m128i dst0 = _mm_srai_epi32(_mm_add_epi32(sum, ROUND), Base::BICUBIC_SHIFT);
*((int32_t*)(dst)) = _mm_cvtsi128_si32(_mm_packus_epi16(_mm_packs_epi32(dst0, K_ZERO), K_ZERO));
}
template<int N> void ResizerByteBicubic::RunS(const uint8_t* src, size_t srcStride, uint8_t* dst, size_t dstStride)
{
assert(_xn == 0 && _xt == _param.dstW);
size_t step = 4 / N;
size_t body = AlignLoAny(_param.dstW - (N == 3 ? 1 : 0), step);
for (size_t dy = 0; dy < _param.dstH; dy++, dst += dstStride)
{
size_t sy = _iy[dy];
const uint8_t* src1 = src + sy * srcStride;
const uint8_t* src2 = src1 + srcStride;
const uint8_t* src0 = sy ? src1 - srcStride : src1;
const uint8_t* src3 = sy < _param.srcH - 2 ? src2 + srcStride : src2;
const int32_t* ay = _ay.data + dy * 4;
__m128i ays[4];
ays[0] = _mm_set1_epi16(ay[0]);
ays[1] = _mm_set1_epi16(ay[1]);
ays[2] = _mm_set1_epi16(ay[2]);
ays[3] = _mm_set1_epi16(ay[3]);
size_t dx = 0;
for (; dx < body; dx += step)
BicubicInt<N>(src0, src1, src2, src3, _ix.data + dx, _ax.data + dx * 4, ays, dst + dx * N);
for (; dx < _param.dstW; dx++)
Base::BicubicInt<N, -1, 2>(src0, src1, src2, src3, _ix[dx], _ax.data + dx * 4, ay, dst + dx * N);
}
}
template<int F> SIMD_INLINE void PixelCubicSumX(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst);
template<> SIMD_INLINE void PixelCubicSumX<1>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
{
__m128i _src = _mm_setr_epi32(*(int32_t*)(src + ix[0]), *(int32_t*)(src + ix[1]), *(int32_t*)(src + ix[2]), *(int32_t*)(src + ix[3]));
__m128i _ax = _mm_loadu_si128((__m128i*)ax);
_mm_storeu_si128((__m128i*)dst, _mm_madd_epi16(_mm_maddubs_epi16(_src, _ax), K16_0001));
}
template<> SIMD_INLINE void PixelCubicSumX<2>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
{
static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x2, 0x4, 0x6, 0x1, 0x3, 0x5, 0x7, 0x8, 0xA, 0xC, 0xE, 0x9, 0xB, 0xD, 0xF);
__m128i _src = _mm_shuffle_epi8(Load((__m128i*)(src + ix[0]), (__m128i*)(src + ix[1])), SHUFFLE);
__m128i _ax = _mm_shuffle_epi32(_mm_loadl_epi64((__m128i*)ax), 0x50);
_mm_storeu_si128((__m128i*)dst, _mm_madd_epi16(_mm_maddubs_epi16(_src, _ax), K16_0001));
}
template<> SIMD_INLINE void PixelCubicSumX<3>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
{
static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x3, 0x6, 0x9, 0x1, 0x4, 0x7, 0xA, 0x2, 0x5, 0x8, 0xB, -1, -1, -1, -1);
__m128i _src = _mm_shuffle_epi8(_mm_loadu_si128((__m128i*)(src + ix[0])), SHUFFLE);
__m128i _ax = _mm_set1_epi32(*(int32_t*)ax);
_mm_storeu_si128((__m128i*)dst, _mm_madd_epi16(_mm_maddubs_epi16(_src, _ax), K16_0001));
}
template<> SIMD_INLINE void PixelCubicSumX<4>(const uint8_t* src, const int32_t* ix, const int8_t* ax, int32_t* dst)
{
static const __m128i SHUFFLE = SIMD_MM_SETR_EPI8(0x0, 0x4, 0x8, 0xC, 0x1, 0x5, 0x9, 0xD, 0x2, 0x6, 0xA, 0xE, 0x3, 0x7, 0xB, 0xF);
__m128i _src = _mm_shuffle_epi8(_mm_loadu_si128((__m128i*)(src + ix[0])), SHUFFLE);
__m128i _ax = _mm_set1_epi32(*(int32_t*)ax);
_mm_storeu_si128((__m128i*)dst, _mm_madd_epi16(_mm_maddubs_epi16(_src, _ax), K16_0001));
}
template<int N> SIMD_INLINE void RowCubicSumX(const uint8_t* src, size_t nose, size_t body, size_t tail, const int32_t* ix, const int8_t* ax, int32_t* dst)
{
size_t step = 4 / N;
size_t bodyS = nose + AlignLoAny(body - nose, step);
size_t dx = 0;
for (; dx < nose; dx++, ax += 4, dst += N)
Base::PixelCubicSumX<N, 0, 2>(src + ix[dx], ax, dst);
for (; dx < bodyS; dx += step, ax += 4 * step, dst += N * step)
PixelCubicSumX<N>(src - N, ix + dx, ax, dst);
for (; dx < body; dx++, ax += 4, dst += N)
Base::PixelCubicSumX<N, -1, 2>(src + ix[dx], ax, dst);
for (; dx < tail; dx++, ax += 4, dst += N)
Base::PixelCubicSumX<N, -1, 1>(src + ix[dx], ax, dst);
}
SIMD_INLINE void BicubicRowInt(const int32_t* src0, const int32_t* src1, const int32_t* src2, const int32_t* src3, size_t n, const int32_t* ay, uint8_t* dst)
{
size_t nF = AlignLo(n, F);
size_t i = 0;
if (nF)
{
static const __m128i ROUND = SIMD_MM_SET1_EPI32(Base::BICUBIC_ROUND);
__m128i ay0 = _mm_set1_epi32(ay[0]);
__m128i ay1 = _mm_set1_epi32(ay[1]);
__m128i ay2 = _mm_set1_epi32(ay[2]);
__m128i ay3 = _mm_set1_epi32(ay[3]);
for (; i < nF; i += F)
{
__m128i say0 = _mm_mullo_epi32(_mm_loadu_si128((__m128i*)(src0 + i)), ay0);
__m128i say1 = _mm_mullo_epi32(_mm_loadu_si128((__m128i*)(src1 + i)), ay1);
__m128i say2 = _mm_mullo_epi32(_mm_loadu_si128((__m128i*)(src2 + i)), ay2);
__m128i say3 = _mm_mullo_epi32(_mm_loadu_si128((__m128i*)(src3 + i)), ay3);
__m128i sum = _mm_add_epi32(_mm_add_epi32(say0, say1), _mm_add_epi32(say2, say3));
__m128i dst0 = _mm_srai_epi32(_mm_add_epi32(sum, ROUND), Base::BICUBIC_SHIFT);
*((int32_t*)(dst + i)) = _mm_cvtsi128_si32(_mm_packus_epi16(_mm_packs_epi32(dst0, K_ZERO), K_ZERO));
}
}
for (; i < n; ++i)
{
int32_t sum = ay[0] * src0[i] + ay[1] * src1[i] + ay[2] * src2[i] + ay[3] * src3[i];
dst[i] = Base::RestrictRange((sum + Base::BICUBIC_ROUND) >> Base::BICUBIC_SHIFT, 0, 255);
}
}
template<int N> void ResizerByteBicubic::RunB(const uint8_t* src, size_t srcStride, uint8_t* dst, size_t dstStride)
{
int32_t prev = -1;
for (size_t dy = 0; dy < _param.dstH; dy++, dst += dstStride)
{
int32_t sy = _iy[dy], next = prev;
for (int32_t curr = sy - 1, end = sy + 3; curr < end; ++curr)
{
if (curr < prev)
continue;
const uint8_t* ps = src + RestrictRange(curr, 0, (int)_param.srcH - 1) * srcStride;
int32_t* pb = _bx[(curr + 1) & 3].data;
RowCubicSumX<N>(ps, _xn, _xt, _param.dstW, _ix.data, _ax.data, pb);
next++;
}
prev = next;
const int32_t* ay = _ay.data + dy * 4;
int32_t* pb0 = _bx[(sy + 0) & 3].data;
int32_t* pb1 = _bx[(sy + 1) & 3].data;
int32_t* pb2 = _bx[(sy + 2) & 3].data;
int32_t* pb3 = _bx[(sy + 3) & 3].data;
BicubicRowInt(pb0, pb1, pb2, pb3, _bx[0].size, ay, dst);
}
}
void ResizerByteBicubic::Run(const uint8_t* src, size_t srcStride, uint8_t* dst, size_t dstStride)
{
bool sparse = _param.dstH * 3.0 <= _param.srcH;
Init(sparse);
switch (_param.channels)
{
case 1: sparse ? RunS<1>(src, srcStride, dst, dstStride) : RunB<1>(src, srcStride, dst, dstStride); return;
case 2: sparse ? RunS<2>(src, srcStride, dst, dstStride) : RunB<2>(src, srcStride, dst, dstStride); return;
case 3: sparse ? RunS<3>(src, srcStride, dst, dstStride) : RunB<3>(src, srcStride, dst, dstStride); return;
case 4: sparse ? RunS<4>(src, srcStride, dst, dstStride) : RunB<4>(src, srcStride, dst, dstStride); return;
default:
assert(0);
}
}
}
#endif
}
|