File: tutorial-imgproc-contour.doctutorial-imgproc-contour.dox

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (269 lines) | stat: -rw-r--r-- 7,677 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/**

\page tutorial-imgproc-contour Tutorial: Contours extraction from a binary image
\tableofcontents

\section imgproc_contour_intro Introduction

This tutorial will show you how to extract the contours from a binary image. The contour extraction algorithm is based on \cite articleSuzuki article and most of the implementation has been ported from \cite Hare:2011:OIJ:2072298.2072421 library.

The function to call is vp::findContours(const vpImage<unsigned char> &, vpContour &, std::vector<std::vector<vpImagePoint> > &, const vpContourRetrievalType&):
- the first argument is the image where '0' pixel value means the background and '1' pixel value means the foreground. **Other values are not allowed.**
- the second argument is a vp::vpContour structure that contains the list of contours in a tree
- the third argument is the list of contours
- the last argument is an option to choose the type of contour extraction, see vp::vpContourRetrievalType

The vp::vpContour structure is composed of:
- std::vector< \ref vp::vpContour * > m_children, the list of children contours for the current contour
- vp::vpContourType m_contourType, the type of contour (vp::CONTOUR_OUTER or vp::CONTOUR_HOLE)
- vp::vpContour * m_parent, the parent contour for the current contour
- std::vector< \ref vpImagePoint > m_points, the list of contour points
- the first or top level contour is called the root contour (with vp::CONTOUR_HOLE type by default) and contains in \a m_children the list of contours

The different contour extraction methods are:
- vp::CONTOUR_RETR_TREE, all the contours are extracted and stored in a hierarchical tree. 
- vp::CONTOUR_RETR_LIST, all the contours are extracted and stored in a list. The top level contour contains in \a m_children the list of all the extracted contours.
- vp::CONTOUR_RETR_EXTERNAL, only the external contours are extracted and stored in a list. The top level contour contains in \a m_children the list of the external extracted contours.

The next section will provide a concrete example for better understanding.

\section imgproc_contour_example Example code

The following example also available in tutorial-contour.cpp will demonstrate on a sample image the result of each of these methods:

\include tutorial-contour.cpp

These functions are provided in a \a vp:: namespace and accessible using this include:

\snippet tutorial-contour.cpp Include

The first steps are:
- read an image in grayscale
\snippet tutorial-contour.cpp Read
- threshold / binarize the image, here with the Otsu method.
\snippet tutorial-contour.cpp Otsu
If the object of interest is in white in the image, the formula for the binarization is:
\f[
  I_{bin}\left ( i,j \right ) = 
  \left \{ \begin{matrix}
  0 \text{ if } I_{src}\left ( i,j \right ) < \text{threshold} \\ 
  1 \text{ otherwise}
  \end{matrix} \right.
\f]
If the object of interest is in black in the image, the formula for the binarization is:
\f[
  I_{bin}\left ( i,j \right ) = 
  \left \{ \begin{matrix}
  1 \text{ if } I_{src}\left ( i,j \right ) < \text{threshold} \\ 
  0 \text{ otherwise}
  \end{matrix} \right.
\f]
- extract the contours (by default, it is the vp::CONTOUR_RETR_TREE method)
\snippet tutorial-contour.cpp Find contours
- draw the contours if wanted
\snippet tutorial-contour.cpp Draw contours


The result images for each step are:

\image html img-auto-threshold-grid36-03.png "Input image"

\image html img-tutorial-contour-binarisation.png "Image after binarization using the Otsu method"

\image html img-tutorial-contour-draw-contours.png "Contours extracted and displayed on a new image"

To understand how the hierarchical contours extraction works, let's switch on another example. In a terminal, run:

\code
$ ./tutorial-contour --input Contours_tree.pgm --white_foreground
\endcode

The image after binarisation:

\image html img-tutorial-contour-binarisation2.png "Image after binarization using the Otsu method"

Instead of drawing all the contours with the same color, we can assign a first color for vp::CONTOUR_OUTER contour and a second color for vp::CONTOUR_HOLE contour.

The function to navigate in the contour tree is the following:

\snippet tutorial-contour.cpp Draw contours hierarchical func

The call to draw the hierarchical contours:

\snippet tutorial-contour.cpp Draw contours hierarchical

The result image is:

\image html img-tutorial-contour-draw-contours2.png "Contours extracted and displayed on a new image, in red outer contours, in green hole contours"

To display the hierarchy, we can use this function:

\snippet tutorial-contour.cpp Print contours hierarchy func

For the vp::CONTOUR_RETR_TREE method, the output is:

<blockquote>
Contour:\n
  level: 0\n
  contour type: hole contour\n
  contour size: 0\n
  nb children: 3\n\n

Contour:\n
  level: 1\n
  contour type: outer contour\n
  contour size: 438\n
  nb children: 0\n\n

Contour:\n
  level: 1\n
  contour type: outer contour\n
  contour size: 748\n
  nb children: 0\n\n

Contour:\n
  level: 1\n
  contour type: outer contour\n
  contour size: 2012\n
  nb children: 1\n\n

Contour:\n
  level: 2\n
  contour type: hole contour\n
  contour size: 1906\n
  nb children: 1\n\n

Contour:\n
  level: 3\n
  contour type: outer contour\n
  contour size: 1610\n
  nb children: 1\n\n

Contour:\n
  level: 4\n
  contour type: hole contour\n
  contour size: 1494\n
  nb children: 1\n\n

Contour:\n
  level: 5\n
  contour type: outer contour\n
  contour size: 792\n
  nb children: 2\n\n

Contour:\n
  level: 6\n
  contour type: hole contour\n
  contour size: 372\n
  nb children: 0\n\n

Contour:\n
  level: 6\n
  contour type: hole contour\n
  contour size: 392\n
  nb children: 0\n
</blockquote>

The top level contour is always the root contour with zero contour point and which contains the list of contours.

For the vp::CONTOUR_RETR_EXTERNAL method, the output is:

<blockquote>
Contour:\n
  level: 0\n
  contour type: hole contour\n
  contour size: 0\n
  nb children: 3\n

Contour:\n
  level: 1\n
  contour type: outer contour\n
  contour size: 438\n
  nb children: 0\n

Contour:\n
  level: 1\n
  contour type: outer contour\n
  contour size: 748\n
  nb children: 0\n

Contour:\n
  level: 1\n
  contour type: outer contour\n
  contour size: 2012\n
  nb children: 0\n
</blockquote>

The result image is:

\image html img-tutorial-contour-draw-contours3.png "External contours extracted and displayed on a new image"

For the vp::CONTOUR_RETR_LIST method, the output is:

<blockquote>
Contour:\n
  level: 0\n
  contour type: hole contour\n
  contour size: 0\n
  nb children: 9\n

Contour:\n
  level: 1\n
  contour type: outer contour\n
  contour size: 438\n
  nb children: 0\n

Contour:\n
  level: 1\n
  contour type: outer contour\n
  contour size: 748\n
  nb children: 0\n

Contour:\n
  level: 1\n
  contour type: outer contour\n
  contour size: 2012\n
  nb children: 0\n

Contour:\n
  level: 1\n
  contour type: hole contour\n
  contour size: 1906\n
  nb children: 0\n

Contour:\n
  level: 1\n
  contour type: outer contour\n
  contour size: 1610\n
  nb children: 0\n

Contour:\n
  level: 1\n
  contour type: hole contour\n
  contour size: 1494\n
  nb children: 0\n

Contour:\n
  level: 1\n
  contour type: outer contour\n
  contour size: 792\n
  nb children: 0\n

Contour:\n
  level: 1\n
  contour type: hole contour\n
  contour size: 372\n
  nb children: 0\n

Contour:\n
  level: 1\n
  contour type: hole contour\n
  contour size: 392\n
  nb children: 0\n
</blockquote>

\section imgproc_contour_next Next tutorial

You can now read the \ref tutorial-imgproc-connected-components, for a similar method to extract the connected-components in a grayscale image.

*/