1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
|
/**
\page tutorial-ibvs Tutorial: Image-based visual servo
\tableofcontents
\section ibvs_intro Introduction
The aim of all vision-based control schemes is to minimize an
error \f${\bf e}(t)\f$, which is typically defined by \f${\bf e}(t) = {\bf s}[{\bf m}(t), {\bf a}]-{\bf s}^*\f$.
Traditional image-based control schemes use the
image-plane coordinates of a set of points to define the set
of visual features \f$\bf s\f$. The image measurements \f$\bf m\f$ are usually the pixel coordinates of the set of image points (but this is not the only possible choice),
and the camera intrinsic parameters \f$\bf a\f$ are used to go from image measurements expressed in pixels to the features.
For a 3D point with coordinates \f${\bf X} = (X,Y,Z)\f$ in the camera frame, which projects in the image as a 2D point with coordinates \f${\bf x} = (x,y)\f$ we have:
\f[
\left\{\begin{array}{l}
x = X/Z = (u - u_0)/p_x\\
y = Y/Z = (v - v_0)/p_y
\end{array}\right.
\f]
where \f${\bf m}=(u,v)\f$ gives the coordinates of the image point
expressed in pixel units, and \f${\bf a}=(u_0,v_0, p_x,p_y)\f$ is the set of
camera intrinsic parameters: \f$u_0\f$ and \f$v_0\f$ are the coordinates of
the principal point, while \f$p_x\f$ and \f$p_y\f$ are the ratio between the focal length and the size of a pixel.
Let the spatial velocity of the camera be denoted by \f$ {\bf v}_c = (v_c, \omega_c)\f$, with \f$ v_c \f$ the instantaneous linear velocity of the
origin of the camera frame and \f$ \omega_c \f$ the instantaneous angular
velocity of the camera frame. The relationship between \f$ \dot{\bf x} \f$, the time variation of the feature \f$\bf s = x\f$, and the camera velocity \f$ {\bf v}_c \f$ is given by
\f[ \dot{\bf s} = {\bf L_x} {\bf v}_c\f]
where the interaction matrix \f$ {\bf L_x}\f$ is given by
\f[ {\bf L_x} =
\left[\begin{array}{cccccc}
-1/Z & 0 & x/Z & xy & -(1+x^2) & y \\
0 & -1/Z & y/Z & 1+y^2 & -xy & -x
\end{array}\right]\f]
Considering \f$ {\bf v}_c \f$ as the input to the robot
controller, and if we would like for instance to try to ensure an exponential decoupled decrease of the error, we obtain
\f[ {\bf v}_c = -\lambda {\bf L}_{\bf x}^{+} {\bf e} \f]
Note that all the material (source code and image) described in this tutorial is part of ViSP source code and could be downloaded using the following command:
\code
$ svn export https://github.com/lagadic/visp.git/trunk/tutorial/visual-servo/ibvs
\endcode
\section ibvs_basic Basic IBVS simulation
The following example available in tutorial-ibvs-4pts.cpp shows how to use ViSP to implement an IBVS simulation using 4 points as visual features.
\include tutorial-ibvs-4pts.cpp
Now we give a line by line description of the source:
\code
#include <visp3/core/vpFeatureBuilder.h>
\endcode
Include a kind of common header for all the classes that implement visual features, especially in our case vpFeaturePoint that will allow us to handle \f${\bf x} = (x,y)\f$ described in the \ref ibvs_intro.
\code
#include <visp3/vs/vpServo.h>
\endcode
Include the header of the vpServo class that implements the control law \f[ {\bf v}_c = -\lambda {\bf L}_{\bf x}^{+} {\bf e} \f] described in the \ref ibvs_intro.
\code
#include <visp3/robot/vpSimulatorCamera.h>
\endcode
Include the header of the vpSimulatorCamera class that allows to simulate a 6 dof free flying camera.
Then in the main() function, we define the desired and initial position of the camera as two homogeneous matrices; \c cdMo refers to \f${^c}^*{\bf M}_o\f$ and \c cMo to \f${^c}{\bf M}_o\f$.
\code
vpHomogeneousMatrix cdMo(0, 0, 0.75, 0, 0, 0);
vpHomogeneousMatrix cMo(0.15, -0.1, 1., vpMath::rad(10), vpMath::rad(-10), vpMath::rad(50));
\endcode
Then we define four 3D points that represent the corners of a 20cm by 20cm square.
\code
vpPoint point[4] ;
point[0].setWorldCoordinates(-0.1,-0.1, 0);
point[1].setWorldCoordinates( 0.1,-0.1, 0);
point[2].setWorldCoordinates( 0.1, 0.1, 0);
point[3].setWorldCoordinates(-0.1, 0.1, 0);
\endcode
The instantiation of the visual servo task is done with the next lines. We initialize the task as an eye in hand visual servo. Resulting velocities computed by the controller are those that should be applied in the camera frame: \f$ {\bf v}_c \f$. The interaction matrix will be computed from the current visual features. Thus they need to be updated at each iteration of the control loop. Finally, the constant gain \f$ \lambda\f$ is set to 0.5.
\code
vpServo task ;
task.setServo(vpServo::EYEINHAND_CAMERA);
task.setInteractionMatrixType(vpServo::CURRENT);
task.setLambda(0.5);
\endcode
It is now time to define four visual features as points in the image-plane. To this end we instantiate the vpFeaturePoint class. The current point feature \f${\bf s}\f$ is implemented in \c p[i]. The desired point feature \f${\bf s}^*\f$ is implemented in \c pd[i].
\code
vpFeaturePoint p[4], pd[4] ;
\endcode
Each feature is obtained by computing the position of the 3D points in the corresponding camera frame, and then by applying the perspective projection. Once current and desired features are created, they are added to the visual servo task.
\code
for (unsigned int i = 0 ; i < 4 ; i++) {
point[i].track(cdMo);
vpFeatureBuilder::create(pd[i], point[i]);
point[i].track(cMo);
vpFeatureBuilder::create(p[i], point[i]);
task.addFeature(p[i], pd[i]);
}
\endcode
For the simulation we need first to create two homogeneous transformations \c wMc and \c wMo, respectively to define the position of the camera, and the position of the object in the world frame.
\code
vpHomogeneousMatrix wMc, wMo;
\endcode
Secondly. we create an instance of our free flying camera. Here we also specify the sampling time to 0.040 seconds. When a velocity is applied to the camera, this time will be used by the exponential map to determine the next position of the camera.
\code
vpSimulatorCamera robot;
robot.setSamplingTime(0.040);
\endcode
Finally, from the initial position \c wMc of the camera and the position of the object previously fixed in the camera frame \c cMo, we compute the position of the object in the world frame \c wMo. Since in our simulation the object is static, \c wMo will remain unchanged.
\code
robot.getPosition(wMc);
wMo = wMc * cMo;
\endcode
Now we can enter in the visual servo loop. When a velocity is applied to our free flying camera, the position of the camera frame \c wMc will evolve wrt the world frame. From this position we compute the position of object in the new camera frame.
\code
robot.getPosition(wMc);
cMo = wMc.inverse() * wMo;
\endcode
The current visual features are then updated by projecting the 3D points in the image-plane associated to the new camera location \c cMo.
\code
for (unsigned int i = 0 ; i < 4 ; i++) {
point[i].track(cMo);
vpFeatureBuilder::create(p[i], point[i]);
}
\endcode
Finally, the velocity skew \f$ {\bf v}_c \f$ is computed.
\code
vpColVector v = task.computeControlLaw();
\endcode
This 6-dimension velocity vector is then applied to the camera.
\code
robot.setVelocity(vpRobot::CAMERA_FRAME, v);
\endcode
Before exiting the program, we free all the memory by killing the task.
\code
task.kill();
\endcode
The next \ref tutorial-plotter shows how to modify the previous example to plot some curves that illustrate the visual servo behavior.
\section ibvs_display IBVS simulation with basic viewers
The previous IBVS simulation can be modified easily to introduce a basic internal and external camera viewer. This is implemented in tutorial-ibvs-4pts-display.cpp and given below:
\include tutorial-ibvs-4pts-display.cpp
The result of this program is visible in the next videos. The first one shows the internal camera view with the straight line trajectory of each point in the image. The second one provides an external view that shows the 3D camera trajectory to reach the desired position.
\htmlonly
<iframe width="560" height="315" src="https://www.youtube.com/embed/sPNkDfp3UeU" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
\endhtmlonly
\htmlonly
<iframe width="560" height="315" src="https://www.youtube.com/embed/ejzZqkyXXHw" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
\endhtmlonly
We explain now the new lines that were introduced.
First, we add the headers of the classes that are used to introduce the viewers and some display functionality. vpProjectionDisplay is the class that allows to handle the external view from a given camera position, while vpServoDisplay allows to display in overlay the position of the current and desired features in the internal camera view.
\code
#include <visp3/core/vpDisplayX.h>
#include <visp3/core/vpDisplayGDI.h>
#include <visp3/core/vpProjectionDisplay.h>
#include <visp3/vs/vpServoDisplay.h>
\endcode
Secondly, we introduce the function display_trajectory() that allows to display the trajectory of the current features in the image. From the 3D coordinates of the points given in the object frame, we compute their respective position in the camera frame, then we apply the perspective projection before retrieving their positions in sub-pixels in the image thanks to the camera parameters. The successive sub-pixel positions are stored in a vector named \c traj and displayed as a green trajectory.
\code
void display_trajectory(const vpImage<unsigned char> &I, std::vector<vpPoint> &point,
const vpHomogeneousMatrix &cMo, const vpCameraParameters &cam)
{
int thickness = 1;
static std::vector<vpImagePoint> traj[4];
vpImagePoint cog;
for (unsigned int i=0; i<4; i++) {
// Project the point at the given camera position
point[i].project(cMo);
vpMeterPixelConversion::convertPoint(cam, point[i].get_x(), point[i].get_y(), cog);
traj[i].push_back(cog);
}
for (unsigned int i=0; i<4; i++) {
for (unsigned int j=1; j<traj[i].size(); j++) {
vpDisplay::displayLine(I, traj[i][j-1], traj[i][j], vpColor::green, thickness);
}
}
}
\endcode
We enter then in the main() where we create two images that will be displayed in a window. The first images \c Iint is dedicated to the internal camera view. It shows the content of the images seen by the simulated camera. The second image \c Iext correspond the images seen by an external camera that observes the simulated camera.
\code
vpImage<unsigned char> Iint(480, 640, 255) ;
vpImage<unsigned char> Iext(480, 640, 255) ;
#if defined(VISP_HAVE_X11)
vpDisplayX displayInt(Iint, 0, 0, "Internal view");
vpDisplayX displayExt(Iext, 670, 0, "External view");
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI displayInt(Iint, 0, 0, "Internal view");
vpDisplayGDI displayExt(Iext, 670, 0, "External view");
#else
std::cout << "No image viewer is available..." << std::endl;
#endif
\endcode
We create an instance of the vpProjectionDisplay class. This class is only available if at least one of the display (X11, GDI, OpenCV, GTK, D3D9) is installed. That is why we use VISP_HAVE_DISPLAY macro. We then insert the points used to define the target. Later, the 3D coordinates of these points defined in the object frame will be used and projected in \c Iext.
\code
#if defined(VISP_HAVE_DISPLAY)
vpProjectionDisplay externalview;
for (unsigned int i = 0 ; i < 4 ; i++)
externalview.insert(point[i]) ;
#endif
\endcode
We initialize the intrinsic camera parameters that are used in display_trajectory() to determine the positions in pixels in the image of the visual features.
\code
vpCameraParameters cam(840, 840, Iint.getWidth()/2, Iint.getHeight()/2);
\endcode
We also set the position of the external camera that will observe the evolution of the simulated camera during the servo.
\code
vpHomogeneousMatrix cextMo(0,0,3, 0,0,0);
\endcode
Finally, at each iteration of the servo loop we update the viewers:
\code
vpDisplay::display(Iint) ;
vpDisplay::display(Iext) ;
display_trajectory(Iint, point, cMo, cam);
vpServoDisplay::display(task, cam, Iint, vpColor::green, vpColor::red);
#if defined(VISP_HAVE_DISPLAY)
externalview.display(Iext, cextMo, cMo, cam, vpColor::red, true);
#endif
vpDisplay::flush(Iint);
vpDisplay::flush(Iext);
\endcode
\section ibvs_wireframe IBVS simulation with wireframe viewers
The IBVS simulation presented section \ref ibvs_basic can also be modified to introduce a wireframe internal and external camera viewer. This is implemented in tutorial-ibvs-4pts-wireframe-camera.cpp and given below:
\include tutorial-ibvs-4pts-wireframe-camera.cpp
The result of this program is visible in the next videos. The first one shows the internal wireframe camera view with the straight line trajectory of each point in the image. The second one provides an external wireframe view that shows the 3D camera trajectory to reach the desired position.
\htmlonly
<iframe width="560" height="315" src="https://www.youtube.com/embed/riv3LBg6FYY" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
\endhtmlonly
\htmlonly
<iframe width="560" height="315" src="https://www.youtube.com/embed/EnfUz5p9QNs" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
\endhtmlonly
We explain now the new lines that were introduced.
First we include the header of the wireframe simulator.
\code
#include <visp3/robot/vpWireFrameSimulator.h>
\endcode
Then in the main(), we create an instance of the simulator. First we initialize the object in the scene. We recall that the target is a 20cm by 20cm square. This is exactly an object handled by the simulator and defined as a vpWireFrameSimulator::PLATE. By vpWireFrameSimulator::D_STANDARD we indicate that the object displayed at the desired position is also a PLATE. Secondly we initialize the camera position wrt to the object using \c cMo, and also the desired camera position, the one the camera has to reach at the end of the servo, using \c cdMo. Next we initialize the position of a static external camera that will observe the simulated camera during the servoing using \c cextMo. All these poses are define wrt the object frame. Finally, we set the intrinsic camera parameters used for the internal and external viewers.
\code
vpWireFrameSimulator sim;
sim.initScene(vpWireFrameSimulator::PLATE, vpWireFrameSimulator::D_STANDARD);
sim.setCameraPositionRelObj(cMo);
sim.setDesiredCameraPosition(cdMo);
sim.setExternalCameraPosition(cextMo);
sim.setInternalCameraParameters(cam);
sim.setExternalCameraParameters(cam);
\endcode
At each iteration of the servo loop, we update the wireframe simulator with the new camera position.
\code
sim.setCameraPositionRelObj(cMo);
\endcode
Then we update the drawings in the internal and external viewers associated to their respective images.
\code
sim.getInternalImage(Iint);
sim.getExternalImage(Iext);
\endcode
Note here that the same kind of simulation could be achieved on a Viper arm or a gantry robot. The programs that does the simulation are provided in tutorial-ibvs-4pts-wireframe-robot-viper.cpp and in tutorial-ibvs-4pts-wireframe-robot-afma6.cpp.
The next video illustrate the behavior of the same IBVS implemented in tutorial-ibvs-4pts-wireframe-robot-viper.cpp on a Viper arm.
\htmlonly
<iframe width="560" height="315" src="https://www.youtube.com/embed/g0B5ug0ooYo" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
\endhtmlonly
\section ibvs_tracking IBVS simulation with image processing
\note In this section we assume that you are familiar with:
- the blob tracker presented in \ref tutorial-tracking-blob
- image projection capabilities described in \ref tutorial-simu-image.
The IBVS simulation presented section \ref ibvs_basic can be modified to introduce an image processing that allows to track the point features using a blob tracker. This is implemented in tutorial-ibvs-4pts-image-tracking.cpp. The code is given below:
\include tutorial-ibvs-4pts-image-tracking.cpp
The result of this program is visible in the next video.
\htmlonly
<iframe width="560" height="315" src="https://www.youtube.com/embed/gn3tfoOxwKo" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
\endhtmlonly
We explain now the new lines that were introduced.
First we create a white image in which the target will be projected prior to the image processing.
\code
vpImage<unsigned char> I(480, 640, 255);
\endcode
Since we will have to convert pixel coordinates to visual features expressed in meter, we need to initialize intrinsic camera parameters.
\code
vpCameraParameters cam(840, 840, I.getWidth()/2, I.getHeight()/2);
\endcode
To retrieve the simulated image that depends on the simulated camera position we create an instance of a virtual grabber. Its goal is to project the image of the target \c ./target_square.pgm to a given camera position \c cMo, and then to retrieve the corresponding image \c I. Note here that the cog of the blobs in the .pgm file define a 20cm by 20cm square.
\code
vpVirtualGrabber g("./target_square.pgm", cam);
g.acquire(I, cMo);
\endcode
The current visual features are computed using a vpDot2 blob tracker. Once four trackers are instantiated, we are waiting for a mouse click in each blob to initialize the tracker. Then we compute the current visual features \f$(x,y) \f$ from the camera parameters and the cog position of each blob.
\code
for (unsigned int i = 0 ; i < 4 ; i++) {
...
dot[i].setGraphics(true);
dot[i].initTracking(I);
vpDisplay::flush(I);
vpFeatureBuilder::create(p[i], cam, dot[i].getCog());
...
}
\endcode
In the visual servo loop, at each iteration we get a new image of the target.
\code
g.acquire(I, cMo);
\endcode
We track each blob and update the values of the current visual features as previously.
\code
for (unsigned int i = 0 ; i < 4 ; i++) {
dot[i].track(I);
vpFeatureBuilder::create(p[i], cam, dot[i].getCog());
\endcode
As described in the \ref ibvs_intro, since the interaction matrix \f$\bf L_x \f$
depends on \f$(x,y)\f$ but also on \f$Z\f$ the depth of the feature, we need to update \f$Z\f$. This is done by projecting each 3D point of the target in the camera frame using:
\code
vpColVector cP;
point[i].changeFrame(cMo, cP) ;
p[i].set_Z(cP[2]);
}
\endcode
\section ibvs_next Next tutorial
You are now ready to see the \ref tutorial-simu-robot-pioneer and \ref tutorial-boost-vs.
*/
|