1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/**
\page tutorial-simu-robot-pioneer Tutorial: Visual servo simulation on a pioneer-like unicycle robot
\tableofcontents
This tutorial focuses on visual servoing simulation on a unicycle robot. The study case is a Pioneer P3-DX mobile robot equipped with a camera.
We suppose here that you have at least followed the \ref tutorial-ibvs that may help to understand this tutorial.
Note that all the material (source code) described in this tutorial is part of ViSP source code and could be downloaded using the following command:
\code
$ svn export https://github.com/lagadic/visp.git/trunk/tutorial/robot/pioneer
\endcode
\section simu_robot_pioneer_camera Unicycle with a fixed camera
In this section we consider the following unicycle:
\image html pioneer.png
This robot has 2 dof: \f$(v_x, w_z)\f$, the translational and rotational velocities that are applied at point E, considered as the end-effector. A camera is rigidly attached to the robot at point C. The homogeneous transformation between C and E is given by \c cMe. This transformation is constant.
The robot position evolves with respect to a world frame; \c wMe. When a new joint velocity is applied to the robot using setVelocity(), the position of the camera wrt the world frame is also updated; \c wMc.
To control the robot by visual servoing we need to introduce two visual features. If we consider a 3D point at position O as the target, to position the robot relative to the target we can consider the coordinate \f$x\f$ of the point in the image plane and \f$log(Z/Z^*)\f$, with \f$Z\f$ the distance of point in the camera frame, as visual features. The first feature implemented in vpFeaturePoint allows to control \f$w_z\f$, while the second one implemented in vpFeatureDepth \f$v_x\f$. The position of the target in the world frame is given by \c wMo transformation. Thus the current visual feature \f${\bf s} = (x, log(Z/Z^*))^\top\f$ and the desired feature \f${\bf s}^* = (0, 0)^\top\f$.
The code that does the simulation is provided in tutorial-simu-pioneer.cpp and given hereafter.
\include tutorial-simu-pioneer.cpp
We provide now a line by line explanation of the code.
Firstly we define \c cdMo the desired position the camera has to reach wrt the target. \f$t_y=1.2\f$ should be different from zero to be non singular. The camera has to keep a distance of 0.5 meter from the target.
\code
vpHomogeneousMatrix cdMo ;
cdMo[1][3] = 1.2; // ty
cdMo[2][3] = 0.5; // tz
\endcode
Secondly we specify \c cMo the initial position of the camera wrt the target.
\code
vpHomogeneousMatrix cMo;
cMo[0][3] = 0.3; // tx
cMo[1][3] = cdMo[1][3]; // ty
cMo[2][3] = 1.; // tz
vpRotationMatrix cRo(0, atan2( cMo[0][3], cMo[1][3]), 0);
cMo.insert(cRo);
\endcode
Thirdly by introducing our simulated robot we can compute the position of the target \c wMo and of the camera \c wMc wrt the world frame.
\code
vpSimulatorPioneer robot ;
robot.setSamplingTime(0.04);
vpHomogeneousMatrix wMc, wMo;
robot.getPosition(wMc);
wMo = wMc * cMo;
\endcode
Once all the frames are defined, we define a 3D point and its coordinates (0,0,0) in the object frame as the target.
\code
vpPoint point;
point.setWorldCoordinates(0,0,0);
\endcode
We compute then its coordinates in the camera frame.
\code
point.track(cMo);
\endcode
A visual servo task is then instantiated.
\code
vpServo task;
\endcode
With the next line, we specify the king of visual servoing control law that will be used to control our mobile robot. Since the camera is mounted on the robot, we consider the case of an eye-in-hand visual servo. The robot controller provided in vpSimulatorPioneer allows to send \f$(v_x, w_z)\f$ velocities. This controller implements also the robot jacobian \f$\bf ^e J_e\f$ that links the end-effector velocity skew vector \f$\bf v_e\f$ to the control velocities \f$(v_x, w_z)\f$. The also provided velocity twist matrix \f$\bf ^c V_e\f$ allows to transform a velocity skew vector expressed in the end-effector frame in the camera frame.
\code
task.setServo(vpServo::EYEINHAND_L_cVe_eJe);
\endcode
We specify then that the interaction matrix \f$\bf L\f$ is computed from the visual features at the desired position. The constant gain that allows an exponential decrease of the features error is set to 0.2.
\code
task.setInteractionMatrixType(vpServo::DESIRED, vpServo::PSEUDO_INVERSE);
task.setLambda(0.2);
\endcode
To resume, with the previous line, the following control law will be used:
\f[
\left[\begin{array}{c}
v_x \\
w_z
\end{array}\right]
= -0.2 \left( {\bf L_{s^*} {^c}V_e {^e}J_e}\right)^{+} ({\bf s} - {\bf s}^*) \f]
From the robot position we retrieve the velocity twist transformation \f$\bf ^c V_e\f$ that is then re-injected to the task.
\code
vpVelocityTwistMatrix cVe;
cVe = robot.get_cVe();
task.set_cVe(cVe);
\endcode
We do the same with the robot jacobian \f$\bf ^e J_e\f$.
\code
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
\endcode
Let us now consider the visual features.
We first instantiate the current and desired position of the 3D target point as a visual feature point.
\code
vpFeaturePoint s_x, s_xd;
\endcode
The current visual feature is directly computed from the perspective projection of the point position in the camera frame.
\code
vpFeatureBuilder::create(s_x, point);
\endcode
The desired position of the feature is set to (0,0). The depth of the point \c cdMo[2][3] is required to compute the feature position.
\code
s_xd.buildFrom(0, 0, cdMo[2][3]);
\endcode
Finally only the position of the feature along x is added to the task.
\code
task.addFeature(s_x, s_xd, vpFeaturePoint::selectX());
\endcode
We consider now the second visual feature \f$log(Z/Z^*)\f$ that corresponds to the depth of the point. The current and desired features are instantiated with:
\code
vpFeatureDepth s_Z, s_Zd;
\endcode
Then, we get the current \c Z and desired \c Zd depth of the target.
\code
double Z = point.get_Z();
double Zd = cdMo[2][3];
\endcode
From these values, we are able to initialize the current depth feature:
\code
s_Z.buildFrom(s_x.get_x(), s_x.get_y(), Z, log(Z/Zd));
\endcode
and also the desired one:
\code
s_Zd.buildFrom(0, 0, Zd, 0);
\endcode
Finally, we add the feature to the task:
\code
task.addFeature(s_Z, s_Zd);
\endcode
Then comes the material used to plot in real-time the curves that shows the evolution of the velocities, the visual error and the estimation of the depth. The corresponding lines are not explained in this tutorial, but should be easily understand by reading \ref tutorial-plotter.
In the visual servo loop we retrieve the robot position and compute the new position of the camera wrt the target:
\code
robot.getPosition(wMc) ;
cMo = wMc.inverse() * wMo;
\endcode
We compute the coordinates of the point in the new camera frame:
\code
point.track(cMo);
\endcode
Based on these new coordinates, we update the point visual feature \c s_x:
\code
vpFeatureBuilder::create(s_x, point);
\endcode
and also the depth visual feature:
\code
Z = point.get_Z() ;
s_Z.buildFrom(s_x.get_x(), s_x.get_y(), Z, log(Z/Zd)) ;
\endcode
We also update the task with the values of the velocity twist matrix \c cVe and the robot jacobian \c eJe:
\code
robot.get_cVe(cVe);
task.set_cVe(cVe);
robot.get_eJe(eJe);
task.set_eJe(eJe);
\endcode
After all these updates, we are able to compute the control law:
\code
vpColVector v = task.computeControlLaw();
\endcode
Computed velocities are send to the robot:
\code
robot.setVelocity(vpRobot::ARTICULAR_FRAME, v);
\endcode
At the end, we stop the infinite loop when the visual error reaches a value that is considered as small enough:
\code
if (task.getError().sumSquare() < 0.0001) {
std::cout << "Reached a small error. We stop the loop... " << std::endl;
break;
}
\endcode
\section simu_robot_pioneer_camera_pan Unicycle with a moving camera
In this section we consider the following unicycle:
\image html pioneer-pan.png
This robot has 3 dof: \f$(v_x, w_z, \dot q_{1})\f$, as previously the translational and rotational velocities that are applied here at point M, and \f$\dot q_{1}\f$ the pan of the head. The position of the end-effector E depends on \f$ q_{1}\f$ position. The camera at point C is attached to the robot at point E. The homogeneous transformation between C and E is given by \c cMe. This transformation is constant.
If we consider the same visual features than previously \f${\bf s} = (x, log(Z/Z^*))^\top\f$ and the desired feature \f${\bf s}^* = (0, 0)^\top\f$, we are able to simulate this new robot simply by replacing vpSimulatorPioneer by vpSimulatorPioneerPan. The code is available in tutorial-simu-pioneer-pan.cpp.
You can just notice here that we compute the control law using the current interaction matrix; the one computed with the current visual feature values.
\code
vpServo task;
task.setServo(vpServo::EYEINHAND_L_cVe_eJe);
task.setInteractionMatrixType(vpServo::CURRENT, vpServo::PSEUDO_INVERSE);
\endcode
The following control law is used:
\f[
\left[\begin{array}{c}
v_x \\
w_z \\
\dot q_{1}
\end{array}\right]
= -0.2 \left( {\bf L_{s} {^c}V_e {^e}J_e}\right)^{+} ({\bf s} - {\bf s}^*) \f]
\section simu_robot_pioneer_next Next tutorial
You are now ready to see the next \ref tutorial-boost-vs.
*/
|