File: simulateFourPoints2DPolarCamVelocity.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (409 lines) | stat: -rw-r--r-- 12,102 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/****************************************************************************
 *
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * Simulation of a visual servoing with visualization.
 *
*****************************************************************************/

/*!
  \example simulateFourPoints2DPolarCamVelocity.cpp
  \file simulateFourPoints2DPolarCamVelocity.cpp
  \brief Visual servoing experiment on 4 points with a visualization
  from the camera and from an external view using vpSimulator.

  Visual features are the polar coordinates \f$(\rho,\theta)\f$
  of the four points.
*/

#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>

#ifdef VISP_HAVE_COIN3D_AND_GUI

#include <visp3/ar/vpSimulator.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpTime.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePointPolar.h>
#include <visp3/vs/vpServo.h>

#define GETOPTARGS "di:h"
#define SAVE 0

/*!

Print the program options.

  \param name : Program name.
  \param badparam : Bad parameter name.
  \param ipath : Input image path.

*/
void usage(const char *name, const char *badparam, std::string ipath)
{
  fprintf(stdout, "\n\
Simulation Servo 4points.\n\
          \n\
SYNOPSIS\n\
  %s [-i <input image path>] [-d] [-h]\n",
          name);

  fprintf(stdout, "\n\
OPTIONS:                                               Default\n\
  -i <input image path>                                %s\n\
     Set image input path.\n\
     From this path read \"iv/4points.iv\"\n\
     cad model.\n\
     Setting the VISP_INPUT_IMAGE_PATH environment\n\
     variable produces the same behaviour than using\n\
     this option.\n\
                  \n\
  -d                                             \n\
     Disable the image display. This can be useful \n\
     for automatic tests using crontab under Unix or \n\
     using the task manager under Windows.\n\
                  \n\
  -h\n\
     Print the help.\n\n",
          ipath.c_str());

  if (badparam)
    fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}

/*!

Set the program options.

  \param argc : Command line number of parameters.
  \param argv : Array of command line parameters.
  \param ipath : Input image path.
  \param display : Set as true, activates the image display. This is
  the default configuration. When set to false, the display is
  disabled. This can be useful for automatic tests using crontab
  under Unix or using the task manager under Windows.

  \return false if the program has to be stopped, true otherwise.

*/
bool getOptions(int argc, const char **argv, std::string &ipath, bool &display)
{
  const char *optarg;
  int c;
  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg)) > 1) {

    switch (c) {
    case 'i':
      ipath = optarg;
      break;
    case 'd':
      display = false;
      break;
    case 'h':
      usage(argv[0], NULL, ipath);
      return false;
      break;

    default:
      usage(argv[0], optarg, ipath);
      return false;
      break;
    }
  }

  if ((c == 1) || (c == -1)) {
    // standalone param or error
    usage(argv[0], NULL, ipath);
    std::cerr << "ERROR: " << std::endl;
    std::cerr << "  Bad argument " << optarg << std::endl << std::endl;
    return false;
  }

  return true;
}

static void *mainLoop(void *_simu)
{
  vpSimulator *simu = static_cast<vpSimulator *>(_simu);
  simu->initMainApplication();

  vpServo task;
  vpSimulatorCamera robot;

  float sampling_time = 0.040f; // Sampling period in second
  robot.setSamplingTime(sampling_time);
  robot.setMaxTranslationVelocity(4.);

  // Sets the initial camera location
  vpPoseVector vcMo;

  vcMo[0] = 0.;
  vcMo[1] = 0.;
  vcMo[2] = 3;
  vcMo[3] = 0;
  vcMo[4] = vpMath::rad(0);
  vcMo[5] = vpMath::rad(90);

  vpHomogeneousMatrix cMo(vcMo);
  vpHomogeneousMatrix wMo; // Set to identity
  vpHomogeneousMatrix wMc; // Camera location in world frame
  wMc = wMo * cMo.inverse();
  robot.setPosition(wMc);
  simu->setCameraPosition(cMo);

  simu->getCameraPosition(cMo);
  wMc = wMo * cMo.inverse();
  robot.setPosition(wMc);

  vpCameraParameters cam;

  // Sets the point coordinates in the world frame
  vpPoint point[4];
  point[0].setWorldCoordinates(-0.1, -0.1, 0);
  point[1].setWorldCoordinates(0.1, -0.1, 0);
  point[2].setWorldCoordinates(0.1, 0.1, 0);
  point[3].setWorldCoordinates(-0.1, 0.1, 0);

  // Project : computes the point coordinates in the camera frame and its 2D
  // coordinates
  for (int i = 0; i < 4; i++) {
    point[i].changeFrame(cMo); // Compute point coordinates in the camera frame
    point[i].project();        // Compute desired point doordinates in the camera frame
  }

  // Sets the desired position of the point
  vpFeaturePointPolar p[4];
  for (int i = 0; i < 4; i++)
    vpFeatureBuilder::create(p[i],
                             point[i]); // retrieve x,y and Z of the
                                        // vpPoint structure to build the
                                        // polar coordinates

  std::cout << "s: \n";
  for (int i = 0; i < 4; i++) {
    printf("[%d] rho %f theta %f Z %f\n", i, p[i].get_rho(), p[i].get_theta(), p[i].get_Z());
  }

  // Sets the desired position of the point
  vcMo[0] = 0;
  vcMo[1] = 0;
  vcMo[2] = 1;
  vcMo[3] = vpMath::rad(0);
  vcMo[4] = vpMath::rad(0);
  vcMo[5] = vpMath::rad(0);

  vpHomogeneousMatrix cMod(vcMo);

  vpFeaturePointPolar pd[4];
  vpPoint pointd[4]; // Desired position of the points
  pointd[0].setWorldCoordinates(-0.1, -0.1, 0);
  pointd[1].setWorldCoordinates(0.1, -0.1, 0);
  pointd[2].setWorldCoordinates(0.1, 0.1, 0);
  pointd[3].setWorldCoordinates(-0.1, 0.1, 0);
  for (int i = 0; i < 4; i++) {
    pointd[i].changeFrame(cMod); // Compute desired point doordinates in the camera frame
    pointd[i].project();         // Compute desired point doordinates in the camera frame

    vpFeatureBuilder::create(pd[i], pointd[i]); // retrieve x,y and Z of the
                                                // vpPoint structure to build
                                                // the polar coordinates
  }
  std::cout << "s*: \n";
  for (int i = 0; i < 4; i++) {
    printf("[%d] rho %f theta %f Z %f\n", i, pd[i].get_rho(), pd[i].get_theta(), pd[i].get_Z());
  }

  // Define the task
  // We want an eye-in-hand control law
  // Articular velocity are computed
  task.setServo(vpServo::EYEINHAND_L_cVe_eJe);
  task.setInteractionMatrixType(vpServo::CURRENT);

  // Set the position of the end-effector frame in the camera frame as identity
  vpHomogeneousMatrix cMe;
  vpVelocityTwistMatrix cVe(cMe);
  task.set_cVe(cVe);

  // Set the Jacobian (expressed in the end-effector frame)
  vpMatrix eJe;
  robot.get_eJe(eJe);
  task.set_eJe(eJe);

  // We want to see a point on a point
  for (int i = 0; i < 4; i++)
    task.addFeature(p[i], pd[i]);

  // Set the gain
  task.setLambda(1.0);

  // Display task information
  task.print();

  vpTime::wait(1000); // Sleep 1s

  unsigned int iter = 0;
  // Visual servo loop
  while (iter++ < 200) {
    double t = vpTime::measureTimeMs();

    robot.get_eJe(eJe);
    task.set_eJe(eJe);

    wMc = robot.getPosition();
    cMo = wMc.inverse() * wMo;
    for (int i = 0; i < 4; i++) {
      point[i].track(cMo);
      vpFeatureBuilder::create(p[i], point[i]);
    }

    vpColVector v = task.computeControlLaw();
    robot.setVelocity(vpRobot::CAMERA_FRAME, v);

    simu->setCameraPosition(cMo);

    if (SAVE == 1) {
      char name[FILENAME_MAX];
      snprintf(name, FILENAME_MAX, "/tmp/image.%04u.external.png", iter);
      std::cout << name << std::endl;
      simu->write(name);
      snprintf(name, FILENAME_MAX, "/tmp/image.%04u.internal.png", iter);
      simu->write(name);
    }

    vpTime::wait(t, sampling_time * 1000); // Wait 40 ms
  }
  // Display task information
  task.print();

  std::cout << "cMo:\n" << cMo << std::endl;
  vpPoseVector pose(cMo);
  std::cout << "final pose:\n" << pose.t() << std::endl;

  simu->closeMainApplication();

  void *a = NULL;
  return a;
}

int main(int argc, const char **argv)
{
  try {
    std::string env_ipath;
    std::string opt_ipath;
    std::string ipath;
    std::string filename;
    bool opt_display = true;

    // Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
    // environment variable value
    env_ipath = vpIoTools::getViSPImagesDataPath();

    // Set the default input path
    if (!env_ipath.empty())
      ipath = env_ipath;

    // Read the command line options
    if (getOptions(argc, argv, opt_ipath, opt_display) == false) {
      return EXIT_FAILURE;
    }

    // Get the option values
    if (!opt_ipath.empty())
      ipath = opt_ipath;

    // Compare ipath and env_ipath. If they differ, we take into account
    // the input path comming from the command line option
    if (!opt_ipath.empty() && !env_ipath.empty()) {
      if (ipath != env_ipath) {
        std::cout << std::endl << "WARNING: " << std::endl;
        std::cout << "  Since -i <visp image path=" << ipath << "> "
                  << "  is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
                  << "  we skip the environment variable." << std::endl;
      }
    }

    // Test if an input path is set
    if (opt_ipath.empty() && env_ipath.empty()) {
      usage(argv[0], NULL, ipath);
      std::cerr << std::endl << "ERROR:" << std::endl;
      std::cerr << "  Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
                << "  environment variable to specify the location of the " << std::endl
                << "  image path where test images are located." << std::endl
                << std::endl;
      return EXIT_FAILURE;
    }

    vpCameraParameters cam;
    vpHomogeneousMatrix fMo;
    fMo[2][3] = 0;

    if (opt_display) {
      vpSimulator simu;
      simu.initInternalViewer(300, 300);
      simu.initExternalViewer(300, 300);

      vpTime::wait(1000);
      simu.setZoomFactor(1.0f);

      // Load the cad model
      filename = vpIoTools::createFilePath(ipath, "iv/4points.iv");
      simu.load(filename.c_str());

      simu.setInternalCameraParameters(cam);
      simu.setExternalCameraParameters(cam);
      simu.initApplication(&mainLoop);

      simu.mainLoop();
    }
    return EXIT_SUCCESS;
  } catch (const vpException &e) {
    std::cout << "Catch an exception: " << e << std::endl;
    return EXIT_FAILURE;
  }
}

#else
int main()
{
  std::cout << "You do not have Coin3D and SoQT or SoWin or SoXt functionalities enabled..." << std::endl;
  std::cout << "Tip:" << std::endl;
  std::cout
      << "- Install Coin3D and SoQT or SoWin or SoXt, configure ViSP again using cmake and build again this example"
      << std::endl;
  return EXIT_SUCCESS;
}
#endif