File: grabRealSense2_T265.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (196 lines) | stat: -rw-r--r-- 8,297 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/****************************************************************************
 *
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * Acquisition of images, odometry and raw motion information with RealSense
 * T265 sensor and librealsense2.
 *
*****************************************************************************/

/*!
  \example grabRealSense2_T265.cpp
  This example shows how to retrieve both images, odometry and motion data from a
  RealSense T265 sensor with librealsense2 at 30Hz.

  \note IMU X-axis and Z-axis are opposite to pose's frame X and Z axes.
*/

#include <iomanip>
#include <iostream>

#include <visp3/core/vpMeterPixelConversion.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/sensor/vpRealSense2.h>

#if defined(VISP_HAVE_REALSENSE2) && (VISP_CXX_STANDARD >= VISP_CXX_STANDARD_11) &&                                    \
    (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)) && (RS2_API_VERSION > ((2 * 10000) + (31 * 100) + 0))

int main()
{
  vpHomogeneousMatrix cMw, cMw_0;
  vpHomogeneousMatrix cextMw(0, 0, 2, 0, 0, 0); // External camera view for pose visualization
  vpColVector odo_vel, odo_acc, imu_acc, imu_vel;
  unsigned int confidence;
  double ts;
  vpImagePoint frame_origin;
  std::list<std::pair<unsigned int, vpImagePoint> >
      frame_origins; // Frame origin's history for trajectory visualization
  unsigned int display_scale = 2;

  try {
    vpRealSense2 rs;

    std::string product_line = rs.getProductLine();
    std::cout << "Product line: " << product_line << std::endl;

    if (product_line != "T200") {
      std::cout << "This example doesn't support devices that are not part of T200 product line family !" << std::endl;
      return EXIT_SUCCESS;
    }

    rs2::config config;
    config.enable_stream(RS2_STREAM_POSE, RS2_FORMAT_6DOF);
    config.enable_stream(RS2_STREAM_FISHEYE, 1, RS2_FORMAT_Y8);
    config.enable_stream(RS2_STREAM_FISHEYE, 2, RS2_FORMAT_Y8);
    config.enable_stream(RS2_STREAM_GYRO);
    config.enable_stream(RS2_STREAM_ACCEL);

    rs.open(config);

    // Creating images for left and right cameras, and for visualizing trajectory
    vpImage<unsigned char> I_left, I_right;
    vpImage<unsigned char> I_pose(300, 300, 0);

    vpCameraParameters cam(300., 300., I_pose.getWidth() / 2, I_pose.getHeight() / 2); // For pose visualization

    rs.acquire(&I_left, &I_right, &cMw_0, &odo_vel, &odo_acc, &imu_vel, &imu_acc, &confidence, &ts);

#if defined(VISP_HAVE_X11)
    vpDisplayX display_left;  // Left image
    vpDisplayX display_right; // Right image
    vpDisplayX display_pose;  // Pose visualization
#elif defined(VISP_HAVE_GDI)
    vpDisplayGDI display_left;  // Left image
    vpDisplayGDI display_right; // Right image
    vpDisplayGDI display_pose;  // Pose visualization
#endif

#if defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI)
    display_left.setDownScalingFactor(display_scale);
    display_right.setDownScalingFactor(display_scale);
    display_left.init(I_left, 10, 10, "Left image");
    display_right.init(I_right, static_cast<int>(I_left.getWidth() / display_scale) + 80, 10, "Right image"); // Right
    display_pose.init(I_pose, 10, static_cast<int>(I_left.getHeight() / display_scale) + 80,
                      "Pose visualizer"); // visualization
#endif

    vpHomogeneousMatrix cextMc_0 = cextMw * cMw_0.inverse();
    vpMeterPixelConversion::convertPoint(cam, cextMc_0[0][3] / cextMc_0[2][3], cextMc_0[1][3] / cextMc_0[2][3],
                                         frame_origin);
    frame_origins.push_back(std::make_pair(confidence, frame_origin));

    while (true) {
      double t = vpTime::measureTimeMs();

      rs.acquire(&I_left, &I_right, &cMw, &odo_vel, &odo_acc, &imu_vel, &imu_acc, &confidence, &ts);

      vpDisplay::display(I_left);
      vpDisplay::display(I_right);
      vpDisplay::display(I_pose);

      vpHomogeneousMatrix cextMc = cextMw * cMw.inverse();
      vpMeterPixelConversion::convertPoint(cam, cextMc[0][3] / cextMc[2][3], cextMc[1][3] / cextMc[2][3], frame_origin);
      frame_origins.push_back(std::make_pair(confidence, frame_origin));

      vpDisplay::displayText(I_left, 15 * display_scale, 15 * display_scale, "Click to quit", vpColor::red);
      vpDisplay::displayText(I_right, 15 * display_scale, 15 * display_scale, "Click to quit", vpColor::red);
      vpDisplay::displayText(I_pose, 15, 15, "Click to quit", vpColor::red);

      vpDisplay::displayFrame(I_pose, cextMc_0, cam, 0.1, vpColor::none, 2); // First frame
      vpDisplay::displayFrame(I_pose, cextMc, cam, 0.1, vpColor::none, 2);

      // Display frame origin trajectory
      {
        std::list<std::pair<unsigned int, vpImagePoint> >::const_iterator it = frame_origins.begin();
        std::pair<unsigned int, vpImagePoint> frame_origin_pair_prev = *(it++);
        for (; it != frame_origins.end(); ++it) {
          if (vpImagePoint::distance(frame_origin_pair_prev.second, (*it).second) > 1) {
            vpDisplay::displayLine(
                I_pose, frame_origin_pair_prev.second, (*it).second,
                (*it).first == 3 ? vpColor::green : ((*it).first == 2 ? vpColor::yellow : vpColor::red), 2);
            frame_origin_pair_prev = *it;
          }
        }
      }
      if (vpDisplay::getClick(I_left, false) || vpDisplay::getClick(I_right, false) ||
          vpDisplay::getClick(I_pose, false)) {
        break;
      }
      vpDisplay::flush(I_left);
      vpDisplay::flush(I_right);
      vpDisplay::flush(I_pose);

      std::cout << "Loop time: " << std::setw(8) << vpTime::measureTimeMs() - t << "ms. Confidence = " << confidence;
      std::cout << " Gyro vel: x = " << std::setw(10) << std::setprecision(3) << imu_vel[0] << " y = " << std::setw(10)
                << std::setprecision(3) << imu_vel[1] << " z = " << std::setw(8) << imu_vel[2];
      std::cout << " Accel: x = " << std::setw(10) << std::setprecision(3) << imu_acc[0] << " y = " << std::setw(10)
                << std::setprecision(3) << imu_acc[1] << " z = " << std::setw(8) << imu_acc[2];
      std::cout << std::endl;
    }

  } catch (const vpException &e) {
    std::cerr << "RealSense error " << e.what() << std::endl;
  } catch (const std::exception &e) {
    std::cerr << e.what() << std::endl;
  }

  return EXIT_SUCCESS;
}
#else
int main()
{
#if !defined(VISP_HAVE_REALSENSE2)
  std::cout << "You do not realsense2 SDK functionality enabled..." << std::endl;
  std::cout << "Tip:" << std::endl;
  std::cout << "- Install librealsense2, configure again ViSP using cmake and build again this example" << std::endl;
  return EXIT_SUCCESS;
#elif (VISP_CXX_STANDARD < VISP_CXX_STANDARD_11)
  std::cout << "You do not build ViSP with c++11 or higher compiler flag" << std::endl;
  std::cout << "Tip:" << std::endl;
  std::cout << "- Configure ViSP again using cmake -DUSE_CXX_STANDARD=11, and build again this example" << std::endl;
#elif !(defined(VISP_HAVE_X11) || defined(VISP_HAVE_GDI))
  std::cout << "You don't have X11 or GDI display capabilities" << std::endl;
#elif !(RS2_API_VERSION > ((2 * 10000) + (31 * 100) + 0))
  std::cout << "Install librealsense version > 2.31.0" << std::endl;
#endif
  return EXIT_SUCCESS;
}
#endif