File: poseVirtualVS.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (615 lines) | stat: -rw-r--r-- 20,475 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/****************************************************************************
 *
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * Pose computation on an object made of dots.
 *   reading of PGM image
 *   Display image using either the X11 or GTK or GDI display
 *   track 4 dots (vpDots) in the image
 *   compute the pose
 *
*****************************************************************************/
/*!
  \file poseVirtualVS.cpp

  \brief Example of dots tracking in an image sequence and pose computation.

  Pose computation on an object made of dots :
    reading of PGM image,
    Display image using either the X11 or GTK or GDI display,
    track 4 dots (vpDots) in the image,
    compute the pose.

*/

/*!
  \example poseVirtualVS.cpp
  Example of dots tracking in an image sequence and pose
  computation.
*/

#include <iomanip>
#include <sstream>
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>

#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV)) &&       \
    (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))

#include <visp3/core/vpImage.h>
#include <visp3/core/vpImagePoint.h>
#include <visp3/io/vpImageIo.h>

#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>

#include <visp3/blob/vpDot.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpPixelMeterConversion.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/vision/vpPose.h>

// List of allowed command line options
#define GETOPTARGS "cdi:p:hf:l:s:"

/*!

Print the program options.

  \param name : Program name.
  \param badparam : Bad parameter name.
  \param ipath : Input image path.
  \param ppath : Personal image path.
  \param first : First image.
  \param last : Last image.
  \param step : Step between two images.

 */
void usage(const char *name, const char *badparam, std::string ipath, std::string ppath, unsigned first,
           unsigned last, unsigned step)
{
#if VISP_HAVE_DATASET_VERSION >= 0x030600
  std::string ext("png");
#else
  std::string ext("pgm");
#endif
  fprintf(stdout, "\n\
Test dot tracking.\n\
\n\
SYNOPSIS\n\
  %s [-i <input image path>] [-p <personal image path>]\n\
     [-f <first image>] [-l <last image>] [-s <step>][-c] [-d] [-h]\n",
          name);

  fprintf(stdout, "\n\
OPTIONS:                                               Default\n\
  -i <input image path>                                %s\n\
     Set image input path.\n\
     From this path read images \n\
     \"cube/image.%%04d.%s\"\n\
     Setting the VISP_INPUT_IMAGE_PATH environment\n\
     variable produces the same behaviour than using\n\
     this option.\n\
 \n\
  -p <personal image path>                             %s\n\
     Specify a personal sequence containing images \n\
     to process.\n\
     By image sequence, we mean one file per image.\n\
     The format is selected by analysing the filename extension.\n\
     Example : \"/Temp/visp-images/cube/image.%%04d.%s\"\n\
     %%04d is for the image numbering.\n\
 \n\
  -f <first image>                                     %u\n\
     First image number of the sequence.\n\
 \n\
  -l <last image>                                %u\n\
     Last image number of the sequence.\n\
 \n\
  -s <step>                                            %u\n\
     Step between two images.\n\
\n\
  -c\n\
     Disable the mouse click. Useful to automate the \n\
     execution of this program without human intervention.\n\
\n\
  -d \n\
     Turn off the display.\n\
\n\
  -h\n\
     Print the help.\n",
          ipath.c_str(), ext.c_str(), ppath.c_str(), ext.c_str(), first, last, step);

  if (badparam)
    fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
/*!

  Set the program options.

  \param argc : Command line number of parameters.
  \param argv : Array of command line parameters.
  \param ipath : Input image path.
  \param ppath : Personal image path.
  \param first : First image.
  \param last : Last image.
  \param step : Step between two images.
  \param display : Set as true, activates the image display. This is
  the default configuration. When set to false, the display is
  disabled. This can be useful for automatic tests using crontab
  under Unix or using the task manager under Windows.
  \param click_allowed : set to false, disable the mouse click.

  \return false if the program has to be stopped, true otherwise.

*/
bool getOptions(int argc, const char **argv, std::string &ipath, std::string &ppath, unsigned &first, unsigned &last,
                unsigned &step, bool &click_allowed, bool &display)
{
  const char *optarg_;
  int c;
  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {

    switch (c) {
    case 'c':
      click_allowed = false;
      break;
    case 'd':
      display = false;
      break;
    case 'i':
      ipath = optarg_;
      break;
    case 'p':
      ppath = optarg_;
      break;
    case 'f':
      first = (unsigned)atoi(optarg_);
      break;
    case 'n':
      last = (unsigned)atoi(optarg_);
      break;
    case 's':
      step = (unsigned)atoi(optarg_);
      break;
    case 'h':
      usage(argv[0], NULL, ipath, ppath, first, last, step);
      return false;
      break;

    default:
      usage(argv[0], optarg_, ipath, ppath, first, last, step);
      return false;
      break;
    }
  }

  if ((c == 1) || (c == -1)) {
    // standalone param or error
    usage(argv[0], NULL, ipath, ppath, first, last, step);
    std::cerr << "ERROR: " << std::endl;
    std::cerr << "  Bad argument " << optarg_ << std::endl << std::endl;
    return false;
  }

  return true;
}

int main(int argc, const char **argv)
{
  try {
    std::string env_ipath;
    std::string opt_ipath;
    std::string ipath;
    std::string opt_ppath;
    std::string dirname;
    std::string filename;
    unsigned opt_first = 0;
    unsigned opt_last = 80;
    unsigned opt_step = 1;
    bool opt_click_allowed = true;
    bool opt_display = true;
    int i;

#if VISP_HAVE_DATASET_VERSION >= 0x030600
    std::string ext("png");
#else
    std::string ext("pgm");
#endif

    std::cout << "-------------------------------------------------------" << std::endl;
    std::cout << "  poseVirtualVS.cpp" << std::endl << std::endl;

    std::cout << "  Example of dots tracking in an image sequence and pose "
                 "computation"
              << std::endl;
    std::cout << "-------------------------------------------------------" << std::endl;
    std::cout << std::endl;

    // Get the visp-images-data package path or VISP_INPUT_IMAGE_PATH
    // environment variable value
    env_ipath = vpIoTools::getViSPImagesDataPath();

    // Set the default input path
    if (!env_ipath.empty())
      ipath = env_ipath;

    // Read the command line options
    if (getOptions(argc, argv, opt_ipath, opt_ppath, opt_first, opt_last, opt_step, opt_click_allowed,
                   opt_display) == false) {
      return EXIT_FAILURE;
    }

    // Get the option values
    if (!opt_ipath.empty())
      ipath = opt_ipath;

    // Compare ipath and env_ipath. If they differ, we take into account
    // the input path comming from the command line option
    if (opt_ipath.empty() && opt_ppath.empty()) {
      if (ipath != env_ipath) {
        std::cout << std::endl << "WARNING: " << std::endl;
        std::cout << "  Since -i <visp image path=" << ipath << "> "
                  << "  is different from VISP_IMAGE_PATH=" << env_ipath << std::endl
                  << "  we skip the environment variable." << std::endl;
      }
    }
    // Test if an input path is set
    if (opt_ipath.empty() && env_ipath.empty() && opt_ppath.empty()) {
      usage(argv[0], NULL, ipath, opt_ppath, opt_first, opt_last, opt_step);
      std::cerr << std::endl << "ERROR:" << std::endl;
      std::cerr << "  Use -i <visp image path> option or set VISP_INPUT_IMAGE_PATH " << std::endl
                << "  environment variable to specify the location of the " << std::endl
                << "  image path where test images are located." << std::endl
                << "  Use -p <personal image path> option if you want to " << std::endl
                << "  use personal images" << std::endl
                << std::endl;
      return EXIT_FAILURE;
    }

    // Declare an image, this is a gray level image (unsigned char)
    // it size is not defined yet, it will be defined when the image will
    // read on the disk
    vpImage<unsigned char> I;

    unsigned iter = opt_first;
    std::ostringstream s;
    char cfilename[FILENAME_MAX];

    if (opt_ppath.empty()) {

      // Warning : the datset is available on https://visp.inria.fr/download/
      dirname = vpIoTools::createFilePath(ipath, "cube");

      // Build the name of the image file

      s.setf(std::ios::right, std::ios::adjustfield);
      s << "image." << std::setw(4) << std::setfill('0') << iter << "." << ext;
      filename = vpIoTools::createFilePath(dirname, s.str());
    } else {

      snprintf(cfilename, FILENAME_MAX, opt_ppath.c_str(), iter);
      filename = cfilename;
    }

    // define the vpDot structure, here 4 dots will tracked
    vpDot d[4];

    for (i = 0; i < 4; i++) {
      // by using setGraphics, we request to see the all the pixel of the dot
      // in green on the screen.
      // It uses the overlay image plane.
      // The default of this setting is that it is time consuming

      if (opt_display) {
        d[i].setGraphics(true);
      } else {
        d[i].setGraphics(false);
      }
    }

    // Read image named filename and put the bitmap into in I.
    try {
      vpImageIo::read(I, filename);
    } catch (...) {
      if (opt_ppath.empty()) {
        std::cerr << std::endl << "ERROR:" << std::endl;
        std::cerr << "  Cannot read " << filename << std::endl;
        std::cerr << "  Check your -i " << ipath << " option, " << std::endl
                  << "  or VISP_INPUT_IMAGE_PATH environment variable" << std::endl;
      } else {
        std::cerr << std::endl << "ERROR:" << std::endl;
        std::cerr << "  Cannot read " << filename << std::endl;
        std::cerr << "  or your -p " << opt_ppath << " option " << std::endl << std::endl;
      }
      return EXIT_FAILURE;
    }

// We open a window using either the X11 or GTK or GDI window manager
// it will be located in 100,100 and titled "tracking using vpDot"
// its size is automatically defined by the image (I) size
#if defined(VISP_HAVE_X11)
    vpDisplayX display;
#elif defined(VISP_HAVE_GTK)
    vpDisplayGTK display;
#elif defined(VISP_HAVE_GDI)
    vpDisplayGDI display;
#elif defined(HAVE_OPENCV_HIGHGUI)
    vpDisplayOpenCV display;
#endif
    if (opt_display) {
      // Display size is automatically defined by the image (I) size
      display.init(I, 100, 100, "tracking using vpDot");
      // display the image
      // The image class has a member that specify a pointer toward
      // the display that has been initialized in the display declaration
      // therefore is is no longer necessary to make a reference to the
      // display variable.
      vpDisplay::display(I);
      // Flush the display
      vpDisplay::flush(I);
    }

    vpImagePoint cog[4]; // Center of gravity of the dot
    if (opt_display && opt_click_allowed) {
      // dot coordinates (u,v) = (column,row)
      std::cout << "Click the four white dots on the object corner clockwise" << std::endl;
      for (i = 0; i < 4; i++) {
        // tracking is initalized if no other parameters are given
        // to the iniTracking(..) method a right mouse click on the
        // dot is expected dot location can also be specified
        // explicitly in the initTracking method :
        // d.initTracking(I,ip) where ip is the image point from
        // where the dot need to be searched.

        d[i].initTracking(I);
        // track the dot and returns its coordinates in the image
        // results are given in float since many many are usually considered
        //
        // an exception is thrown by the track method if
        //  - dot is lost
        //  - the number of pixel is too small
        //  - too many pixels are detected (this is usual when a "big"
        //  specularity
        //    occurs. The threshold can be modified using the
        //    setMaxDotSize() method
        d[i].track(I, cog[i]);
        vpDisplay::flush(I);
      }
    } else {
      cog[0].set_u(194);
      cog[0].set_v(88);
      d[0].initTracking(I, cog[0]);
      d[0].track(I, cog[0]);
      vpDisplay::flush(I);

      cog[1].set_u(225);
      cog[1].set_v(84);
      d[1].initTracking(I, cog[1]);
      d[1].track(I, cog[1]);
      vpDisplay::flush(I);

      cog[2].set_u(242);
      cog[2].set_v(114);
      d[2].initTracking(I, cog[2]);
      d[2].track(I, cog[2]);
      vpDisplay::flush(I);

      cog[3].set_u(212);
      cog[3].set_v(131);
      d[3].initTracking(I, cog[3]);
      d[3].track(I, cog[3]);
      vpDisplay::flush(I);
    }

    if (opt_display) {

      // display a red cross (size 10) in the image at the dot center
      // of gravity location
      //
      // WARNING
      // in the vpDisplay class member's when pixel coordinates
      // are considered the first element is the row index and the second
      // is the column index:
      //   vpDisplay::displayCross(Image, row index, column index, size,
      //   color) therefore u and v are inverted wrt to the vpDot
      //   specification
      // Alternatively, to avoid this problem another set of member have
      // been defined in the vpDisplay class.
      // If the method name is postfixe with _uv the specification is :
      //   vpDisplay::displayCross_uv(Image, column index, row index, size,
      //   color)

      for (i = 0; i < 4; i++)
        vpDisplay::displayCross(I, cog[i], 10, vpColor::red);

      // flush the X11 buffer
      vpDisplay::flush(I);
    }

    // --------------------------------------------------------
    // Now wil compute the pose
    //

    // The pose will be contained in an homogeneous matrix cMo
    vpHomogeneousMatrix cMo;

    // We need a structure that content both the 3D coordinates of the point
    // in the object frame and the 2D coordinates of the point expressed in
    // meter the vpPoint class is ok for that
    vpPoint P[4];

    // The vpPose class mainly contents a list of vpPoint (that is (X,Y,Z, x,
    // y) )
    vpPose pose;
    //  the list of point is cleared (if that's not done before)
    pose.clearPoint();

    // we set the 3D points coordinates (in meter !) in the object/world frame
    double L = 0.04;
    P[0].setWorldCoordinates(-L, -L, 0); // (X,Y,Z)
    P[1].setWorldCoordinates(L, -L, 0);
    P[2].setWorldCoordinates(L, L, 0);
    P[3].setWorldCoordinates(-L, L, 0);

    // set the camera intrinsic parameters
    // see more details about the model in vpCameraParameters
    double px = 600;
    double py = 600;
    double u0 = 192;
    double v0 = 144;
    vpCameraParameters cam(px, py, u0, v0);

    // pixel-> meter conversion
    for (i = 0; i < 4; i++) {
      // u[i]. v[i] are expressed in pixel
      // conversion in meter is achieved using
      // x = (u-u0)/px
      // y = (v-v0)/py
      // where px, py, u0, v0 are the intrinsic camera parameters
      double x = 0, y = 0;
      vpPixelMeterConversion::convertPoint(cam, cog[i], x, y);
      P[i].set_x(x);
      P[i].set_y(y);
    }

    // The pose structure is build, we put in the point list the set of point
    // here both 2D and 3D world coordinates are known
    for (i = 0; i < 4; i++) {
      pose.addPoint(P[i]); // and added to the pose computation point list
    }

    // compute the initial pose using Dementhon method followed by a non
    // linear minimization method

    // Pose by Dementhon or Lagrange provides an initialization of the non linear virtual visual-servoing pose estimation
    pose.computePose(vpPose::DEMENTHON_LAGRANGE_VIRTUAL_VS, cMo);
    if (opt_display) {
      // display the compute pose
      pose.display(I, cMo, cam, 0.05, vpColor::red);
      vpDisplay::flush(I);
    }

    // Covariance Matrix Computation
    // Uncomment if you want to compute the covariance matrix.
    // pose.setCovarianceComputation(true); //Important if you want
    // tracker.getCovarianceMatrix() to work.

    // this is the loop over the image sequence
    while (iter < opt_last) {
      // set the new image name

      if (opt_ppath.empty()) {
        s.str("");
        s << "image." << std::setw(4) << std::setfill('0') << iter << "." << ext;
        filename = vpIoTools::createFilePath(dirname, s.str());
      } else {
        snprintf(cfilename, FILENAME_MAX, opt_ppath.c_str(), iter);
        filename = cfilename;
      }

      // read the image
      vpImageIo::read(I, filename);
      if (opt_display) {
        // Display the image
        vpDisplay::display(I);
        // Flush the display
        vpDisplay::flush(I);
      }
      // kill the point list
      pose.clearPoint();

      // track the dot
      for (i = 0; i < 4; i++) {
        // track the point
        d[i].track(I, cog[i]);
        if (opt_display) {
          // display point location
          vpDisplay::displayCross(I, cog[i], 10, vpColor::red);
        }
        // pixel->meter conversion
        {
          double x = 0, y = 0;
          vpPixelMeterConversion::convertPoint(cam, cog[i], x, y);
          P[i].set_x(x);
          P[i].set_y(y);
        }

        // and added to the pose computation point list
        pose.addPoint(P[i]);
      }
      // the pose structure has been updated

      // the pose is now updated using the virtual visual servoing approach
      // Dementhon or lagrange is no longer necessary, pose at the
      // previous iteration is sufficient
      pose.computePose(vpPose::VIRTUAL_VS, cMo);
      if (opt_display) {
        // display the compute pose
        pose.display(I, cMo, cam, 0.05, vpColor::red);

        vpDisplay::flush(I);
      }

      // Covariance Matrix Display
      // Uncomment if you want to print the covariance matrix.
      // Make sure pose.setCovarianceComputation(true) has been called
      // (uncomment below). std::cout << pose.getCovarianceMatrix() <<
      // std::endl << std::endl;

      iter += opt_step;
    }
    return EXIT_SUCCESS;
  } catch (const vpException &e) {
    std::cout << "Catch a ViSP exception: " << e << std::endl;
    return EXIT_FAILURE;
  }
}
#elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
int main()
{
  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
  return EXIT_SUCCESS;
}
#else
int main()
{
  std::cout << "You do not have X11, or GTK, or GDI (Graphical Device Interface) functionalities to display images..."
            << std::endl;
  std::cout << "Tip if you are on a unix-like system:" << std::endl;
  std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
  std::cout << "Tip if you are on a windows-like system:" << std::endl;
  std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
  return EXIT_SUCCESS;
}
#endif