1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
|
/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a 2D visual servoing on a cylinder.
*
*****************************************************************************/
/*!
\example servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp
\brief Simulation of a 2D visual servoing:
Simulation of a 2D visual servoing:
- servo on a cylinder,
- eye-in-hand control law,
- camera velocities are computed,
- display internal camera view and an external view.
This example illustrates in one hand a classical visual servoing with a
cylinder. And in the other hand it illustrates the behaviour of the robot
when adding a secondary task.
*/
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpCylinder.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpProjectionDisplay.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureLine.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
// List of allowed command line options
#define GETOPTARGS "cdho"
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
/*!
Print the program options.
\param name : Program name.
\param badparam : Bad parameter name.
*/
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Simulation of a 2D visual servoing on a cylinder:\n\
- eye-in-hand control law,\n\
- velocity computed in the camera frame,\n\
- display the camera view.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-o] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
\n\
-c\n\
Disable the mouse click. Useful to automate the \n\
execution of this program without human intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-o \n\
Disable new projection operator usage for secondary task.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
/*!
Set the program options.
\param argc : Command line number of parameters.
\param argv : Array of command line parameters.
\param click_allowed : false if mouse click is not allowed.
\param display : false if the display is to turn off.
\param new_proj_operator : If true, use new projection operator for secondary task.
\return false if the program has to be stopped, true otherwise.
*/
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display, bool &new_proj_operator)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'o':
new_proj_operator = false;
break;
case 'h':
usage(argv[0], NULL);
return false;
default:
usage(argv[0], optarg_);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
try {
bool opt_display = true;
bool opt_click_allowed = true;
bool opt_new_proj_operator = true;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display, opt_new_proj_operator) == false) {
return EXIT_FAILURE;
}
vpImage<unsigned char> Iint(512, 512, 0);
vpImage<unsigned char> Iext(512, 512, 0);
// We open a window if a display is available
#ifdef VISP_HAVE_DISPLAY
#if defined(VISP_HAVE_X11)
vpDisplayX displayInt;
vpDisplayX displayExt;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK displayInt;
vpDisplayGTK displayExt;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI displayInt;
vpDisplayGDI displayExt;
#elif defined(HAVE_OPENCV_HIGHGUI)
vpDisplayOpenCV displayInt;
vpDisplayOpenCV displayExt;
#elif defined(VISP_HAVE_D3D9)
vpDisplayD3D displayInt;
vpDisplayD3D displayExt;
#endif
#endif
if (opt_display) {
#ifdef VISP_HAVE_DISPLAY
// Display size is automatically defined by the image (Iint) and
// (Iext) size
displayInt.init(Iint, 100, 100, "Internal view");
displayExt.init(Iext, 130 + static_cast<int>(Iint.getWidth()), 100, "External view");
#endif
// Display the image
// The image class has a member that specify a pointer toward
// the display that has been initialized in the display declaration
// therefore is is no longer necessary to make a reference to the
// display variable.
vpDisplay::display(Iint);
vpDisplay::display(Iext);
vpDisplay::flush(Iint);
vpDisplay::flush(Iext);
}
#ifdef VISP_HAVE_DISPLAY
vpProjectionDisplay externalview;
#endif
// Set the camera parameters
double px, py;
px = py = 600;
double u0, v0;
u0 = v0 = 256;
vpCameraParameters cam(px, py, u0, v0);
vpServo task;
vpSimulatorCamera robot;
// sets the initial camera location
vpHomogeneousMatrix cMo(-0.2, 0.1, 2, vpMath::rad(5), vpMath::rad(5), vpMath::rad(20));
vpHomogeneousMatrix wMc, wMo;
robot.getPosition(wMc);
wMo = wMc * cMo; // Compute the position of the object in the world frame
// sets the final camera location (for simulation purpose)
vpHomogeneousMatrix cMod(0, 0, 1, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
// sets the cylinder coordinates in the world frame
vpCylinder cylinder(0, 1, 0, // direction
0, 0, 0, // point of the axis
0.1); // radius
#ifdef VISP_HAVE_DISPLAY
externalview.insert(cylinder);
#endif
// sets the desired position of the visual feature
cylinder.track(cMod);
cylinder.print();
// Build the desired line features thanks to the cylinder and especially
// its paramaters in the image frame
vpFeatureLine ld[2];
for (unsigned int i = 0; i < 2; i++)
vpFeatureBuilder::create(ld[i], cylinder, i);
// computes the cylinder coordinates in the camera frame and its 2D
// coordinates sets the current position of the visual feature
cylinder.track(cMo);
cylinder.print();
// Build the current line features thanks to the cylinder and especially
// its paramaters in the image frame
vpFeatureLine l[2];
for (unsigned int i = 0; i < 2; i++) {
vpFeatureBuilder::create(l[i], cylinder, i);
l[i].print();
}
// define the task
// - we want an eye-in-hand control law
// - robot is controlled in the camera frame
task.setServo(vpServo::EYEINHAND_CAMERA);
task.setInteractionMatrixType(vpServo::DESIRED, vpServo::PSEUDO_INVERSE);
// it can also be interesting to test these possibilities
// task.setInteractionMatrixType(vpServo::CURRENT,vpServo::PSEUDO_INVERSE)
// ; task.setInteractionMatrixType(vpServo::MEAN, vpServo::PSEUDO_INVERSE)
// ; task.setInteractionMatrixType(vpServo::CURRENT,
// vpServo::PSEUDO_INVERSE) ;
// task.setInteractionMatrixType(vpServo::DESIRED, vpServo::TRANSPOSE) ;
// task.setInteractionMatrixType(vpServo::CURRENT, vpServo::TRANSPOSE) ;
// we want to see 2 lines on 2 lines
task.addFeature(l[0], ld[0]);
task.addFeature(l[1], ld[1]);
// Set the point of view of the external view
vpHomogeneousMatrix cextMo(0, 0, 6, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
// Display the initial scene
vpServoDisplay::display(task, cam, Iint);
#ifdef VISP_HAVE_DISPLAY
externalview.display(Iext, cextMo, cMo, cam, vpColor::red);
#endif
vpDisplay::flush(Iint);
vpDisplay::flush(Iext);
// Display task information
task.print();
if (opt_display && opt_click_allowed) {
vpDisplay::displayText(Iint, 20, 20, "Click to start visual servo...", vpColor::white);
vpDisplay::flush(Iint);
vpDisplay::getClick(Iint);
}
// set the gain
task.setLambda(1);
// Display task information
task.print();
unsigned int iter = 0;
bool stop = false;
bool start_secondary_task = false;
while (!stop) {
std::cout << "---------------------------------------------" << iter++ << std::endl;
// get the robot position
robot.getPosition(wMc);
// Compute the position of the object frame in the camera frame
cMo = wMc.inverse() * wMo;
// new line position
// retrieve x,y and Z of the vpLine structure
// Compute the parameters of the cylinder in the camera frame and in the
// image frame
cylinder.track(cMo);
// Build the current line features thanks to the cylinder and especially
// its paramaters in the image frame
for (unsigned int i = 0; i < 2; i++) {
vpFeatureBuilder::create(l[i], cylinder, i);
}
// Display the current scene
if (opt_display) {
vpDisplay::display(Iint);
vpDisplay::display(Iext);
vpServoDisplay::display(task, cam, Iint);
#ifdef VISP_HAVE_DISPLAY
externalview.display(Iext, cextMo, cMo, cam, vpColor::red);
#endif
}
// compute the control law
vpColVector v = task.computeControlLaw();
// Wait primary task convergence before considering secondary task
if (task.getError().sumSquare() < 1e-6) {
start_secondary_task = true;
}
if (start_secondary_task) {
// In this example the secondary task is cut in four
// steps. The first one consists in imposing a movement of the robot along
// the x axis of the object frame with a velocity of 0.5. The second one
// consists in imposing a movement of the robot along the y axis of the
// object frame with a velocity of 0.5. The third one consists in imposing a
// movement of the robot along the x axis of the object frame with a
// velocity of -0.5. The last one consists in imposing a movement of the
// robot along the y axis of the object frame with a velocity of -0.5.
// Each steps is made during 200 iterations.
vpColVector e1(6);
vpColVector e2(6);
vpColVector proj_e1;
vpColVector proj_e2;
static unsigned int iter_sec = 0;
double rapport = 0;
double vitesse = 0.5;
unsigned int tempo = 800;
if (iter_sec > tempo) {
stop = true;
}
if (iter_sec % tempo < 200) {
e2 = 0;
e1[0] = fabs(vitesse);
proj_e1 = task.secondaryTask(e1, opt_new_proj_operator);
rapport = vitesse / proj_e1[0];
proj_e1 *= rapport;
v += proj_e1;
}
if (iter_sec % tempo < 400 && iter_sec % tempo >= 200) {
e1 = 0;
e2[1] = fabs(vitesse);
proj_e2 = task.secondaryTask(e2, opt_new_proj_operator);
rapport = vitesse / proj_e2[1];
proj_e2 *= rapport;
v += proj_e2;
}
if (iter_sec % tempo < 600 && iter_sec % tempo >= 400) {
e2 = 0;
e1[0] = -fabs(vitesse);
proj_e1 = task.secondaryTask(e1, opt_new_proj_operator);
rapport = -vitesse / proj_e1[0];
proj_e1 *= rapport;
v += proj_e1;
}
if (iter_sec % tempo < 800 && iter_sec % tempo >= 600) {
e1 = 0;
e2[1] = -fabs(vitesse);
proj_e2 = task.secondaryTask(e2, opt_new_proj_operator);
rapport = -vitesse / proj_e2[1];
proj_e2 *= rapport;
v += proj_e2;
}
if (opt_display && opt_click_allowed) {
std::stringstream ss;
ss << std::string("New projection operator: ") +
(opt_new_proj_operator ? std::string("yes (use option -o to use old one)") : std::string("no"));
vpDisplay::displayText(Iint, 20, 20, "Secondary task enabled: yes", vpColor::white);
vpDisplay::displayText(Iint, 40, 20, ss.str(), vpColor::white);
}
iter_sec++;
} else {
if (opt_display && opt_click_allowed) {
vpDisplay::displayText(Iint, 20, 20, "Secondary task: no", vpColor::white);
}
}
// send the camera velocity to the controller
robot.setVelocity(vpRobot::CAMERA_FRAME, v);
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
if (opt_display) {
vpDisplay::displayText(Iint, 60, 20, "Click to stop visual servo...", vpColor::white);
if (vpDisplay::getClick(Iint, false)) {
stop = true;
}
vpDisplay::flush(Iint);
vpDisplay::flush(Iext);
}
iter++;
}
if (opt_display && opt_click_allowed) {
vpDisplay::display(Iint);
vpServoDisplay::display(task, cam, Iint);
vpDisplay::displayText(Iint, 20, 20, "Click to quit...", vpColor::white);
vpDisplay::flush(Iint);
vpDisplay::getClick(Iint);
}
// Display task information
task.print();
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return EXIT_FAILURE;
}
#else
(void)argc;
(void)argv;
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
#endif
}
|