File: servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (475 lines) | stat: -rw-r--r-- 15,183 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/****************************************************************************
 *
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * Simulation of a 2D visual servoing on a cylinder.
 *
*****************************************************************************/
/*!
  \example servoSimuCylinder2DCamVelocityDisplaySecondaryTask.cpp

  \brief Simulation of a 2D visual servoing:

  Simulation of a 2D visual servoing:
  - servo on a cylinder,
  - eye-in-hand control law,
  - camera velocities are computed,
  - display internal camera view and an external view.

  This example illustrates in one hand a classical visual servoing with a
  cylinder. And in the other hand it illustrates the behaviour of the robot
  when adding a secondary task.
*/

#include <iostream>
#include <stdio.h>
#include <stdlib.h>

#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpCylinder.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayD3D.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpProjectionDisplay.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeatureLine.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>

// List of allowed command line options
#define GETOPTARGS "cdho"

void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);

/*!

  Print the program options.

  \param name : Program name.
  \param badparam : Bad parameter name.

*/
void usage(const char *name, const char *badparam)
{
  fprintf(stdout, "\n\
Simulation of a 2D visual servoing on a cylinder:\n\
- eye-in-hand control law,\n\
- velocity computed in the camera frame,\n\
- display the camera view.\n\
          \n\
SYNOPSIS\n\
  %s [-c] [-d] [-o] [-h]\n",
          name);

  fprintf(stdout, "\n\
OPTIONS:                                               Default\n\
                  \n\
  -c\n\
     Disable the mouse click. Useful to automate the \n\
     execution of this program without human intervention.\n\
                  \n\
  -d \n\
     Turn off the display.\n\
                          \n\
  -o \n\
     Disable new projection operator usage for secondary task.\n\
                          \n\
  -h\n\
     Print the help.\n");

  if (badparam)
    fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}

/*!

  Set the program options.

  \param argc : Command line number of parameters.
  \param argv : Array of command line parameters.
  \param click_allowed : false if mouse click is not allowed.
  \param display : false if the display is to turn off.
  \param new_proj_operator : If true, use new projection operator for secondary task.
  \return false if the program has to be stopped, true otherwise.

*/
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display, bool &new_proj_operator)
{
  const char *optarg_;
  int c;
  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {

    switch (c) {
    case 'c':
      click_allowed = false;
      break;
    case 'd':
      display = false;
      break;
    case 'o':
      new_proj_operator = false;
      break;
    case 'h':
      usage(argv[0], NULL);
      return false;

    default:
      usage(argv[0], optarg_);
      return false;
    }
  }

  if ((c == 1) || (c == -1)) {
    // standalone param or error
    usage(argv[0], NULL);
    std::cerr << "ERROR: " << std::endl;
    std::cerr << "  Bad argument " << optarg_ << std::endl << std::endl;
    return false;
  }

  return true;
}

int main(int argc, const char **argv)
{
#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
  try {
    bool opt_display = true;
    bool opt_click_allowed = true;
    bool opt_new_proj_operator = true;

    // Read the command line options
    if (getOptions(argc, argv, opt_click_allowed, opt_display, opt_new_proj_operator) == false) {
      return EXIT_FAILURE;
    }

    vpImage<unsigned char> Iint(512, 512, 0);
    vpImage<unsigned char> Iext(512, 512, 0);

// We open a window if a display is available
#ifdef VISP_HAVE_DISPLAY
#if defined(VISP_HAVE_X11)
    vpDisplayX displayInt;
    vpDisplayX displayExt;
#elif defined(VISP_HAVE_GTK)
    vpDisplayGTK displayInt;
    vpDisplayGTK displayExt;
#elif defined(VISP_HAVE_GDI)
    vpDisplayGDI displayInt;
    vpDisplayGDI displayExt;
#elif defined(HAVE_OPENCV_HIGHGUI)
    vpDisplayOpenCV displayInt;
    vpDisplayOpenCV displayExt;
#elif defined(VISP_HAVE_D3D9)
    vpDisplayD3D displayInt;
    vpDisplayD3D displayExt;
#endif
#endif

    if (opt_display) {
#ifdef VISP_HAVE_DISPLAY
      // Display size is automatically defined by the image (Iint) and
      // (Iext) size
      displayInt.init(Iint, 100, 100, "Internal view");
      displayExt.init(Iext, 130 + static_cast<int>(Iint.getWidth()), 100, "External view");
#endif
      // Display the image
      // The image class has a member that specify a pointer toward
      // the display that has been initialized in the display declaration
      // therefore is is no longer necessary to make a reference to the
      // display variable.
      vpDisplay::display(Iint);
      vpDisplay::display(Iext);
      vpDisplay::flush(Iint);
      vpDisplay::flush(Iext);
    }

#ifdef VISP_HAVE_DISPLAY
    vpProjectionDisplay externalview;
#endif

    // Set the camera parameters
    double px, py;
    px = py = 600;
    double u0, v0;
    u0 = v0 = 256;

    vpCameraParameters cam(px, py, u0, v0);

    vpServo task;
    vpSimulatorCamera robot;

    // sets the initial camera location
    vpHomogeneousMatrix cMo(-0.2, 0.1, 2, vpMath::rad(5), vpMath::rad(5), vpMath::rad(20));

    vpHomogeneousMatrix wMc, wMo;
    robot.getPosition(wMc);
    wMo = wMc * cMo; // Compute the position of the object in the world frame

    // sets the final camera location (for simulation purpose)
    vpHomogeneousMatrix cMod(0, 0, 1, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));

    // sets the cylinder coordinates in the world frame
    vpCylinder cylinder(0, 1, 0, // direction
                        0, 0, 0, // point of the axis
                        0.1);    // radius

#ifdef VISP_HAVE_DISPLAY
    externalview.insert(cylinder);
#endif
    // sets the desired position of the visual feature
    cylinder.track(cMod);
    cylinder.print();

    // Build the desired line features thanks to the cylinder and especially
    // its paramaters in the image frame
    vpFeatureLine ld[2];
    for (unsigned int i = 0; i < 2; i++)
      vpFeatureBuilder::create(ld[i], cylinder, i);

    // computes  the cylinder coordinates in the camera frame and its 2D
    // coordinates sets the current position of the visual feature
    cylinder.track(cMo);
    cylinder.print();

    // Build the current line features thanks to the cylinder and especially
    // its paramaters in the image frame
    vpFeatureLine l[2];
    for (unsigned int i = 0; i < 2; i++) {
      vpFeatureBuilder::create(l[i], cylinder, i);
      l[i].print();
    }

    // define the task
    // - we want an eye-in-hand control law
    // - robot is controlled in the camera frame
    task.setServo(vpServo::EYEINHAND_CAMERA);
    task.setInteractionMatrixType(vpServo::DESIRED, vpServo::PSEUDO_INVERSE);
    //  it can also be interesting to test these possibilities
    // task.setInteractionMatrixType(vpServo::CURRENT,vpServo::PSEUDO_INVERSE)
    // ; task.setInteractionMatrixType(vpServo::MEAN, vpServo::PSEUDO_INVERSE)
    // ; task.setInteractionMatrixType(vpServo::CURRENT,
    // vpServo::PSEUDO_INVERSE) ;
    // task.setInteractionMatrixType(vpServo::DESIRED,  vpServo::TRANSPOSE) ;
    // task.setInteractionMatrixType(vpServo::CURRENT,  vpServo::TRANSPOSE) ;

    // we want to see  2 lines on 2 lines
    task.addFeature(l[0], ld[0]);
    task.addFeature(l[1], ld[1]);

    // Set the point of view of the external view
    vpHomogeneousMatrix cextMo(0, 0, 6, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));

    // Display the initial scene
    vpServoDisplay::display(task, cam, Iint);
#ifdef VISP_HAVE_DISPLAY
    externalview.display(Iext, cextMo, cMo, cam, vpColor::red);
#endif
    vpDisplay::flush(Iint);
    vpDisplay::flush(Iext);

    // Display task information
    task.print();

    if (opt_display && opt_click_allowed) {
      vpDisplay::displayText(Iint, 20, 20, "Click to start visual servo...", vpColor::white);
      vpDisplay::flush(Iint);
      vpDisplay::getClick(Iint);
    }

    // set the gain
    task.setLambda(1);

    // Display task information
    task.print();

    unsigned int iter = 0;
    bool stop = false;
    bool start_secondary_task = false;

    while (!stop) {
      std::cout << "---------------------------------------------" << iter++ << std::endl;

      // get the robot position
      robot.getPosition(wMc);
      // Compute the position of the object frame in the camera frame
      cMo = wMc.inverse() * wMo;

      // new line position
      // retrieve x,y and Z of the vpLine structure
      // Compute the parameters of the cylinder in the camera frame and in the
      // image frame
      cylinder.track(cMo);

      // Build the current line features thanks to the cylinder and especially
      // its paramaters in the image frame
      for (unsigned int i = 0; i < 2; i++) {
        vpFeatureBuilder::create(l[i], cylinder, i);
      }

      // Display the current scene
      if (opt_display) {
        vpDisplay::display(Iint);
        vpDisplay::display(Iext);
        vpServoDisplay::display(task, cam, Iint);
#ifdef VISP_HAVE_DISPLAY
        externalview.display(Iext, cextMo, cMo, cam, vpColor::red);
#endif
      }

      // compute the control law
      vpColVector v = task.computeControlLaw();

      // Wait primary task convergence before considering secondary task
      if (task.getError().sumSquare() < 1e-6) {
        start_secondary_task = true;
      }

      if (start_secondary_task) {
        // In this example the secondary task is cut in four
        // steps. The first one consists in imposing a movement of the robot along
        // the x axis of the object frame with a velocity of 0.5. The second one
        // consists in imposing a movement of the robot along the y axis of the
        // object frame with a velocity of 0.5. The third one consists in imposing a
        // movement of the robot along the x axis of the object frame with a
        // velocity of -0.5. The last one consists in imposing a movement of the
        // robot along the y axis of the object frame with a velocity of -0.5.
        // Each steps is made during 200 iterations.
        vpColVector e1(6);
        vpColVector e2(6);
        vpColVector proj_e1;
        vpColVector proj_e2;
        static unsigned int iter_sec = 0;
        double rapport = 0;
        double vitesse = 0.5;
        unsigned int tempo = 800;

        if (iter_sec > tempo) {
          stop = true;
        }

        if (iter_sec % tempo < 200) {
          e2 = 0;
          e1[0] = fabs(vitesse);
          proj_e1 = task.secondaryTask(e1, opt_new_proj_operator);
          rapport = vitesse / proj_e1[0];
          proj_e1 *= rapport;
          v += proj_e1;
        }

        if (iter_sec % tempo < 400 && iter_sec % tempo >= 200) {
          e1 = 0;
          e2[1] = fabs(vitesse);
          proj_e2 = task.secondaryTask(e2, opt_new_proj_operator);
          rapport = vitesse / proj_e2[1];
          proj_e2 *= rapport;
          v += proj_e2;
        }

        if (iter_sec % tempo < 600 && iter_sec % tempo >= 400) {
          e2 = 0;
          e1[0] = -fabs(vitesse);
          proj_e1 = task.secondaryTask(e1, opt_new_proj_operator);
          rapport = -vitesse / proj_e1[0];
          proj_e1 *= rapport;
          v += proj_e1;
        }

        if (iter_sec % tempo < 800 && iter_sec % tempo >= 600) {
          e1 = 0;
          e2[1] = -fabs(vitesse);
          proj_e2 = task.secondaryTask(e2, opt_new_proj_operator);
          rapport = -vitesse / proj_e2[1];
          proj_e2 *= rapport;
          v += proj_e2;
        }

        if (opt_display && opt_click_allowed) {
          std::stringstream ss;
          ss << std::string("New projection operator: ") +
                    (opt_new_proj_operator ? std::string("yes (use option -o to use old one)") : std::string("no"));
          vpDisplay::displayText(Iint, 20, 20, "Secondary task enabled: yes", vpColor::white);
          vpDisplay::displayText(Iint, 40, 20, ss.str(), vpColor::white);
        }

        iter_sec++;
      } else {
        if (opt_display && opt_click_allowed) {
          vpDisplay::displayText(Iint, 20, 20, "Secondary task: no", vpColor::white);
        }
      }

      // send the camera velocity to the controller
      robot.setVelocity(vpRobot::CAMERA_FRAME, v);

      std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;

      if (opt_display) {
        vpDisplay::displayText(Iint, 60, 20, "Click to stop visual servo...", vpColor::white);
        if (vpDisplay::getClick(Iint, false)) {
          stop = true;
        }
        vpDisplay::flush(Iint);
        vpDisplay::flush(Iext);
      }

      iter++;
    }

    if (opt_display && opt_click_allowed) {
      vpDisplay::display(Iint);
      vpServoDisplay::display(task, cam, Iint);
      vpDisplay::displayText(Iint, 20, 20, "Click to quit...", vpColor::white);
      vpDisplay::flush(Iint);
      vpDisplay::getClick(Iint);
    }

    // Display task information
    task.print();
    return EXIT_SUCCESS;
  } catch (const vpException &e) {
    std::cout << "Catch a ViSP exception: " << e << std::endl;
    return EXIT_FAILURE;
  }
#else
  (void)argc;
  (void)argv;
  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
  return EXIT_SUCCESS;
#endif
}