1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a 2D visual servoing using 4 points as visual feature.
*
*****************************************************************************/
/*!
\example servoSimuFourPoints2DCamVelocityDisplay.cpp
\brief Simulation of a 2D visual servoing:
Simulation of a 2D visual servoing:
- servo on 4 points with cartesian coordinates,
- eye-in-hand control law,
- camera velocities are computed,
- display internal camera view and an external view.
Interaction matrix is computed as the mean of the current and desired
interaction matrix.
*/
#include <iostream>
#include <visp3/core/vpConfig.h>
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV)) && \
(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpProjectionDisplay.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
// List of allowed command line options
#define GETOPTARGS "cdh"
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
/*!
Print the program options.
\param name : Program name.
\param badparam : Bad parameter name.
*/
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Tests a control law with the following characteristics:\n\
- eye-in-hand control\n\
- articular velocity are computed\n\
- servo on 4 points,\n\
- internal and external camera view displays.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-c\n\
Disable the mouse click. Useful to automate the \n\
execution of this program without human intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
/*!
Set the program options.
\param argc : Command line number of parameters.
\param argv : Array of command line parameters.
\param display : Display activation.
\param click_allowed : Click activation.
\return false if the program has to be stopped, true otherwise.
*/
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'h':
usage(argv[0], NULL);
return false;
default:
usage(argv[0], optarg_);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
try {
bool opt_click_allowed = true;
bool opt_display = true;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
return EXIT_FAILURE;
}
// We open two displays, one for the internal camera view, the other one for
// the external view, using either X11, GTK or GDI.
#if defined(VISP_HAVE_X11)
vpDisplayX displayInt;
vpDisplayX displayExt;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK displayInt;
vpDisplayGTK displayExt;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI displayInt;
vpDisplayGDI displayExt;
#elif defined(HAVE_OPENCV_HIGHGUI)
vpDisplayOpenCV displayInt;
vpDisplayOpenCV displayExt;
#endif
// open a display for the visualization
vpImage<unsigned char> Iint(300, 300, 0);
vpImage<unsigned char> Iext(300, 300, 0);
if (opt_display) {
displayInt.init(Iint, 0, 0, "Internal view");
displayExt.init(Iext, 330, 000, "External view");
}
vpProjectionDisplay externalview;
double px = 500, py = 500;
double u0 = 150, v0 = 160;
vpCameraParameters cam(px, py, u0, v0);
vpServo task;
vpSimulatorCamera robot;
std::cout << std::endl;
std::cout << "----------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
std::cout << " Simulation " << std::endl;
std::cout << " task : servo 4 points " << std::endl;
std::cout << "----------------------------------------------" << std::endl;
std::cout << std::endl;
// sets the initial camera location
vpHomogeneousMatrix cMo(-0.1, -0.1, 1, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
// Compute the position of the object in the world frame
vpHomogeneousMatrix wMc, wMo;
robot.getPosition(wMc);
wMo = wMc * cMo;
vpHomogeneousMatrix cextMo(0, 0, 2, 0, 0, 0); // vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
// sets the point coordinates in the object frame
vpPoint point[4];
point[0].setWorldCoordinates(-0.1, -0.1, 0);
point[1].setWorldCoordinates(0.1, -0.1, 0);
point[2].setWorldCoordinates(0.1, 0.1, 0);
point[3].setWorldCoordinates(-0.1, 0.1, 0);
for (unsigned i = 0; i < 4; i++)
externalview.insert(point[i]);
// computes the point coordinates in the camera frame and its 2D
// coordinates
for (unsigned i = 0; i < 4; i++)
point[i].track(cMo);
// sets the desired position of the point
vpFeaturePoint p[4];
for (unsigned i = 0; i < 4; i++)
vpFeatureBuilder::create(p[i], point[i]); // retrieve x,y and Z of the vpPoint structure
// sets the desired position of the feature point s*
vpFeaturePoint pd[4];
pd[0].buildFrom(-0.1, -0.1, 1);
pd[1].buildFrom(0.1, -0.1, 1);
pd[2].buildFrom(0.1, 0.1, 1);
pd[3].buildFrom(-0.1, 0.1, 1);
// define the task
// - we want an eye-in-hand control law
// - articular velocity are computed
task.setServo(vpServo::EYEINHAND_L_cVe_eJe);
task.setInteractionMatrixType(vpServo::MEAN);
// Set the position of the end-effector frame in the camera frame as identity
vpHomogeneousMatrix cMe;
vpVelocityTwistMatrix cVe(cMe);
task.set_cVe(cVe);
// Set the Jacobian (expressed in the end-effector frame
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
// we want to see a point on a point
for (unsigned i = 0; i < 4; i++)
task.addFeature(p[i], pd[i]);
// set the gain
task.setLambda(1);
// Display task information
task.print();
unsigned int iter = 0;
// loop
while (iter++ < 200) {
std::cout << "---------------------------------------------" << iter << std::endl;
vpColVector v;
// Set the Jacobian (expressed in the end-effector frame)
// since q is modified eJe is modified
robot.get_eJe(eJe);
task.set_eJe(eJe);
// get the robot position
robot.getPosition(wMc);
// Compute the position of the object frame in the camera frame
cMo = wMc.inverse() * wMo;
// update new point position and corresponding features
for (unsigned i = 0; i < 4; i++) {
point[i].track(cMo);
// retrieve x,y and Z of the vpPoint structure
vpFeatureBuilder::create(p[i], point[i]);
}
// since vpServo::MEAN interaction matrix is used, we need also to
// update the desired features at each iteration
pd[0].buildFrom(-0.1, -0.1, 1);
pd[1].buildFrom(0.1, -0.1, 1);
pd[2].buildFrom(0.1, 0.1, 1);
pd[3].buildFrom(-0.1, 0.1, 1);
if (opt_display) {
vpDisplay::display(Iint);
vpDisplay::display(Iext);
vpServoDisplay::display(task, cam, Iint);
externalview.display(Iext, cextMo, cMo, cam, vpColor::green);
vpDisplay::flush(Iint);
vpDisplay::flush(Iext);
}
// compute the control law
v = task.computeControlLaw();
// send the camera velocity to the controller
robot.setVelocity(vpRobot::CAMERA_FRAME, v);
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
}
// Display task information
task.print();
std::cout << "Final robot position with respect to the object frame:\n";
cMo.print();
if (opt_display && opt_click_allowed) {
vpDisplay::displayText(Iint, 20, 20, "Click to quit...", vpColor::white);
vpDisplay::flush(Iint);
vpDisplay::getClick(Iint);
}
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
int main()
{
std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
return EXIT_SUCCESS;
}
#else
int main()
{
std::cout << "You do not have X11, or GTK, or GDI (Graphical Device Interface) functionalities to display images..."
<< std::endl;
std::cout << "Tip if you are on a unix-like system:" << std::endl;
std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
std::cout << "Tip if you are on a windows-like system:" << std::endl;
std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
}
#endif
|