File: servoSimuFourPoints2DCamVelocityDisplay.cpp

package info (click to toggle)
visp 3.6.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 119,296 kB
  • sloc: cpp: 500,914; ansic: 52,904; xml: 22,642; python: 7,365; java: 4,247; sh: 482; makefile: 237; objc: 145
file content (366 lines) | stat: -rw-r--r-- 11,287 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
/****************************************************************************
 *
 * ViSP, open source Visual Servoing Platform software.
 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
 *
 * This software is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * See the file LICENSE.txt at the root directory of this source
 * distribution for additional information about the GNU GPL.
 *
 * For using ViSP with software that can not be combined with the GNU
 * GPL, please contact Inria about acquiring a ViSP Professional
 * Edition License.
 *
 * See https://visp.inria.fr for more information.
 *
 * This software was developed at:
 * Inria Rennes - Bretagne Atlantique
 * Campus Universitaire de Beaulieu
 * 35042 Rennes Cedex
 * France
 *
 * If you have questions regarding the use of this file, please contact
 * Inria at visp@inria.fr
 *
 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 *
 * Description:
 * Simulation of a 2D visual servoing using 4 points as visual feature.
 *
*****************************************************************************/

/*!
  \example servoSimuFourPoints2DCamVelocityDisplay.cpp

  \brief Simulation of a 2D visual servoing:

  Simulation of a 2D visual servoing:
  - servo on 4 points with cartesian coordinates,
  - eye-in-hand control law,
  - camera velocities are computed,
  - display internal camera view and an external view.

  Interaction matrix is computed as the mean of the current and desired
  interaction matrix.

*/

#include <iostream>

#include <visp3/core/vpConfig.h>

#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV)) &&       \
    (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))

#include <stdio.h>
#include <stdlib.h>

#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpMath.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpProjectionDisplay.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePoint.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>

// List of allowed command line options
#define GETOPTARGS "cdh"

void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);

/*!

  Print the program options.

  \param name : Program name.
  \param badparam : Bad parameter name.

*/
void usage(const char *name, const char *badparam)
{
  fprintf(stdout, "\n\
Tests a control law with the following characteristics:\n\
- eye-in-hand control\n\
- articular velocity are computed\n\
- servo on 4 points,\n\
- internal and external camera view displays.\n\
          \n\
SYNOPSIS\n\
  %s [-c] [-d] [-h]\n",
          name);

  fprintf(stdout, "\n\
OPTIONS:                                               Default\n\
  -c\n\
     Disable the mouse click. Useful to automate the \n\
     execution of this program without human intervention.\n\
                  \n\
  -d \n\
     Turn off the display.\n\
                  \n\
  -h\n\
     Print the help.\n");

  if (badparam)
    fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
/*!

  Set the program options.

  \param argc : Command line number of parameters.
  \param argv : Array of command line parameters.
  \param display : Display activation.
  \param click_allowed : Click activation.

  \return false if the program has to be stopped, true otherwise.

*/
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
{
  const char *optarg_;
  int c;
  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {

    switch (c) {
    case 'c':
      click_allowed = false;
      break;
    case 'd':
      display = false;
      break;
    case 'h':
      usage(argv[0], NULL);
      return false;

    default:
      usage(argv[0], optarg_);
      return false;
    }
  }

  if ((c == 1) || (c == -1)) {
    // standalone param or error
    usage(argv[0], NULL);
    std::cerr << "ERROR: " << std::endl;
    std::cerr << "  Bad argument " << optarg_ << std::endl << std::endl;
    return false;
  }

  return true;
}

int main(int argc, const char **argv)
{
  try {
    bool opt_click_allowed = true;
    bool opt_display = true;

    // Read the command line options
    if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
      return EXIT_FAILURE;
    }

// We open two displays, one for the internal camera view, the other one for
// the external view, using either X11, GTK or GDI.
#if defined(VISP_HAVE_X11)
    vpDisplayX displayInt;
    vpDisplayX displayExt;
#elif defined(VISP_HAVE_GTK)
    vpDisplayGTK displayInt;
    vpDisplayGTK displayExt;
#elif defined(VISP_HAVE_GDI)
    vpDisplayGDI displayInt;
    vpDisplayGDI displayExt;
#elif defined(HAVE_OPENCV_HIGHGUI)
    vpDisplayOpenCV displayInt;
    vpDisplayOpenCV displayExt;
#endif

    // open a display for the visualization

    vpImage<unsigned char> Iint(300, 300, 0);
    vpImage<unsigned char> Iext(300, 300, 0);

    if (opt_display) {
      displayInt.init(Iint, 0, 0, "Internal view");
      displayExt.init(Iext, 330, 000, "External view");
    }
    vpProjectionDisplay externalview;

    double px = 500, py = 500;
    double u0 = 150, v0 = 160;

    vpCameraParameters cam(px, py, u0, v0);

    vpServo task;
    vpSimulatorCamera robot;

    std::cout << std::endl;
    std::cout << "----------------------------------------------" << std::endl;
    std::cout << " Test program for vpServo " << std::endl;
    std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
    std::cout << " Simulation " << std::endl;
    std::cout << " task : servo 4 points " << std::endl;
    std::cout << "----------------------------------------------" << std::endl;
    std::cout << std::endl;

    // sets the initial camera location
    vpHomogeneousMatrix cMo(-0.1, -0.1, 1, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));

    // Compute the position of the object in the world frame
    vpHomogeneousMatrix wMc, wMo;
    robot.getPosition(wMc);
    wMo = wMc * cMo;

    vpHomogeneousMatrix cextMo(0, 0, 2, 0, 0, 0); // vpMath::rad(40),  vpMath::rad(10),  vpMath::rad(60));

    // sets the point coordinates in the object frame
    vpPoint point[4];
    point[0].setWorldCoordinates(-0.1, -0.1, 0);
    point[1].setWorldCoordinates(0.1, -0.1, 0);
    point[2].setWorldCoordinates(0.1, 0.1, 0);
    point[3].setWorldCoordinates(-0.1, 0.1, 0);

    for (unsigned i = 0; i < 4; i++)
      externalview.insert(point[i]);

    // computes  the point coordinates in the camera frame and its 2D
    // coordinates
    for (unsigned i = 0; i < 4; i++)
      point[i].track(cMo);

    // sets the desired position of the point
    vpFeaturePoint p[4];
    for (unsigned i = 0; i < 4; i++)
      vpFeatureBuilder::create(p[i], point[i]); // retrieve x,y and Z of the vpPoint structure

    // sets the desired position of the feature point s*
    vpFeaturePoint pd[4];

    pd[0].buildFrom(-0.1, -0.1, 1);
    pd[1].buildFrom(0.1, -0.1, 1);
    pd[2].buildFrom(0.1, 0.1, 1);
    pd[3].buildFrom(-0.1, 0.1, 1);

    // define the task
    // - we want an eye-in-hand control law
    // - articular velocity are computed
    task.setServo(vpServo::EYEINHAND_L_cVe_eJe);
    task.setInteractionMatrixType(vpServo::MEAN);

    // Set the position of the end-effector frame in the camera frame as identity
    vpHomogeneousMatrix cMe;
    vpVelocityTwistMatrix cVe(cMe);
    task.set_cVe(cVe);

    // Set the Jacobian (expressed in the end-effector frame
    vpMatrix eJe;
    robot.get_eJe(eJe);
    task.set_eJe(eJe);

    // we want to see a point on a point
    for (unsigned i = 0; i < 4; i++)
      task.addFeature(p[i], pd[i]);

    // set the gain
    task.setLambda(1);

    // Display task information
    task.print();

    unsigned int iter = 0;
    // loop
    while (iter++ < 200) {
      std::cout << "---------------------------------------------" << iter << std::endl;
      vpColVector v;

      // Set the Jacobian (expressed in the end-effector frame)
      // since q is modified eJe is modified
      robot.get_eJe(eJe);
      task.set_eJe(eJe);

      // get the robot position
      robot.getPosition(wMc);
      // Compute the position of the object frame in the camera frame
      cMo = wMc.inverse() * wMo;

      // update new point position and corresponding features
      for (unsigned i = 0; i < 4; i++) {
        point[i].track(cMo);
        // retrieve x,y and Z of the vpPoint structure
        vpFeatureBuilder::create(p[i], point[i]);
      }
      // since vpServo::MEAN interaction matrix is used, we need also to
      // update the desired features at each iteration
      pd[0].buildFrom(-0.1, -0.1, 1);
      pd[1].buildFrom(0.1, -0.1, 1);
      pd[2].buildFrom(0.1, 0.1, 1);
      pd[3].buildFrom(-0.1, 0.1, 1);

      if (opt_display) {
        vpDisplay::display(Iint);
        vpDisplay::display(Iext);
        vpServoDisplay::display(task, cam, Iint);
        externalview.display(Iext, cextMo, cMo, cam, vpColor::green);
        vpDisplay::flush(Iint);
        vpDisplay::flush(Iext);
      }

      // compute the control law
      v = task.computeControlLaw();

      // send the camera velocity to the controller
      robot.setVelocity(vpRobot::CAMERA_FRAME, v);

      std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
    }

    // Display task information
    task.print();

    std::cout << "Final robot position with respect to the object frame:\n";
    cMo.print();

    if (opt_display && opt_click_allowed) {
      vpDisplay::displayText(Iint, 20, 20, "Click to quit...", vpColor::white);
      vpDisplay::flush(Iint);
      vpDisplay::getClick(Iint);
    }
    return EXIT_SUCCESS;
  } catch (const vpException &e) {
    std::cout << "Catch a ViSP exception: " << e << std::endl;
    return EXIT_FAILURE;
  }
}
#elif !(defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
int main()
{
  std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
  return EXIT_SUCCESS;
}
#else
int main()
{
  std::cout << "You do not have X11, or GTK, or GDI (Graphical Device Interface) functionalities to display images..."
            << std::endl;
  std::cout << "Tip if you are on a unix-like system:" << std::endl;
  std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
  std::cout << "Tip if you are on a windows-like system:" << std::endl;
  std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
  return EXIT_SUCCESS;
}
#endif