1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
/****************************************************************************
*
* ViSP, open source Visual Servoing Platform software.
* Copyright (C) 2005 - 2023 by Inria. All rights reserved.
*
* This software is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* See the file LICENSE.txt at the root directory of this source
* distribution for additional information about the GNU GPL.
*
* For using ViSP with software that can not be combined with the GNU
* GPL, please contact Inria about acquiring a ViSP Professional
* Edition License.
*
* See https://visp.inria.fr for more information.
*
* This software was developed at:
* Inria Rennes - Bretagne Atlantique
* Campus Universitaire de Beaulieu
* 35042 Rennes Cedex
* France
*
* If you have questions regarding the use of this file, please contact
* Inria at visp@inria.fr
*
* This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Description:
* Simulation of a 2D visual servoing using 4 points with polar
* coordinates as visual feature.
*
*****************************************************************************/
/*!
\example servoSimuFourPoints2DPolarCamVelocityDisplay.cpp
\brief Simulation of a 2D visual servoing:
Simulation of a 2D visual servoing:
- servo on 4 points with polar coordinates,
- eye-in-hand control law,
- camera velocities are computed,
- display internal camera view and an external view.
Interaction matrix is computed as the mean of the current and desired
interaction matrix.
*/
#include <visp3/core/vpConfig.h>
#include <visp3/core/vpDebug.h>
#if (defined(VISP_HAVE_X11) || defined(VISP_HAVE_GTK) || defined(VISP_HAVE_GDI) || defined(VISP_HAVE_OPENCV))
#include <stdio.h>
#include <stdlib.h>
#include <visp3/core/vpCameraParameters.h>
#include <visp3/core/vpHomogeneousMatrix.h>
#include <visp3/core/vpImage.h>
#include <visp3/core/vpImagePoint.h>
#include <visp3/core/vpIoTools.h>
#include <visp3/core/vpMath.h>
#include <visp3/core/vpMeterPixelConversion.h>
#include <visp3/gui/vpDisplayGDI.h>
#include <visp3/gui/vpDisplayGTK.h>
#include <visp3/gui/vpDisplayOpenCV.h>
#include <visp3/gui/vpDisplayX.h>
#include <visp3/gui/vpProjectionDisplay.h>
#include <visp3/io/vpParseArgv.h>
#include <visp3/robot/vpSimulatorCamera.h>
#include <visp3/visual_features/vpFeatureBuilder.h>
#include <visp3/visual_features/vpFeaturePointPolar.h>
#include <visp3/vs/vpServo.h>
#include <visp3/vs/vpServoDisplay.h>
// List of allowed command line options
#define GETOPTARGS "cdh"
void usage(const char *name, const char *badparam);
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display);
/*!
Print the program options.
\param name : Program name.
\param badparam : Bad parameter name.
*/
void usage(const char *name, const char *badparam)
{
fprintf(stdout, "\n\
Tests a control law with the following characteristics:\n\
- eye-in-hand control\n\
- articular velocity are computed\n\
- servo on 4 points,\n\
- internal and external camera view displays.\n\
\n\
SYNOPSIS\n\
%s [-c] [-d] [-h]\n",
name);
fprintf(stdout, "\n\
OPTIONS: Default\n\
-c\n\
Disable the mouse click. Useful to automate the \n\
execution of this program without human intervention.\n\
\n\
-d \n\
Turn off the display.\n\
\n\
-h\n\
Print the help.\n");
if (badparam)
fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
}
/*!
Set the program options.
\param argc : Command line number of parameters.
\param argv : Array of command line parameters.
\param display : Display activation.
\param click_allowed : Click activation.
\return false if the program has to be stopped, true otherwise.
*/
bool getOptions(int argc, const char **argv, bool &click_allowed, bool &display)
{
const char *optarg_;
int c;
while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
switch (c) {
case 'c':
click_allowed = false;
break;
case 'd':
display = false;
break;
case 'h':
usage(argv[0], NULL);
return false;
default:
usage(argv[0], optarg_);
return false;
}
}
if ((c == 1) || (c == -1)) {
// standalone param or error
usage(argv[0], NULL);
std::cerr << "ERROR: " << std::endl;
std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
return false;
}
return true;
}
int main(int argc, const char **argv)
{
try {
// Log file creation in /tmp/$USERNAME/log.dat
// This file contains by line:
// - the 6 computed camera velocities (m/s, rad/s) to achieve the task
// - the 6 mesured camera velocities (m/s, rad/s)
// - the 6 mesured joint positions (m, rad)
// - the 8 values of s - s*
std::string username;
// Get the user login name
vpIoTools::getUserName(username);
// Create a log filename to save velocities...
std::string logdirname;
#if defined(_WIN32)
logdirname = "C:/temp/" + username;
#else
logdirname = "/tmp/" + username;
#endif
// Test if the output path exist. If no try to create it
if (vpIoTools::checkDirectory(logdirname) == false) {
try {
// Create the dirname
vpIoTools::makeDirectory(logdirname);
} catch (...) {
std::cerr << std::endl << "ERROR:" << std::endl;
std::cerr << " Cannot create " << logdirname << std::endl;
return EXIT_FAILURE;
}
}
std::string logfilename;
logfilename = logdirname + "/log.dat";
// Open the log file name
std::ofstream flog(logfilename.c_str());
bool opt_click_allowed = true;
bool opt_display = true;
// Read the command line options
if (getOptions(argc, argv, opt_click_allowed, opt_display) == false) {
return EXIT_FAILURE;
}
// We open two displays, one for the internal camera view, the other one for
// the external view, using either X11, GTK or GDI.
#if defined(VISP_HAVE_X11)
vpDisplayX displayInt;
vpDisplayX displayExt;
#elif defined(VISP_HAVE_GTK)
vpDisplayGTK displayInt;
vpDisplayGTK displayExt;
#elif defined(VISP_HAVE_GDI)
vpDisplayGDI displayInt;
vpDisplayGDI displayExt;
#elif defined(HAVE_OPENCV_HIGHGUI)
vpDisplayOpenCV displayInt;
vpDisplayOpenCV displayExt;
#endif
// open a display for the visualization
vpImage<unsigned char> Iint(300, 300, 0);
vpImage<unsigned char> Iext(300, 300, 0);
if (opt_display) {
displayInt.init(Iint, 0, 0, "Internal view");
displayExt.init(Iext, 330, 000, "External view");
}
vpProjectionDisplay externalview;
double px = 500, py = 500;
double u0 = 150, v0 = 160;
vpCameraParameters cam(px, py, u0, v0);
vpServo task;
vpSimulatorCamera robot;
std::cout << std::endl;
std::cout << "----------------------------------------------" << std::endl;
std::cout << " Test program for vpServo " << std::endl;
std::cout << " Eye-in-hand task control, articular velocity are computed" << std::endl;
std::cout << " Simulation " << std::endl;
std::cout << " task : servo 4 points " << std::endl;
std::cout << "----------------------------------------------" << std::endl;
std::cout << std::endl;
// #define TRANS_Z_PURE
// #define TRANS_X_PURE
// #define ROT_Z_PURE
// #define ROT_X_PURE
#define COMPLEX
//#define PROBLEM
#if defined(TRANS_Z_PURE)
// sets the initial camera location
vpHomogeneousMatrix cMo(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
// sets the desired camera location
vpHomogeneousMatrix cMod(0, 0, 2, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
#elif defined(TRANS_X_PURE)
// sets the initial camera location
vpHomogeneousMatrix cMo(0.3, 0.3, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
// sets the desired camera location
vpHomogeneousMatrix cMod(0.5, 0.3, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
#elif defined(ROT_Z_PURE)
// sets the initial camera location
vpHomogeneousMatrix cMo(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
// sets the desired camera location
vpHomogeneousMatrix cMod(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(180));
#elif defined(ROT_X_PURE)
// sets the initial camera location
vpHomogeneousMatrix cMo(0, 0, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
// sets the desired camera location
vpHomogeneousMatrix cMod(0, 0, 3, vpMath::rad(45), vpMath::rad(0), vpMath::rad(0));
#elif defined(COMPLEX)
// sets the initial camera location
vpHomogeneousMatrix cMo(0.2, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
// sets the desired camera location
vpHomogeneousMatrix cMod(0, 0, 2.5, vpMath::rad(45), vpMath::rad(10), vpMath::rad(30));
#elif defined(PROBLEM)
// Bad behavior with an interaction matrix computed from the desired
// features sets the initial camera location
vpHomogeneousMatrix cMo(0.2, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
// sets the desired camera location
vpHomogeneousMatrix cMod(0.4, 0.2, 3, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
#endif
// Compute the position of the object in the world frame
vpHomogeneousMatrix wMc, wMo;
robot.getPosition(wMc);
wMo = wMc * cMo;
vpHomogeneousMatrix cextMo(0, 0, 6, vpMath::rad(40), vpMath::rad(10), vpMath::rad(60));
// sets the point coordinates in the object frame
vpPoint point[4];
point[0].setWorldCoordinates(-0.25, -0.25, 0);
point[1].setWorldCoordinates(0.25, -0.25, 0);
point[2].setWorldCoordinates(0.25, 0.25, 0);
point[3].setWorldCoordinates(-0.25, 0.25, 0);
for (unsigned int i = 0; i < 4; i++)
externalview.insert(point[i]);
// sets the desired position of the feature point s*"
vpFeaturePointPolar pd[4];
// computes the point coordinates in the desired camera frame and
// its 2D coordinates
for (unsigned int i = 0; i < 4; i++) {
point[i].track(cMod);
// Computes the polar coordinates from the image point
// cartesian coordinates
vpFeatureBuilder::create(pd[i], point[i]);
}
// computes the point coordinates in the camera frame and its 2D
// coordinates
for (unsigned int i = 0; i < 4; i++)
point[i].track(cMo);
// sets the desired position of the point
vpFeaturePointPolar p[4];
for (unsigned int i = 0; i < 4; i++) {
// retrieve x,y and Z of the vpPoint structure to initialize the
// visual feature
vpFeatureBuilder::create(p[i], point[i]);
}
// Define the task;
// - we want an eye-in-hand control law
// - articular velocity are computed
task.setServo(vpServo::EYEINHAND_L_cVe_eJe);
// task.setInteractionMatrixType(vpServo::MEAN) ;
// task.setInteractionMatrixType(vpServo::DESIRED) ;
task.setInteractionMatrixType(vpServo::CURRENT);
// Set the position of the end-effector frame in the camera frame as identity
vpHomogeneousMatrix cMe;
vpVelocityTwistMatrix cVe(cMe);
task.set_cVe(cVe);
// Set the Jacobian (expressed in the end-effector frame)
vpMatrix eJe;
robot.get_eJe(eJe);
task.set_eJe(eJe);
// we want to see a point on a point
for (unsigned int i = 0; i < 4; i++)
task.addFeature(p[i], pd[i]);
// set the gain
task.setLambda(1);
std::cout << "\nDisplay task information: " << std::endl;
task.print();
unsigned int iter = 0;
// loop
while (iter++ < 200) {
std::cout << "---------------------------------------------" << iter << std::endl;
vpColVector v;
// Set the Jacobian (expressed in the end-effector frame)
// Since q is modified eJe is modified
robot.get_eJe(eJe);
task.set_eJe(eJe);
// get the robot position
robot.getPosition(wMc);
// Compute the position of the object frame in the camera frame
cMo = wMc.inverse() * wMo;
// Compute new point position
for (unsigned int i = 0; i < 4; i++) {
point[i].track(cMo);
// retrieve x,y and Z of the vpPoint structure to compute the feature
vpFeatureBuilder::create(p[i], point[i]);
}
if (opt_display) {
vpDisplay::display(Iint);
vpDisplay::display(Iext);
vpServoDisplay::display(task, cam, Iint);
externalview.display(Iext, cextMo, cMo, cam, vpColor::green);
vpDisplay::flush(Iint);
vpDisplay::flush(Iext);
}
// Compute the control law
v = task.computeControlLaw();
if (iter == 1) {
std::cout << "Display task information: " << std::endl;
task.print();
}
task.print(vpServo::FEATURE_CURRENT);
task.print(vpServo::FEATURE_DESIRED);
// Send the camera velocity to the controller
robot.setVelocity(vpRobot::CAMERA_FRAME, v);
// Save velocities applied to the robot in the log file
// v[0], v[1], v[2] correspond to camera translation velocities in m/s
// v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
std::cout << "v: " << v.t() << std::endl;
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
// Save feature error (s-s*) for the 4 feature points. For each feature
// point, we have 2 errors (along x and y axis). This error is
// expressed in meters in the camera frame
flog << (task.getError()).t() << " "; // s-s* for point 4
std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
// Save current visual feature s = (rho,theta)
for (unsigned int i = 0; i < 4; i++) {
flog << p[i].get_rho() << " " << p[i].get_theta() << " ";
}
// Save current position of the points
for (unsigned int i = 0; i < 4; i++) {
flog << point[i].get_x() << " " << point[i].get_y() << " ";
}
flog << std::endl;
if (iter == 1) {
vpImagePoint ip;
ip.set_i(10);
ip.set_j(10);
std::cout << "\nClick in the internal camera view to continue..." << std::endl;
vpDisplay::displayText(Iint, ip, "A click to continue...", vpColor::red);
vpDisplay::flush(Iint);
vpDisplay::getClick(Iint);
}
}
flog.close(); // Close the log file
// Display task information
task.print();
// Kill the task
std::cout << "Final robot position with respect to the object frame:\n";
cMo.print();
if (opt_display && opt_click_allowed) {
vpDisplay::displayText(Iint, 20, 20, "Click to quit...", vpColor::white);
vpDisplay::flush(Iint);
vpDisplay::getClick(Iint);
}
return EXIT_SUCCESS;
} catch (const vpException &e) {
std::cout << "Catch a ViSP exception: " << e << std::endl;
return EXIT_FAILURE;
}
}
#else
int main()
{
std::cout << "You do not have X11, or GTK, or GDI (Graphical Device Interface) functionalities to display images..."
<< std::endl;
std::cout << "Tip if you are on a unix-like system:" << std::endl;
std::cout << "- Install X11, configure again ViSP using cmake and build again this example" << std::endl;
std::cout << "Tip if you are on a windows-like system:" << std::endl;
std::cout << "- Install GDI, configure again ViSP using cmake and build again this example" << std::endl;
return EXIT_SUCCESS;
}
#endif
|